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Abstract: Human pressure on the environment and climate change are two important factors con-
tributing to species decline and overall loss of biodiversity. Orchids may be particularly vulnerable to
human-induced losses of habitat and the pervasive impact of global climate change. In this study, we
simulated the extent of the suitable habitat of three species of the terrestrial orchid genus Cypripedium
in northeast China and assessed the impact of human pressure and climate change on the future
distribution of these species. Cypripedium represents a genus of long-lived terrestrial orchids that
contains several species with great ornamental value. Severe habitat destruction and overcollection
have led to major population declines in recent decades. Our results showed that at present the
most suitable habitats of the three species can be found in Da Xing’an Ling, Xiao Xing’an Ling and
in the Changbai Mountains. Human activity was predicted to have the largest impact on species
distributions in the Changbai Mountains. In addition, climate change was predicted to lead to a
shift in distribution towards higher elevations and to an increased fragmentation of suitable habitats
of the three investigated Cypripedium species in the study area. These results will be valuable for
decision makers to identify areas that are likely to maintain viable Cypripedium populations in the
future and to develop conservation strategies to protect the remaining populations of these enigmatic
orchid species.

Keywords: orchid; geographic distribution; maxent; biodiversity protection

1. Introduction

Predicting changes in species distributions as a result of human activity and/or
climate change is crucial for the conservation and restoration of populations of endangered
species [1]. Species distribution models (SDMs) are effective methods for estimating the
ecological requirements and potential distribution of species. These models combine
individual species’ occurrence records with a set of environmental predictors to estimate
the ecological requirements of the species [2,3]. The maximum entropy model (Maxent)
has been shown to obtain more accurate prediction results compared with other models
when the amount of data used for the prediction is small, making it a valuable tool for the
prediction of the potential distribution ranges of endangered species or species of great
economic value [4–8].

Human activities in the environment and climate change are considered as two of the
most severe threats to the conservation of wild plant and animal species [9–11]. Human
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activities, which includes livestock grazing, urbanization and roads, and has been shown
to be important contributors to biodiversity loss [12,13]. Intense human activities can
significantly alter the structure of ecosystems, change species distribution patterns and
affect ecosystems functions, ultimately leading to a more homogenous biosphere [14–17].
The impact of human activities on endangered species is predicted to be even more serious,
because endangered species are generally more sensitive to changes under human stress
than common species [18–20]. The Human Footprint (HFP) published in 2016 has become
an important tool to study the impact of global human pressure on the environment [21–24].

Besides human pressure, the distribution of species also depends largely on climatic
conditions, suggesting that climate change will affect the future availability of suitable
habitat and hence species distributions [25–29]. As a result of climate change, suitable
habitats may become increasingly fragmented or disappear altogether, causing further
changes in biodiversity [30,31]. Climate change may shrink and/or shift species’ ranges,
thereby increasing their vulnerability to external disturbances [32]. It has been predicted
that in the next 30–60 years, the climatic conditions will no longer be suitable to support
more than 60 species in Chinese nature reserves [33]. Similarly, habitat suitability will
decline in more than 130 nature reserves [33]. To survive the changing climatic conditions,
species will either have to adapt to the climate change or migrate to other, more suitable
habitat areas [34–37].

Orchids represent one of the largest families of flowering plants in the world, currently
containing over 27,000 species [38]. Orchids are widely distributed all over the world,
except for extreme deserts and the icy regions that skirt the Arctic and Antarctica [39].
Depending on the scale, their distribution depends on a range of biotic and abiotic factors,
including habitat size, light and soil conditions [40], the presence of suitable mycorrhizal
fungi [41] and pollinators [42–44]. As a result of human interference, many orchids are de-
clining and some of them are highly threatened or have already gone (locally) extinct [45,46].
However, at present there are very few studies that have investigated how the combined
impact of land-use change and climate change affects the large-scale distribution of orchids.

