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Thermal management and non-reciprocal control
of phonon flow via optomechanics
Alireza Seif1,2, Wade DeGottardi1,2,3, Keivan Esfarjani4,5,6 & Mohammad Hafezi 1,2,3

Engineering phonon transport in physical systems is a subject of interest in the study of

materials, and has a crucial role in controlling energy and heat transfer. Of particular interest

are non-reciprocal phononic systems, which in direct analogy to electric diodes, provide a

directional flow of energy. Here, we propose an engineered nanostructured material, in which

tunable non-reciprocal phonon transport is achieved through optomechanical coupling. Our

scheme relies on breaking time-reversal symmetry by a spatially varying laser drive, which

manipulates low-energy acoustic phonons. Furthermore, we take advantage of developments

in the manipulation of high-energy phonons through controlled scattering mechanisms, such

as using alloys and introducing disorder. These combined approaches allow us to design an

acoustic isolator and a thermal diode. Our proposed device will have potential impact in

phonon-based information processing, and heat management in low temperatures.
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Controlling the flow of heat is important for several fields
including thermoelectrics, thermal management, and
information processing. For example, suppressing thermal

conductivity can improve the performance of thermoelectrics,
and can also isolate circuit elements from external heat. The
thermal analog of an electric diode is of fundamental importance
to efforts in managing heat. Thermal diodes have numerous
applications, including blocking unwanted back scattering in
phonon-based information processing as well as managing heat
and maximizing efficiency in nanostructures. The operation of a
thermal diode requires a nonlinear material or broken time-
reversal symmetry1; most implementations have exploited the
former2–6.

Theoretical and experimental advances in our understanding of
the contribution of coherent phonons to heat transport has
provided new insights that allow for enhanced control of heat
flow in nanostructured materials7. Specifically, due to the very
long mean free paths and coherence of these phonons8,9, periodic
structures can modify their dispersion and transport properties10.
Thus, engineered bandgaps, which have been used to manipulate
sound11, can also be used to alter the thermal properties of a
material12. Moreover, adding impurities have been proven useful
in modifying thermal transport properties of a material by
manipulating high-energy phonons13,14.

At the same time, there have been remarkable advances in
cavity optomechanics15, where interactions between photons and
acoustic phonons confined in an optomechanical cavity can be
controlled at the single phonon level16, with potential applica-
tions in quantum information processing17,18. More recently,
non-reciprocal optical transport was proposed in ring resonators,
where the directional laser pump selects one circulation direc-
tion19. This scheme and approaches based on stimulated Brillouin
scattering in photonics20,21 were experimentally demonstrated in
multiple optomechanical systems22–26. Meanwhile, the resulting
chirality for phonons in such ring resonators has been investi-
gated27–29. Moreover, there have been intriguing proposals to
synthesize gauge fields in optomechanical systems, from photonic
crystals30,31, to quantum wells32, and superconducting circuits33,
and to investigate their associated topological properties34.

In this article, we combine the physics of heat transport in
nanostructures and optomechanics to develop a new platform to
manipulate both low-energy and high-energy phonons. We
propose a method to engineer a tunable non-reciprocal bandgap
for acoustic phonons, where a laser field with a phase gradient
optically drives an array of optomechanical cavities and induces
the non-reciprocal transport by breaking the time-reversal sym-
metry. We propose an experimental implementation of the
scheme in optomechanical crystals. We discuss two applications
of such a system, one as an acoustic isolator, and the other as a
thermal diode. For the latter, the introduction of alloy and
nanoparticle disorder suppresses the transport of high-energy
phonons, leaving the low-energy acoustic band as the dominant
channel for heat conduction10,35, thus enhancing the overall
optomechanically induced non-reciprocity. Our proposed device
works in the linear regime and introduces an alternative approach
to previous works.

Results
Tight-binding model. To illustrate the basic concepts, we study
non-reciprocal transport in a system connected to heat baths. The
system considered here is described by a tight-binding model of
an array of coupled optomechanical cavities36–38. An opto-
mechanical cavity supports localized electromagnetic and
mechanical modes. Owing to the radiation pressure, changes to
the shape of the cavity change its electromagnetic resonance

frequency, effectively coupling mechanical vibrations to electro-
magnetic excitations. The Hamiltonian describing a collection of
isolated cavities (setting ħ= 1) is

Ĥsites ¼
X
n

ωcavâ
y
nân þ ωmechb̂

y
nb̂n � gâynânðb̂yn þ b̂nÞ; ð1Þ

where ânðb̂nÞ is a bosonic operator that destroys a photonic
(phononic) excitation with energy ωcav(mech) at site n, and g is the
vacuum coupling rate. In addition, there is a loss rate γcav(γmech)
associated with the optical (mechanical) mode of the cavity (see
Methods).

