CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 10 May 2017
Accepted 21 June 2017

Edited by G. Smith, Queensland University of Technology, Australia

Keywords: crystal structure; naturally occurring seselin; T. stictocarpum; tetrahydroseselin; Pd / C hydrogenation in MeOH .

CCDC reference: 1557474

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigodot ACCESS

Crystal structure of tetrahydroseselin, an angular pyranocoumarin

A. K. Bauri, ${ }^{\text {a }}$ S. Foro ${ }^{\text {b }}$ and A. F. M. M. Rahman ${ }^{\text {c* }}$

 Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, and ${ }^{\text {c }}$ Department of Applied Chemistry \& Chemical Engineering, University of Dhaka, Dhaka 1000, Bangladesh. *Correspondence e-mail: mustafizacce@du.ac.bd

In the title compound, tetrahydroseselin, $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3}$, a pyranocoumarin [systematic name: 8,8-dimethyl-3,4,9,10-tetrahydro- $2 \mathrm{H}, 8 \mathrm{H}$-pyrano[2,3-f]chro-men-2-one] obtained from the hydrogenation of seselin in the presence of Pd / C in MeOH at room temperature, the dihedral angle between the central benzene ring and the best planes of the outer fused ring systems are 6.20 (7) and 10.02 (8) ${ }^{\circ}$. In the crystal, molecules show only very weak intermolecular CH \cdots O interactions.

1. Chemical context

The title molecule, tetrahydroseselin, a hydrogenated product of an angular pyranocoumarin, seselin, consists of three different kinds of fused rings: a central benzene ring, an outer pyrone ring and a pyrane ring with dimethyl substituents attached at C3. These pyranocoumarins have absorption bands in the near UV region resulting from the presence of conjugated double bonds in the enone system and exhibit photo-mutagenic and photo-carcinogenic properties (Appendino et al., 2004), which bind with the purine base of DNA in living cells to yield photo-adducts (Conforti et al., 2009). Based on this property, the molecules are used to treat numerous inflammatory skin diseases such as atopic dermatitis and pigment disorders like vitiligo and psoriasis, through exposure to UV radiation in photo dynamic therapy (PDT). Because of their strong ability to absorb UV radiation, these classes of molecules are utilized as photo-protective agents to prevent the absorption of harmful UV radiation by the skin, in the form of a variety of sun-screening lotions widely used in dermatological applications in the cosmetic and pharmaceutical industries (Chen et al., 2007, 2009). Also, in vitro antiproliferative activity and in vivo photo-toxicity against numerous cancer cell lines, e.g. HL60 and A431, has been observed (Conconi et al., 1998). In addition, this class of coumarins have been successfully used in the treatment of inhibited proliferation in the human hepatocellular carcinoma cell line (March et al., 1993). Experimental results have shown that its photo-toxicity is extended via a Diels-Alder reaction to bind the double bond of a purine base of DNA in the living cell with the double bonds of coumarin to yield mono [$(2+2)$ cycloaddition] and diadducts [$(4+2)$ cycloaddition] (Conforti et al., 2009). As a part of our studies in this area, we are looking at the role of double bonds in the photo-biological activity of the aforesaid molecule. The crystal structure of the
title compound tetrahydroseselin, $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3}$, is reported herein.

2. Structural commentary

In the title compound, the three different fused rings comprising the molecule (Fig. 1), are the central benzene ring ($\mathrm{C} 1 / \mathrm{C} 5-\mathrm{C} 12$), the outer pyrone ring ($\mathrm{O} 2 / \mathrm{C} 6-\mathrm{C} 7$) and the dihydropyrane ring ($\mathrm{O} 1 / \mathrm{C} 1-\mathrm{C} 2$), with dimethyl substituents attached at C3. The mean planes of these rings ($\mathrm{O} 1 / \mathrm{C} 1-\mathrm{C} 2$ and O2/C6-C7) are inclined to the benzene plane by 6.20 (7) and $10.02(8)^{\circ}$, respectively. The angles between the mean plane of the benzene ring and the four planar atoms of each pyran ring (O1/C1-C2) and (O2/C6-C10) are 3.0 (1) ${ }^{\circ}$ (r.m.s. of the fitted atoms $=0.0092 \AA$) and $2.6(1)^{\circ}$ (r.m.s. of the fitted atoms $=$ $0.0046 \AA$), respectively. Both rings are in half-chair conformations and atoms C2, C3, C7 and C8 deviate by $0.282,0.446$, 0.241 and $0.687 \AA$, respectively, from the plane through the other four essentially planar atoms of the respective pyran rings. These distortions of the dihydropyran rings are probably the result of the ring flexibility and the presence of the methyl substituents. Experimental results from the title compound reveal that the photo-biological activity of the parent compound seselin has been diminished due to the formation of distorted half-chair conformations of the pyran rings on hydrogenation. The $\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 1-\mathrm{O} 1$ and $\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 6-$ O2 torsion angles are almost the same viz. 178.44 (12) and $178.73(14)^{\circ}$, respectively, indicating that these rings are coplanar. The destruction of photo-biological activity and