In this study, we investigated the impact of human activities on the environment and
climate change on the distribution of three Cypripedium species in northeast China. In recent
decades, overcollection, habitat loss and fragmentation have led to substantial decreases
in the distribution and abundance of lady’s slipper orchids in China and elsewhere in
the world [47–49]. Maxent and ArcGIS were used to assess the importance of multiple
environmental variables (including bioclimatic and topographical variables, soil type,
vegetation type and human activities) determining the distribution of lady’s slipper orchids
in northeast China. In particular, we aimed to (1) assess the relationship between the
environmental variables and the distribution of the lady’s slipper orchids; (2) identify
the key environmental variables constraining the distribution of Cypripedium in northeast
China; (3) identify suitable habitats for Cypripedium; and (4) assess the effect of human
activities and climate change on the distribution of Cypripedium in the study area.

2. Material and Methods
2.1. Study Species

Cypripedium is a genus of long-lived terrestrial orchids (Orchidaceae) that have distinc-
tive flowers looking like a lady’s slipper. There are about 50 species in this genus, of which
32 species grow in China [50]. They are terrestrial orchids that usually flower between
May and July [50]. Most species of Cypripedium are distributed in the temperate region
of the northern hemisphere [51]. Cypripedium species often require very specific climatic
conditions for flowering, seed germination and off-spring production [52,53]. Northern
China and northeast China are considered as the secondary centers of the distribution
of Cypripedium in the World [54]. They mainly grow in the broad-leaved or mixed conif-
erous and broad-leaved forests of northeast China [55,56]. Three species of Cypripedium
(C. calceolus L. (Figure 1b), C. macranthum Sw. (Figure 1c) and C. guttatum Sw. (Figure 1d))
occur in northeast China and were investigated in this study.
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Figure 1. (a) Map of China and the study area; (b) Cypripedium calceolus L.; (c) Cypripedium macranthum Sw.; (d) Cypripedium
guttatum Sw.; (e) geographic locations of Cypripedium in northeast China.

2.2. Study Area

The study area is located between 110 and 130◦ E and between 38 and 50◦ N in
northeast China and occupies approximately 1.2 million square kilometers. This area
includes the Liaoning province, Jilin province, Heilongjiang province and the eastern part
of the Inner Mongolia autonomic region (Figure 1a). The study area does not completely
coincide with the administrative boundary. The climate in northeast China varies between
humid in the east and semi-humid monsoon in the west that is affected by the Eastern
Asia Monsoon [57]. The mean annual precipitation ranges from 174 to 1124 mm year−1

and mean annual temperature ranges from −8.8 to 11.3 ◦C. The vegetation shows distinct
changes with increasing longitude. Da Xing’an Ling and Xiao Xing’an Ling contain mainly
cold temperate coniferous forests, the Changbai Mountains harbor mainly temperate
broad-leaved deciduous forests, while the Northeastern Plain consists mainly of temperate
grasslands [58].

2.3. Environmental Niche Modeling

Detailed occurrence records were obtained from field investigations conducted be-
tween May 2017 and June 2018 and herbarium records. First, we checked specimens of
Cypripedium in the Herbarium of the Institute of Applied Ecology, Chinese Academy of
Sciences, and used these records as a baseline to plan the survey routes. Surveys were
conducted in four northeastern provinces (Heilongjiang, Jilin, Liaoning and the Eastern
part of Inner Mongolia) and three mountain ranges (Da Xing’an Ling, Xiao Xing’an Ling
and the Changbai Mountains).

The remaining data were obtained from the Global Biodiversity Information Facility
(https://www.gbif.org/), the Chinese Virtual Herbarium (http://www.cvh.ac.cn/) and
the data sharing platform for forest plant germplasm and habitat survey in northeast China
(http://cnes.iae.ac.cn:8888/default.aspx). Occurrence records were removed when they
were in the same grid cell or occurred outside the study area. Spatial filtering was used to
reduce spatial clumping by keeping one valid occurrence record within grid cells of five

https://www.gbif.org/
http://www.cvh.ac.cn/
http://cnes.iae.ac.cn:8888/default.aspx
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kilometers. Finally, a total of 68 validated record points was used in Maxent (Figure 1e),
including 19 occurrence records for C. calceolus, 26 for C. macranthum and 23 for C. guttatum.