In a linear array of cavities, nearest-neighbor couplings
dominates due to the tunneling of excitations between adjacent
sites. The Hamiltonian describing these processes is

Ĥtunneling ¼ �J
X
n

âynânþ1 � t
X
n

b̂ynb̂nþ1 þ h:c:; ð2Þ

where h.c. denotes Hermitian conjugate, and t and J are tunneling
strengths of phononic and photonic excitations, respectively. The
system Hamiltonian is then given by

Ĥsys ¼ Ĥsites þ Ĥtunneling: ð3Þ

The vacuum coupling rate, g, is typically small, and can be
enhanced by means of an external laser drive. To break
reciprocity in a spatially dependent manner, in contrast to the
usual setup in which the optical mode on each site is excited by a
laser with a uniform phase15, we consider a phase gradient in the
laser field. This phase, which breaks time-reversal symmetry
introduces a position dependent phase in the effective coupling
between phonons and photons31. The breaking of time-reversal
symmetry is crucial for the effects we consider in this work. The
laser frequency, ωd= ωcav+ Δ, is detuned from the resonance
frequency of the cavity by Δ, and the phase offset between
adjacent sites is θ, as shown in Fig. 1b.

To bring electromagnetic and mechanical excitations on
resonance, the driving laser is red-detuned from the cavity
resonance frequency by Δ ≈−ωmech. In a rotating frame of
photons with angular frequency ωd, after making the rotating-
wave approximation (RWA) in the resolved sideband regime (
ωmech � γmech), linearizing and displacing the cavity field, the
effective Hamiltonian is39

Ĥeff ¼ �Δ=2
P
n
âynân þ ωmech=2

P
n
b̂ynb̂n � J

P
n
âynþ1ân

�t
P
n
b̂ynþ1b̂n � G

P
n
e�inθâynb̂n þ h:c:;

ð4Þ

where G= αg, the enhanced optomechanical coupling strength is
large compared to g by an order of α, the square root of the
number of photons in the cavity.

The propagating modes of the system are polaritons, which are
superpositions of electromagnetic and mechanical quanta. To
diagonalize the Hamiltonian in Eq. (4), we write the Fourier
transform for ân and b̂n as

ân
b̂n

� �
¼

X
k

e�iknd0
âk
b̂k

� �
; ð5Þ

where d0 is the lattice constant. Then Eq. (4) in the Fourier basis
is

Ĥk ¼
�Δ� 2J cosðd0k� θÞ �G

�G ωmech � 2t cosðd0kÞ

� �
; ð6Þ

which shows the phase gradient of the laser field acts as a
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momentum shift, and leads to the coupling of phonons and
photons with different momenta.

The band structure is shown in Fig. 1c. In the absence of
coupling the phononic and photonic dispersions intersect. For
G ≠ 0, two bandgaps develop. The asymmetry (under k →−k) of
the band structure is controlled by θ. The eigenmodes are
polaritons, αk;jâk�θ þ βk;jb̂k, where j 2 {1, 2} is the band index.
The quantities |αk,j|2 and |βk,j|2 indicate the relative weights of
photons and phonons composing the polaritons, respectively. The
effect of cavity loss is to broaden the bands, and for the gaps to be
effective, we need to be in the high cooperativity regime, i.e.,
G2=γcavγmech � 1.

The asymmetry of the gaps controls the non-reciprocal
transport properties of the system, as shown Fig. 1d. To study
thermal transport properties of this model, we consider
connecting the system to two thermal contacts. The contacts
are impedance matched to the non-driven (G= 0) system. Thus,
the dispersion of phonons in the contacts is ωcontact(k)= ωmech−
2t cos(d0k). The transmission probabilities can be calculated by
mode matching at the boundaries of the system; see Fig. 1d and
the Supplementary Note 1. This continuum picture remains valid
for a finite number of lattice sites and the transmission
probabilities are close to zero for phonons with energies in the
gap. These phonons are converted to photons and reflected. The
probabilities exhibit Fabry–Perot oscillations whose period is
proportional to the inverse of the number of sites in the system.