Figure 1
The molecular structure of title compound, showing the atomic labelling. with displacement ellipsoids drawn at the 50% probability level

Figure 2
A view of the crystal packing in the unit cell of the title compound.
change of conformation of the pyran rings of the title molecule is considered to be due to the loss of the double bonds in seselin.

3. Supramolecular features

In the crystal, no formal hydrogen bonds are present but the molecules exhibit very weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions; none of these, however, can be considered as hydrogen bonds. Examples are: aromatic $\mathrm{C} 8-\mathrm{H} \cdots \mathrm{O} 2^{\mathrm{i}}$ (ring)

Figure 3
Part of the crystal structure, with weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions shown as dashed lines. The most significant $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}_{\text {ring }}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}_{\text {carbonyl }}$ interactions are shown as blue and orange dashed lines, respectively. Other H atoms have been omitted.

Table 1
Experimental details.
Crystal data

Chemical formula	$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3}$
M_{r}	232.27
Crystal system, space group	Monoclinic, $P 2_{1} / c$
Temperature (K)	299
$a, b, c(\AA)$	$7.282(1), 18.445(3), 9.144(2)$
$\beta\left({ }^{\circ}\right)$	$96.11(3)$
$V\left(\AA^{3}\right)$	$1221.2(4)$
Z	4
Radiation type	$\mathrm{Cu} \mathrm{K} \mathrm{\alpha}$
$\mu\left(\mathrm{~mm}^{-1}\right)$	0.71
Crystal size (mm)	$0.50 \times 0.50 \times 0.40$
Data collection	Enraf-Nonius CAD-4
Diffractometer	ψ scan $(\mathrm{North}$ et al., 1968)
Absorption correction	$0.717,0.763$
$T_{\text {min }}, T_{\text {max }}$	$4924,2187,1954$
No. of measured, independent and	
observed $[I>2 \sigma(I)]$ reflections	0.096
$R_{\text {int }}$	0.598
(sin $\theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	
Refinement	$0.058,0.151,1.06$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	2187
No. of reflections	187
No. of parameters	H atoms treated by a mixture of
H -atom treatment	independent and constrained
	refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	$0.32,-0.21$

$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$
$J=8.6 \mathrm{~Hz}, \mathrm{H}-12), 6.68(d, 1 \mathrm{H}, J=8.6 \mathrm{~Hz} \mathrm{H}-11), 2.40(t, 1 \mathrm{H}, J=$ $6.6 \mathrm{~Hz}, \mathrm{H}-4), 2.35(t, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{H}-9), 2.26(t, 2 \mathrm{H}, J=$ 6.4 Hz, H-8), $1.56(t, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{H}-3), 1.50\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{H}-\right.$ 13), $1.54\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{H}-14\right)$.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.38, update November, 2016; Groom et al., 2016) gave more than thirty five hits for both linear and angular pyranocoumarin (psoralene class) structures. They include four reports, CSD refcodes AMYROL [Kato, 1970: seselin (Amyrolin)]; AMYROL01 [Bauri et al., 2006; seselin (redetermination)]; FUGVOS \{Thailambal \& Pattabhi, 1987: 2,3-dihydroxy-9-hydroxy-2(1-hydroxy-1-methylethyl)-7H-furo-[3,2-g]-[1]-benzopyran-7-one; bromohydroxy-seselin (Bauri et al., 2017a); dibromomomethoxy-seselin (DMS) (Bauri et al., $2017 b)$ \}, and a number of structures with various substituents at C3 and C4, many of which are natural products.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were located in difference-Fourier maps and the positional coordinates of all except the methyl H atoms were allowed to refine, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. Those on methyl groups were allowed to ride with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Acknowledgements

The authors thank Professor Dr Hartmut, FG Strukturforschung, Material-und Geowissenschaften, Technische Universität Darmstadt, Germany, for his kind cooperation for providing diffractometer time.