Environmental data were obtained from various databases, including bioclimatic
variables from the WorldClim-Global Climate Data (http://www.worldclim.org), the
topographic data from Geospatial Data Cloud (http://www.gscloud.cn/), the vegeta-
tion data from Resource and Environment Data Cloud Platform (http://www.resdc.cn/
DataList.aspx) (vegetation data) and soil data from the Harmonized World Soil Database
(http://webarchive.iiasa.ac.at) (soil data). The Human Footprint (HFP) data were down-
loaded from https://datadryad.org/resource/doi:10.5061/dryad.052q5.2 [59]. The World
Database on Protected Areas (WDPA) data (Figure S1a) were provided by the China Council
for International Cooperation on Environment and Development. Future bioclimatic vari-
ables were provided by IPCC5 (the Intergovernmental Panel on Climate Change) [60]. The
future bioclimatic data available were the IPPC5 climate projections from the global climate
models (GCMs) for four representative concentration pathways (RCPs). Here, we chose
two climate scenarios (rcp4.5 and rcp8.5) in 2070 with the three models of BCC-CSM1-1
(Beijing Climate Center Climate System Model), CCSM4 (The Community Climate System
Model) and HadGEM2-AO (Hadley Global Environment Model). Rcp4.5 is a scenario
that stabilizes radiative forcing at 4.5 W m−2 in the year 2100 without ever exceeding that
value by employment of a range of technologies and strategies for reducing greenhouse
gas emissions [61]. The rcp8.5 scenario corresponds to a nominal anthropogenic forcing
of 8.5 W m−2 by 2100, with emissions of CO2 following an exponential growth trajectory
throughout the 21st century and is generally taken as the basis for worst-case climate
change scenarios.

2.3.1. Data Preparation and Selection

The World Climate Database provides 19 bioclimatic variables (Table 1). In addi-
tion, we calculated several additional variables, including Kira’s warmth index (WI) [62],
Holdridge’s annual biotemperature (ABT) [63], Kira’s coldness index (CI) [62], seasonality
of precipitation (PSD) and |WI-CI|.

• Kira’s warmth index (WI) [62],

WI = ∑ (T − 5) (for months in which T > 5 ◦C in units of degree month);

• Holdridge’s annual biotemperature (ABT) [63],

ABT =
∑ T
12

(for months in which T > 0 ◦C in units of degree month);

• Kira’s coldness index (CI) [62],

CI = ∑ (T − 5) (for months in which T > 0 ◦C in units of degree month);

• Seasonality of precipitation (PSD),

PSD =
2
√

(bio13−bio14)2

2
bio13 + bio14

(for bio13 = precipitation of wettest month, bio14 = precipitation of driest month);

• |WI-CI|,
|WI-CI| = |warmth index − coldness index|.

All these data were calculated using ArcGIS 10.3.

http://www.worldclim.org
http://www.gscloud.cn/
http://www.resdc.cn/DataList.aspx
http://www.resdc.cn/DataList.aspx
http://webarchive.iiasa.ac.at
https://datadryad.org/resource/doi:10.5061/dryad.052q5.2
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Table 1. The environmental variables used to predict the potential geographic distribution of Cypripedium.

Variables Classification Description Data Source Details

Bio1 Climate Annual Mean Temperature Worldclim database
Bio2 Climate Mean Diurnal Range Worldclim database
Bio3 Climate Isothermality Worldclim database
Bio4 Climate Temperature Seasonality Worldclim database

Bio5 Climate Maximum Temperature of
Warmest Month Worldclim database

Bio6 Climate Minimum Temperature of
Coldest Month Worldclim database

Bio7 Climate Temperature Annual
Range Worldclim database

Bio8 Climate Mean Temperature of
Wettest Quarter Worldclim database

Bio9 Climate Mean Temperature of
Driest Quarter Worldclim database

Bio10 Climate Mean Temperature of
Warmest Quarter Worldclim database

Bio11 Climate Mean Temperature of
Coldest Quarter Worldclim database

Bio12 Climate Annual Precipitation Worldclim database

Bio13 Climate Precipitation of Wettest
Month Worldclim database

Bio14 Climate Precipitation of Driest
Month Worldclim database

Bio15 Climate Precipitation Seasonality Worldclim database

Bio16 Climate Precipitation of Wettest
Quarter Worldclim database

Bio17 Climate Precipitation of Driest
Quarter Worldclim database

Bio18 Climate Precipitation of Warmest
Quarter Worldclim database

Bio19 Climate Precipitation of Coldest
Quarter Worldclim database

ABT Climate Annual Biotemperature Worldclim database
CI Climate Coldness Index Worldclim database
WI Climate Warmth Index Worldclim database

|WI-CI| Climate Absolute Value of Warmth
Index - Coldness Index Worldclim database