The direction dependent phonon transmission probability for θ
close to π can be approximated by

T L$RðωÞ ¼ Hðω� ωmechÞ �Hðω� ωmech ± 2GÞj j; ð7Þ

where H(ω) is the Heaviside step function.
The phonon thermal current, assuming that the photon

contacts are at zero temperature, can be calculated in the
Landauer–Büttiker formalism40,41, and is given by

IðΘL;ΘRÞ ¼
Z 1

0

dω
2π

�hω½T L!RðωÞnBðΘL;ωÞ

�T L RðωÞnBðΘR;ωÞ�;
ð8Þ

where ΘL(R) is the temperature of the left(right) contact, and
nB(Θ, ω)= 1/(exp(ħω/kBΘ)− 1). We introduce an alternative set
of variables to denote the mean temperature, Θ0, and the
temperature bias, ΔΘ, such that

IðΘL;ΘRÞ ¼ IðΘ0 þ ΔΘ=2;Θ0 � ΔΘ=2Þ; ð9Þ
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Fig. 1 Sketch of the system and its transport properties. a The non-reciprocal device allows transmission of phonons in one direction, and converts them
into photons, which are reflected in the opposite direction. b Schematic representation of the system, showing the coupling of phonon (green) and photon
(pink) degrees of freedom and their hopping strengths t and J, respectively. Adding a driving laser with a phase einθ to the bare Hamiltonian Hsys (3) with
optomechanical coupling g leads to the effective Hamiltonian Heff (4) with an enhanced and position dependent optomechanical coupling Geinθ. c The band
structure corresponding to the Hamiltonian in eq. (6) for parameters 2G/t= 1, 2J/t= 5, and θ= 1.1π (k is the wavenumber appearing in the eigenmodes
αk;j âk�θ þ βk;j b̂k). The color scale indicates the extent of phonon (green) or photon (pink) character of the eigenstate. d Transmission T aðbÞ and reflection
RaðbÞ probabilities of photons (phonons) for right-moving (L→ R) and left-moving (L← R) phonons through a system with N= 100 sites plotted as a
function of incident energy. The gaps in c, determine the energy range for which phonons are reflected from the system. The mismatch in these energy
ranges for left- and right-moving phonons is the origin of the non-reciprocal transport. e The current I as a function of temperature bias for the same
parameters as c, and kBΘ0/ħωmech= 1.5. The non-reciprocity is evident in the non-zero intercept of the line in I-ΔΘ plot. A key feature is that a non-zero
current I0 flows even in the case of zero bias. When the bias is −Δθc the current is extinguished. f Contrast C as a function temperature bias ΔΘ. The
shaded region in e, f corresponds to the case with C= 1, in which if the bias is reversed, the direction of the current is unchanged. The solid lines in e, f
correspond to the Eqs. (8) and (12), whereas the dashed lines represent approximate expressions (13) and (14)
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with

ΔΘ ¼ ΘL � ΘR; ð10Þ

Θ0 ¼
ΘL þ ΘR

2
: ð11Þ

This relationship implies that if Θ0 is fixed and only the sign of
ΔΘ is changed, the temperatures of the two contacts are swapped.
In a reciprocal system, there is no distinction between left and
right, and taking ΔΘ →−ΔΘ only changes the sign of the current
and leaves the magnitude unchanged. However, due to the broken
time-reversal symmetry in our system, transport is non-reciprocal
T L!RðωÞ≠T L RðωÞ, and the current magnitudes are different.
Figure 1e shows the current I as a function of temperature bias
ΔΘ. The base temperature Θ0 is chosen close to the energy scale
ωmech of the system, so that the non-reciprocal effect is enhanced.
In this plot, the non-zero intercept (I0∝G2) is a measure of the
non-reciprocity. This is different from an electrical diode
mechanism, where the slope changes as the bias is reversed.

To quantify the non-reciprocity, we introduce the contrast C,
defined as

CðΘ1;Θ2Þ ¼
IðΘ1;Θ2Þ þ IðΘ2;Θ1Þj j
IðΘ1;Θ2Þj j þ IðΘ2;Θ1Þj j ; ð12Þ

which is non-zero in a non-reciprocal system. In the shaded
region in Fig. 1e and f, the current does not change its direction

when the bias is reversed. In this case, the contrast is maximized
and C= 1.

The relation between I and ΔΘ for �hωmech=kBΘ0 � 1, and
ΔΘ� Θ0 is well described by

IðΘL;ΘRÞ � 2kBð2t � GÞΔΘþ 2�hG2: ð13Þ

In the same regime, the contrast is given by

C �
1 if ΔΘ � ΔΘc

�hG2=½kBð2t � GÞΔΘ� otherwise

�
; ð14Þ

where ΔΘc ¼ �hG2=½kBð2t � GÞ�. These approximations are com-
pared with the exact values in Fig. 1e and f.