References

Appendino, G., Bianchi, F., Bader, A., Campagnuolo, C., Fattorusso, E., Taglialatela-Scafati, O., Blanco-Molina, M., Macho, A., Fiebich, B. L., Bremner, P., Heinrich, M., Ballero, M. \& Muñoz, E. (2004). J. Nat. Prod. 67, 532-536.
Bauri, A. K., Foro, S., Lindner, H.-J. \& Nayak, S. K. (2006). Acta Cryst. E62, o1340-o1341.
Bauri, A. K., Foro, S. \& Rahman, A. F. M. M. (2017a). Acta Cryst. E73, 453-455.
Bauri, A. K., Foro, S. \& Rahman, A. F. M. M. (2017b). Acta Cryst. E73, 774-776.
Chen, Y., Fan, G., Zhang, Q., Wu, H. \& Wu, Y. (2007). J. Pharm. Biomed. Anal. 43, 926-936.
Chen, D., Wang, J., Jiang, Y., Zhou, T., Fan, G. \& Wu, Y. (2009). J. Pharm. Biomed. Anal. 50, 695-702.
Conconi, M. T., Montesi, F. \& Parnigotto, P. P. (1998). Basic Clin. Pharmacol. Toxicol. 82, 193-198.
Conforti, F., Marrelli, M., Menichini, F., Bonesi, M., Statti, G., Provenzano, E. \& Menichini, F. (2009). Curr. Drug Ther. 4, 38-58.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Kato, K. (1970). Acta Cryst. B26, 2022-2029.
March, K. L., Patton, B. L., Wilensky, R. L. \& Hathaway, D. R. (1993). Circulation, 87, 184-191.
Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Stoe \& Cie (1987). REDU4. Stoe \& Cie GmbH, Darmstadt, Germany.
Thailambal, V. G. \& Pattabhi, V. (1987). Acta Cryst. C43, 2369-2372.

supporting information

Acta Cryst. (2017). E73, 1117-1120 [https://doi.org/10.1107/S205698901700932X]

Crystal structure of tetrahydroseselin, an angular pyranocoumarin

A. K. Bauri, S. Foro and A. F. M. M. Rahman

Computing details

Data collection: CAD-4-PC (Enraf-Nonius, 1996); cell refinement: CAD-4-PC (Enraf-Nonius, 1996); data reduction: REDU4 (Stoe \& Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

8,8-Dimethyl-3,4,9,10-tetrahydro-2H,8H-pyrano[2,3-f]chromen-2-one

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3}$
$M_{r}=232.27$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=7.282$ (1) \AA
$b=18.445$ (3) \AA
$c=9.144(2) \AA$
$\beta=96.11(3)^{\circ}$
$V=1221.2(4) \AA^{3}$
$Z=4$
$F(000)=496$
$D_{\mathrm{x}}=1.263 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54180 \AA$
Cell parameters from 25 reflections
$\theta=6.1-22.1^{\circ}$
$\mu=0.71 \mathrm{~mm}^{-1}$
$T=299 \mathrm{~K}$
Prism, colourless
$0.50 \times 0.50 \times 0.40 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.717, T_{\text {max }}=0.763$
4924 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.151$
$S=1.06$
2187 reflections
187 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0834 P)^{2}+0.1422 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.017$
$\Delta \rho_{\max }=0.32$ e \AA^{-3}
$\Delta \rho_{\min }=-0.21$ e \AA^{-3}

Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$ Extinction coefficient: 0.089 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R -factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2} \& \mathrm{gt}$; $2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. Rfactors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
C1	$0.20282(18)$	$0.18547(7)$	$0.29558(16)$	$0.0471(4)$
C2	$0.3391(2)$	$0.07055(8)$	$0.2387(2)$	$0.0587(5)$
C3	$0.2859(2)$	$0.04422(8)$	$0.3851(2)$	$0.0605(5)$
H3A	$0.288(2)$	$-0.0078(11)$	$0.378(2)$	0.073^{*}
H3B	$0.382(3)$	$0.0604(10)$	$0.461(2)$	0.073^{*}
C4	$0.0980(2)$	$0.07214(8)$	$0.4157(2)$	$0.0616(5)$
H4A	$0.077(3)$	$0.0653(10)$	$0.515(3)$	0.074^{*}
H4B	$-0.002(3)$	$0.0455(10)$	$0.349(2)$	0.074^{*}
C5	$0.08030(19)$	$0.15144(7)$	$0.37942(16)$	$0.0475(4)$
C6	$-0.05415(18)$	$0.19413(8)$	$0.43281(16)$	$0.0477(4)$
C7	$-0.3262(2)$	$0.18844(9)$	$0.56020(19)$	$0.0594(5)$
C8	$-0.3766(2)$	$0.26087(10)$	$0.4945(3)$	$0.0713(5)$
H8A	$-0.433(3)$	$0.2557(11)$	$0.384(3)$	0.086^{*}
H8B	$-0.459(3)$	$0.2797(12)$	$0.563(3)$	0.086^{*}
C9	$-0.2123(2)$	$0.30853(9)$	$0.4840(2)$	$0.0641(5)$
H9A	$-0.162(3)$	$0.3240(11)$	$0.594(2)$	0.077^{*}
H9B	$-0.251(3)$	$0.3509(12)$	$0.429(2)$	0.077^{*}
C10	$-0.0687(2)$	$0.26811(7)$	$0.41073(18)$	$0.0515(4)$
C11	$0.0569(2)$	$0.29965(7)$	$0.32680(18)$	$0.0534(4)$
H11	$0.050(3)$	$0.3510(10)$	$0.306(2)$	0.064^{*}
C12	$0.1899(2)$	$0.25945(8)$	$0.26732(18)$	$0.0522(4)$
H12	$0.277(2)$	$0.2804(10)$	$0.212(2)$	0.063^{*}
C13	$0.2047(3)$	$0.04668(11)$	$0.1106(2)$	$0.0818(6)$
H13A	0.2463	0.0636	0.0205	0.098^{*}
H13B	0.0849	0.0665	0.1210	0.098^{*}
H13C	0.1975	-0.0053	0.098^{*}	
C14	$0.5356(3)$	$0.04849(10)$	$0.2193(3)$	$0.0811(6)$
H14A	0.5689	0.0674	0.1280	0.097^{*}
H14B	0.5444	0.0034	0.2187	0.097_{*}^{*}
H14C	0.6178	0.0676	0.2991	$0.0580(4)$
O1	$0.34407(14)$	$0.14972(5)$	$0.23956(13)$	

O2	$-0.17164(15)$	$0.15694(6)$	$0.51821(13)$	$0.0586(4)$
O3	$-0.41482(18)$	$0.15412(7)$	$0.63843(17)$	$0.0787(5)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0422(7)$	$0.0445(7)$	$0.0554(8)$	$0.0013(5)$	$0.0087(6)$	$0.0009(5)$
C2	$0.0557(9)$	$0.0461(8)$	$0.0758(11)$	$0.0064(6)$	$0.0141(7)$	$-0.0035(6)$
C3	$0.0594(9)$	$0.0438(8)$	$0.0792(11)$	$0.0069(6)$	$0.0112(8)$	$0.0050(7)$
C4	$0.0626(9)$	$0.0441(8)$	$0.0818(11)$	$0.0018(7)$	$0.0247(8)$	$0.0087(7)$
C5	$0.0455(8)$	$0.0411(7)$	$0.0567(8)$	$-0.0012(5)$	$0.0088(6)$	$0.0012(5)$
C6	$0.0449(7)$	$0.0455(8)$	$0.0538(8)$	$-0.0038(5)$	$0.0108(6)$	$0.0005(5)$
C7	$0.0495(8)$	$0.0620(9)$	$0.0695(10)$	$-0.0067(7)$	$0.0189(7)$	$-0.0109(7)$
C8	$0.0554(9)$	$0.0700(11)$	$0.0916(14)$	$0.0063(8)$	$0.0220(9)$	$-0.0059(9)$
C9	$0.0628(10)$	$0.0520(9)$	$0.0798(12)$	$0.0073(7)$	$0.0185(8)$	$-0.0052(8)$
C10	$0.0498(8)$	$0.0440(7)$	$0.0613(8)$	$0.0017(6)$	$0.0086(7)$	$-0.0032(6)$
C11	$0.0547(8)$	$0.0388(7)$	$0.0675(9)$	$0.0004(6)$	$0.0093(7)$	$0.0035(6)$
C12	$0.0496(8)$	$0.0457(8)$	$0.0627(9)$	$-0.0036(6)$	$0.0130(7)$	$0.0063(6)$
C13	$0.0920(14)$	$0.0689(11)$	$0.0833(13)$	$0.0066(9)$	$0.0041(11)$	$-0.0151(9)$
C14	$0.0697(11)$	$0.0674(11)$	$0.1112(16)$	$0.0190(8)$	$0.0325(11)$	$0.0012(10)$
O1	$0.0528(6)$	$0.0465(6)$	$0.0784(8)$	$0.0039(4)$	$0.0251(5)$	$0.0034(4)$
O2	$0.0566(7)$	$0.0509(6)$	$0.0723(7)$	$-0.0033(4)$	$0.0259(6)$	$0.0017(5)$
O3	$0.0724(8)$	$0.0745(8)$	$0.0967(10)$	$-0.0108(6)$	$0.0430(7)$	$-0.0049(6)$