Ele Topography Elevation Geospatial Data Cloud
Slo Topography Slope Geospatial Data Cloud
Asp Topography Aspect Geospatial Data Cloud

OC Soil Topsoil Organic Carbon
Content

Harmonized World Soil
Database

The percentage of organic carbon
in topsoil

pH Soil Topsoil pH Harmonized World Soil
Database

Measured in a soil–water solution, it is
a measure for the acidity and

alkalinity of the soil

Veg Vegetation Vegetation Type
Data Center for
Resources and

Environmental Sciences

Distribution of 11 vegetation types
in China

Built Human activity Built Environments Human Footprint maps All areas mapped as built given a
score of 10

Pop Human activity Population Density Human Footprint maps Pressure score = 3.333 × log
(population density + 1)

Nig Human activity Night-time Density Human Footprint maps Equal quintile bins

Crop Human activity Croplands Human Footprint maps All areas mapped as crops given a
score of 7

Pas Human activity Pasture Human Footprint maps All areas mapped as pasture given a
score of 4
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Table 1. Cont.

Variables Classification Description Data Source Details

Roa Human activity Roads Human Footprint maps

500 m either side of roads given a
direct pressure score of 8

Starting 500 m out from a road, a
pressure score of 4 exponentially

decaying out to 15 km

Rail Human activity Railways Human Footprint maps
500 m either side of railways given a

direct pressure score of 8
Starting 500 m out from a road, a

Nav Human activity Navigable Waterways Human Footprint maps pressure score of 4 exponentially
decaying out to 15 km

We used Maxent 3.4.1 [64] to construct the environmental niche of each species based
on all occurrence records. Maxent sample cells implicitly assume that the actual area of
each cell is equal, so the grids should be projected to an equal area projection [65]. All
environmental variables (Table 1) were processed as Krasovsky 1940 Albers projection with
a resolution of 1 km in ArcGIS. In order to improve the accuracy of the model and to avoid
over-fitting, we removed those climatic variables that were highly correlated (Figure S2)
and showed low relative contributions in Maxent. Elevation, slope, top soil organic carbon
content and top soil pH were selected as the topographic and soil characteristics based on
results of the field survey (Table S1 and Figure S3). Finally, a total of nine environmental
factors (elevation, slope, isothermality, temperature seasonality, maximum temperature
of warmest month, precipitation of driest quarter, seasonality of precipitation, topsoil
organic carbon content and top soil pH) were used to simulate the potential distribution of
each species.

Human excavation and habitat destruction were considered as the main contributors
of human activities that have led to the decline of Cypripedium [66–68]. In our investigation,
we also found traces of plants being eaten by cattle and sheep after grazing (Table S1).
Therefore, we used population density, and the presence of pastures and farms, as the
main indicators of human pressure. Human pressure values range from 0 to 19 (Table 1),
and these values were divided into three categories denoting the level of impact: low
(value ≤ 4), moderate (4 < value ≤ 10) and high (value > 10) impact (Figure 2a). The
vegetation of northeast China was used to classify vegetation types into vegetations suited
to support Cypripedium populations (coniferous forest, deciduous forest, mixed forest,
meadow and swamp) and unsuitable vegetation types (Figure S1b). Because the inves-
tigated Cypripedium species only grow in a few specific vegetation types (Table S1) [55],
the local vegetation conditions were taken as additional ecological factors limiting the
distribution of the three species. Finally, the potential distribution area of Cypripedium was
the merged data set of the predicted distribution by the Maxent prediction result and the
area of suitable vegetation for Cypripedium.
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2.3.2. Model Evaluation

We used the receiver operating characteristic (ROC) analysis with the area under
the ROC curve (AUC) index to evaluate model performance [69,70]. The ROC curve is a
graph consisting of two axes; the x-axis represents the false positive fraction and is called
1-specificity, and the y-axis shows the true positive fraction named sensitivity [69]. AUC
values usually vary between 0.5 and 1.0. An AUC value ≥ 0.8 indicates that the model can
obtain good prediction results.