This non-reciprocal model can be implemented in an
optomechanical crystal42,43. An optomechanical crystal is an
engineered dielectric, which supports localized phononic and
photonic excitations with energies in the bandgaps. Given a
uniform dielectric, bandgaps can be introduced by drilling a
periodic array of identical holes. Deforming these holes to form a
superlattice introduces defect cavities which co-localize phonons
and photons, thereby enhancing their mutual couplings. In Fig. 2,
we show the correspondence between a cavity and its imple-
mentation in the actual optomechanical crystal. Each unit cell is a
few microns in size, and a total system size of hundreds of
microns leads to the non-reciprocity shown in Fig. 1d. The bare
optomechanical coupling g varies between several kilohertz and
tens of megahertz in various materials such as Si or GaAs26,44,45.
The tunneling strengths depend on the structure design, and
values of a few megahertz for the mechanical tunneling strength t,
and hundreds of megahertz for its optical counterpart, have been
realized in the experiments26. In Methods and Supplementary
Note 2, we present more details, and specifically show how to
engineer the non-reciprocal band in an optomechanical crystal.
The tight-binding model is applicable not only to optomechanical
crystal arrays, but also to other optomechanical systems such as
coupled ring resonators that have been realized in experiments46.

Applications. Now that we have established that non-reciprocal
transport for a continuum band of phonons can be achieved in an
array of optomechanical cavities, we further discuss two appli-
cations in an optomechanical crystal (see Methods): (1) An
acoustic isolator, and (2) a thermal diode in low temperatures.

An acoustic isolator is a device that only permits propagation
of coherent monochromatic phonons in one direction. Such a
device can be realized using a nonlinear medium attached to a
phononic crystal47,48, or through spatio-temporal modulation of
system properties in a transmission line49. Our optomechanical
crystal operates as an isolator for frequencies which lie in the
bandgap. An appropriate figure of merit analogous to the contrast
in Eq. (12) for monochromatic waves is

CisoðωÞ ¼
T L!RðωÞ � T L RðωÞ
T L!RðωÞ þ T L RðωÞ

����
����; ð15Þ

The device discussed in the previous section, with the same
red-detuned laser drive acts as an isolator for phonons with
frequencies close to ωmech. Specifically, in the high cooperativity
regime, the effect of loss is negligible, and we can use the
transmission probabilities shown in Fig. 1d. We see that for
propagating elastic waves with frequencies inside the bandgap,
Ciso(ω) approaches unity, and otherwise, is very close to zero, thus
realizing an isolator with a bandwidth of 2G. The non-reciprocity
in our scheme is tunable, and the frequency range of the gap is
also controllable and depends on the phase gradient of the laser

1 μm

|Q| / |Qmax|
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–1 0 1

1

Ey / |Ey max|
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c

Fig. 2 The portion of an optomechanical crystal corresponding to a single
site in the tight-binding model. a The correspondence between the ball and
the physical realization (expanded view). b The same portion of the
optomechanical crystal showing the normalized mechanical displacement
(|Q|/|Qmax|) of a confined eigenmode, and c, the normalized electric field
Ey= Eymax

�� ��� �
of an eigenmode. The frequencies and coupling strengths can

be calculated using finite-element (FEM) simulations (see Supplementary
Note 2)

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03624-y

4 NATURE COMMUNICATIONS |  (2018) 9:1207 | DOI: 10.1038/s41467-018-03624-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


field. Furthermore, as the Hamiltonian in Eq. (4) is linear in both
the optical and mechanical fields, in principle the device works at
the quantum limit. It is therefore useful for quantum information
routing18, and may find new applications to hybrid devices such
as superconducting qubits50 coupled to optomechanical crys-
tals17, as they both work in the same energy regime.

As a second application, we show that our system can serve as a
thermal diode. A perfect thermal diode would allow heat
transport in only one direction. Our system relies on the
modification of the material properties in a narrow frequency
range at low energies, whereas a major part of heat current is
carried out by high-frequency phonons. To suppress the
contribution of these high-energy phonons, we introduce various
scattering mechanisms to shorten their mean free paths10.