Geometric parameters ($\AA,{ }^{\circ}$)

C1-O1	1.3665 (17)	C7-C8	1.495 (3)
C1-C5	1.3869 (19)	C8-C9	1.496 (3)
C1-C12	1.390 (2)	C8-H8A	1.05 (2)
C2-O1	1.4608 (17)	C8-H8B	0.98 (2)
C2-C13	1.510 (3)	C9-C10	1.499 (2)
C2-C3	1.513 (3)	C9-H9A	1.08 (2)
C2-C14	1.516 (2)	C9-H9B	0.95 (2)
C3-C4	1.516 (2)	C10-C11	1.384 (2)
C3-H3A	0.96 (2)	C11-C12	1.377 (2)
C3-H3B	0.98 (2)	C11-H11	0.967 (18)
C4-C5	1.5025 (19)	C12-H12	0.936 (19)
C4-H4A	0.95 (2)	C13-H13A	0.9600
C4-H4B	1.03 (2)	C13-H13B	0.9600
C5-C6	1.385 (2)	C13-H13C	0.9600
C6-C10	1.382 (2)	C14-H14A	0.9600
C6-O2	1.3980 (17)	C14-H14B	0.9600
C7-O3	1.195 (2)	C14-H14C	0.9600
C7-O2	1.3576 (19)		
O1-C1-C5	122.89 (13)	C7-C8-H8B	101.7 (13)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 12$	116.28 (12)	C9-C8-H8B	112.6 (13)
C5-C1-C12	120.81 (13)	H8A-C8-H8B	116.1 (17)

O1-C2-C13	108.01 (14)
O1-C2-C3	108.93 (13)
C13-C2-C3	112.76 (16)
O1-C2-C14	104.25 (13)
C13-C2-C14	111.91 (17)
C3-C2-C14	110.55 (16)
C2-C3-C4	112.07 (14)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	104.6 (12)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	111.9 (11)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	107.2 (12)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	111.0 (12)
H3A-C3-H3B	109.7 (15)
C5-C4-C3	110.34 (13)
C5-C4-H4A	108.8 (11)
C3-C4-H4A	111.9 (12)
C5-C4-H4B	107.2 (11)
C3-C4-H4B	108.8 (11)
H4A-C4-H4B	109.6 (16)
C6-C5-C1	117.26 (13)
C6-C5-C4	121.51 (13)
C1-C5-C4	121.18 (13)
C10-C6-C5	123.78 (13)
C10-C6-O2	121.60 (13)
C5-C6-O2	114.55 (12)
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{O} 2$	117.36 (16)
O3-C7-C8	126.07 (15)
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 8$	116.39 (14)
C7-C8-C9	112.78 (15)
C7-C8-H8A	111.0 (11)
C9-C8-H8A	103.2 (12)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	59.85 (19)
$\mathrm{C} 13-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-60.04 (19)
C14-C2-C3-C4	173.83 (14)
C2-C3-C4-C5	-45.0 (2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 6$	178.44 (12)
C12-C1-C5-C6	0.1 (2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 4$	0.9 (2)
$\mathrm{C} 12-\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 4$	-177.47 (15)
C3-C4-C5-C6	-162.49 (15)
C3-C4-C5-C1	15.0 (2)
C1-C5-C6-C10	-2.0 (2)
C4-C5-C6-C10	175.61 (15)
C1-C5-C6-O2	-179.11 (12)
C4-C5-C6-O2	-1.5 (2)
O3-C7-C8-C9	144.78 (19)
O2-C7-C8-C9	-40.1 (2)
C7-C8-C9-C10	50.8 (2)

109.71 (14)
106.9 (11)
111.5 (11)
108.9 (12)
110.6 (13)
109.1 (16)
116.82 (13)
118.19 (14)
124.93 (13)
121.81 (13)
118.3 (12)
119.9 (12)
119.46 (13)
122.5 (11)
118.0 (11)
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
117.74 (11)
121.53 (13)
-175.60 (15)
1.4 (2)
-32.6(2)
150.31 (17)
0.3 (2)
177.46 (14)
-2.0 (2)
-176.63 (14)
1.8 (2)
14.7 (2)
-166.94 (14)
78.75 (18)
-44.04 (18)
-162.07 (15)
$-176.80(14)$
7.7 (2)
12.6 (2)

$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 10-\mathrm{C} 11$	$1.8(2)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{O} 2-\mathrm{C} 7$	$-170.16(12)$
$\mathrm{O} 2-\mathrm{C} 6-\mathrm{C} 10-\mathrm{C} 11$	$178.73(14)$		