2.3.3. Threshold Selection

There are many thresholds that can be used to transform the continuous probability
data into binary data (presence/absence), including a value of 0.8 [71,72], the minimum
predicted value [58], the 10th percentile training presence threshold [73] or the maximum
value of the sum of sensitivity and specificity (MSS) [74]. Here, we used MSS as the
threshold to transform the continuous suitability data into binary data. The probability
distribution was reclassified into unsuitable and suitable area by judging grid values
smaller or greater than MSS. For each run, 20% of the data were used as test points. Maxent
currently has six feature classes: linear, product, quadratic, hinge, threshold and categorical
features, and we chose the linear, product and quadratic features according to our sample
size [64]. We chose the best “regularization multiplier” based on model performance (AUC).
The maximum number of background points was set to 10,000 and replicated 20 times.
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3. Results
3.1. Model Performance and Key Environmental Variables

The mean AUC in this study, including the test data and training data of the Maxent
model with nine environmental variables, ranged from 0.810 to 0.873 (Table S2), which
means that the model gave good predictions. The distribution of the three Cypripedium
species in northeast China was strongly associated with topography (elevation and slope)
and climate (isothermality, temperature seasonality, maximum temperature of warmest
month, precipitation of driest quarter and seasonality of precipitation). In terms of topog-
raphy, elevation had a larger influence on the distribution of C. macranthum, while slope
had a larger influence on the distribution of C. calceolus and C. guttatum. The distribution
of the three orchid species was most strongly affected by the maximum temperature of
the warmest month, with relative contributions between 18.1% and 21% (Figure S4). The
distribution of C. guttatum was also strongly affected by topsoil organic carbon content and
top soil pH, while the distribution of the other two orchids was less affected by soil factors.
The highest probability of occurrence was found at sites with a maximum temperature of
the warmest month of 2.56 ◦C, an elevation higher than 500 m and slope larger than 6◦

(Figure S6).

3.2. Suitable Habitats of Cypripedium in Northeast China

The estimated area of suitable habitat of the three species of Cypripedium in northeast
China varied between 69,436 and 110,158 km2 (Figure 3a). Suitable habitats of C. calceolus
were mainly distributed in the central and northern parts of the Changbai Mountains, the
southeastern part of Xiao Xing’an Ling and few areas in Da Xing’an Ling. Most of the
potential distribution was located in the Heilongjiang province and a few areas in Liaoning
(Figure 2b). The suitable habitats of C. macranthum were mainly distributed in the central
and southern parts of the Changbai Mountains, followed by sporadic occurrences in the
northern and central part of Da Xing’an Ling and a few areas in Xiao Xing’an Ling (Figure
2c). The suitable habitats of C. guttatum occurred mainly in the central and northern parts
of Da Xing’an Ling, and there were a few suitable habitats in the Changbai Mountains and
Xiao Xing’an Ling (Figure 2d).
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3.3. The Impact of Human Pressure on the Distribution of Cypripedium

Human activities were most pronounced in the northeast Plain, with no suitable area
for Cypripedium remaining. Moderate human activities were observed in the central part of
the Changbai Mountains (Figure 2). Because most of the suitable habitats of C. calceolus
were located in this area, more than 75% of its potential habitats was subject to moderate
human pressure (Figure 2b and Figure S5). Suitable habitats of C. macranthum (Figure 2c)
and C. guttatum (Figure 2d) mainly occurred in Da Xing’an Ling and Xiao Xing’an Ling,
where human activities were less abundant.

3.4. The Suitable Area of Cypripedium within Nature Reserve Area

Total reserve area in the study area comprised about 82,308 km2, accounting for less
than 7% of the total study area. Within the reserve area, little suitable habitat was observed:
1986 km2 for C. calceolus (mainly in the Liangshui, Qixinglazi and Yueyahu nature reserve),
4417 km2 for C. macranthum (mainly in the Longwan, Jingyu and Changbai Mountains
nature reserve) and 3276 km2 for C. guttatum (mainly in the Changbai Mountains, Huzhong
and Nanwenghe nature reserve). Most of the protected areas are coniferous forests, broad-
leaved forests or mixed coniferous and broad-leaved forests.

3.5. Future Suitable Habitats Prediction of Cypripedium

By 2070, the extent of suitable habitats for the three Cypripedium species will signifi-
cantly decrease in the study area (Figures 3a and 4). Under both climate change scenarios,
most of the suitable habitats of C. calceolus will disappear in the Changbai Mountains and
Da Xingan Mountains and only a small fraction of suitable area will remain in the northern
Changbai Mountains. However, some fragmented new suitable areas will appear on the
western Da Xing’an Ling. For C. macranthum, most of the habitats in Da Xing’an Ling
will remain under the two climatic scenarios, but some suitable areas in the Changbai
Mountains will disappear, especially under rcp8.5. Under rec4.5, some suitable areas of
C. guttatum are predicted to disappear in the northern part of the Changbai Mountains,
while new suitable areas would appear in Da Xing’an Ling. Most suitable areas of C. gutta-
tum will disappear under rcp8.5. Compared with the current distribution, suitable habitats
of the three species of Cypripedium will move to higher elevations under both climate
scenarios. This was most evident for C. calceolus, with an increase in elevation from 420 m
to 743 m (rcp4.5) and 950 m (rcp8.5) (Figure 3b).
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Figure 4. Predicted changes in habitat suitability for the three Cypripedium species under two climate
change scenarios (rcp4.5 and rcp8.5) by 2070. Changes in habitat suitability for Cypripedium calceolus
under (a) rcp4.5 and (b) rcp8.5; for Cypripedium macranthum under (c) rcp4.5 and (d) rcp8.5, and
Cypripedium guttatum under (e) rcp4.5 and (f) rcp8.5. Rcp4.5 is a scenario that stabilizes radiative
forcing at 4.5 W m−2 in the year 2100 without ever exceeding that value by employment of a range of
technologies and strategies for reducing greenhouse gas emissions. The rcp8.5 scenario corresponds
to a nominal anthropogenic forcing of 8.5 W m−2 by 2100, with emissions of CO2 following an
exponential growth trajectory throughout the 21st century.

4. Discussion
4.1. Ecological Niche of Cypripedium

Our field surveys demonstrated that the three studied Cypripedium species mostly
occur in cool and humid forests with a gentle terrain and high altitude. The analyses
showed that forests with substantial light penetration through the forest canopy, a sparse
shrub and herb layer and a deep soil humus characterized most of the sites where we
encountered Cypripedium populations in northeast China. Model simulations showed that
these habitats were mainly found in mountainous areas. These results are in accordance
with the results of Wan et al. [75], who also showed that C. calceolus was mainly distributed
in the northern part of the Changbai Mountains. However, our results showed that suitable
habitats of C. calceolus were found at many other places in the Changbai Mountains and
also occurred widely in Da Xing’an Ling and Xiao Xing’an Ling, suggesting that the
species has a much wider potential distribution than pervious analyses have indicated.
Notwithstanding, 48 distribution records were used in Wan’s research; their predictions had
limitations due to sampling collection bias, which may have led to inaccurate predictions
of areas of suitable habitat [76]. Increased awareness of the implications of spatial bias in
surveys will therefore substantially improve predictions of species distributions [76].

Although the three Cypripedium species have a similar life history, their distribution
areas did not completely overlap, suggesting they pose somewhat different requirements
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towards the environmental conditions that allow long-term persistence and survival. Cypri-
pedium macranthum was mainly distributed in the south-central part of the Changbai
Mountains, while C. calceolus was mainly found in the north-central part of the Changbai
Mountains and C. guttatum in Da Xing’an Ling. Maximum temperature of the warmest
month (Bio5) appeared to have the largest impact on the distribution of the three Cypri-
pedium species, indicating that climatic conditions have a determining influence on their
distribution. A previous study has shown that high summer temperatures may increase
the costs of respiration in Cypripedium [77]. In addition, precipitation of the driest quarter
(Bio 17) appeared to be also important for the distribution of Cypripedium, suggesting that
spring snow cover can have a protective effect on plant growth and provides sufficient
moisture for growth [77]. Besides climatic conditions, we also found that soil conditions
had an impact on the distribution of the investigated lady’s slipper orchids. Whether
this is driven by a direct impact on the growth of the orchids or by altering mycorrhizal
availability [75] warrants further research.

4.2. Future Protection under Climate Change and Human Pressure

Our simulations further showed that under the predicted changes in climatic condi-
tions the suitable areas of the three species will move to higher elevations. Particularly,
under rcp8.5, suitable areas will disappear at lower elevations. However, it remains unclear
whether the species will be able to disperse to higher elevation sites without active human
intervention (e.g., seed introduction). At the same time, the increased fragmentation and
disappearance of the original habitats caused by climate change may have a negative
impact on the future prospects of extant populations of Cypripedium within the study area.
Considering the long time before Cypripedium plants start to reproduce by seeds [68,78],
once habitats become unsuitable, it may take a long time before viable populations success-
fully establish in new suitable habitats. However, pronounced variation in microclimatic
conditions in environments with complex terrains could mitigate the impact of climate
change in the short term [79], because plant species may temporarily escape from regional
climate change by short-distance migration to local micro-refugia [80]. Given that Cypri-
pedium populations were mainly confined to mountainous areas, short-distance migration
could to some extent slow down the negative impact of climate change on Cypripedium.
Nonetheless, the pronounced loss of suitable habitat due to climate change may pose a
serious threat to the long-term survival of populations of Cypripedium in the study area.

Human pressure appeared to have a smaller impact on the distribution of the studied
Cypripedium species. Only in the Changbai Mountains was a substantial amount of suitable
habitat of C. calceolus affected by moderate human pressure, while for C. macranthum and
C. guttatum suitable habitats in Da Xing’an Ling and Xiao Xing’an Lingn were less affected
by human pressure. These results indicate that human activities will most likely have a
greater impact on the future survival of C. calceolus than on that of the other two species.
Therefore, future conservation planning and actions should particularly pay attention to
protection of suitable habitats of C. calceolus. Given that at present only a very small fraction
of the potential distribution area of C. calceolus is located within existing nature reserves,
protecting additional areas is a key priority to reassure the long-term viability of these
species [75]. For the conservation of Cypripedium, the Da Xing’an Ling area appears to
be the best region to set up new conservation areas since it was suitable to support the
three species. Extending existing protected areas with novel suitable areas can be an ideal
starting point for continued conservation in situ. Selecting sites with a slightly higher
elevation than the current nature reserves can also contribute to the long-term survival of
Cypripedium and mitigate predicted long-term climate changes.

Apart from human pressure and climatic conditions, other biotic and abiotic factors
may affect the distribution of plant species, including vegetation [80], presence of polli-
nators [42] or suitable mycorrhizal fungi [41,81]. For example, favorable vegetation for
the establishment of seedlings of C. macranthum includes narrow-leaved, medium-sized
grasses, sedges, herbs, mosses and prostrate mat-forming shrubs. In general, the presence
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of these plants provides suitable moisture, temperature and light conditions at the soil
surface for C. macranthum [80]. However, detailed data on vegetation or pollinator com-
munities were unavailable for the entire region. Similarly, even though next-generation
genomic methods have the potential to provide information about the suite of mycorrhizal
fungi in the soil to support orchid populations and to drive niche differentiation in orchids,
large-scale assessments of the distribution of mycorrhizal fungi are still largely lacking [82].
Future studies are therefore needed to unravel the role of mycorrhizal fungi in determining
the large-scale distribution of these plants.

5. Conclusions

Maxent and ArcGIS were used to understand the effects of human pressure and
climate change on the distribution of three Cypripedium species in northeast China. Our
results showed that the maximum temperature of the warmest month, altitude, slope and
seasonality of precipitation had important effects on the distribution of the investigated
Cypripedium species. Human pressure had a significant impact on the distribution of
C. calceolus, but negligible effects on the distribution of C. macranthum and C. guttatum.
Predicted changes in climate will drive Cypripedium populations to higher elevation sites,
although the complex microclimate of mountains may mitigate the negative effects of
climate change. Based on these results, future conservation programs should focus on
selecting reserve sites at higher altitudes and investigating whether assisted migration is
needed for seeds to establish at these sites.
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