Specifically, to evaluate the figure of merit C in a realistic
material, we analyze frequency-dependent phonon scattering
processes characterized by a length scale λph(ω). The total
transmission at a given frequency, summed over all bands, can be
approximated as

T L$RðωÞ ¼
λphðωÞ

λphðωÞ þ Ls
f ðϕÞML$RðωÞ; ð16Þ

where the factor λph
λphþLs is the probability of transmittance51,52, and

ML⇄R(ω) is the number of conducting bands at a given energy for

right (L → R), or left (L ← R) moving phonons, and ϕ is the
sample’s porosity. The function f ðϕÞ ¼ 1�ϕ

1þϕ comes from
Maxwell–Garnett effective medium approach, and takes the
effect of holes on the number of modes into account53,54. The
parameter Ls is the length of the sample, and λph is the mean free
path of back scattering, which is related to the mean free path of
scattering, lph, by λph= 2lph in 1D, and λph= 4/3lph in 3D. Note
that because of the dependence of λph on frequency, the
performance of the device gets better for larger samples.
Specifically, for larger samples the overall transmission decreases,
however, as the mean free path is smaller for higher frequencies,
the contrast improves. In our calculations, we considered N=
100 sites.

Following refs. 10,55, we propose using alloy and nano-paricle
impurities to modify λph. In this case, the optomechanical crystal
is made of an alloy into which nanoparticles are embedded. These
impurities lead to mass-difference scatterings, and their respective
rates τ�1alloy and τ�1np scales with ω4, thus lowering the contribution
of high-energy phonons and increasing the contribution of low-
energy phonons to thermal transport. To obtain a realistic
estimate of λph, it is necessary to consider two additional
scattering mechanisms: intrinsic anharmonicity and boundary
scattering, characterized by rates τ�1an and τ�1b , respectively. The
corresponding mean free paths li’s, are obtained from the
scattering rates by li= vgτi, where vg is the group velocity. The
total mean free path is given by Matthiessen’s rule, i.e.,

1
lph
¼ 1

lalloy
þ 1
lnp
þ 1
lb
þ 1
lan

: ð17Þ

The effect of these scattering mechanisms on the cumulative
thermal current, shown in Fig. 3a, is evaluated by a hybrid
method using the bulk silicon dispersion (ω∝ k) for high-energy
phonons with short mean free paths and the superlattice
dispersion for lower energy phonons with mean free paths longer
than several lattice constants of the superlattice54 (see Methods).
It can be seen that phonons with frequencies below 25 GHz
contribute more to heat transport in a Si90Ge10 optomechanical
crystal with 10 nm nanoparticles and a filling factor of 5% than to
a nanobeam of the same dimensions composed of nonporous
silicon. Moreover, the ratio of the current carried by the
optomechanically coupled band to the total current in the
engineered optomechanical crystal is close to 9% at 4 K and about
22% at 0.4 K with a bias of ΔΘ/Θ0= 10−3 (see Supplementary
Note 3).

Finally, we calculate the contrast for a driven optomechanical
crystal, as displayed in Fig. 3b. As the base temperature decreases
and approaches the energy of the optomechanical band (kBΘ0 ≈
ħωmech), the contrast and the non-reciprocal effect increase.
Although a significant constrast can be achieved at sub-Kelvin
temperatures, the generalization of this scheme to room
temperature requires a significant improvement in the material
properties such as the optomechanical coupling strength (see
Supplementary Note 3 for room temperature). Although there is
intrinsic photon loss in the silicon beam, such loss does not
directly lead to the generation of phonons in the beam56, and
therefore, the implicit assumptions of our approach remain valid
(see Methods and Supplementary Note 3).

To measure the contrast, we envision a setup similar to ref. 57,
where a pair superconductor/insulator/normal metal/insulator/
superconductor (SINIS) tunnel junction58 are mounted at the two
ends of the device and serve as both a sensitive thermometer and
a heater. The device is heated from one side and the change in
temperature is measured at the other side. By interchanging the
role of the heater and thermometer and comparing the
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Fig. 3 Thermal current and contrast. a Cumulative current (I/Itot) in a beam
of nonporous silicon (solid), compared with Si90Ge10 with nanoparticles
optomechanical crystal (dashed), as a function of phonon frequency at Θ0

= 4 K (blue) and Θ0= 0.4 K (purple) for a small temperature bias ΔΘ/Θ0

= 10−3. b Contrast C, defined in Eq. (12), as a function temperature bias ΔΘ
for an optomechanical cavity array made of Si90Ge10 with 10 nm
nanoparticles at Θ0= 0.4 K (purple), and 4 K (blue). We observe that the
contrast increases as the temperature is decreased, because the
optomechanically coupled phonons have a more pronounced role in the
thermal transport at lower temperatures

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03624-y ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:1207 | DOI: 10.1038/s41467-018-03624-y | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


measurements, the existence of non-reciprocal thermal current in
the system can be verified.

Discussion
In this work, we have shown that phase-modulated driven
optomechanical systems can be utilized to engineer a non-
reciprocal phonon band in a material. We discussed two possible
applications of our scheme, as an acoustic isolator and a thermal
diode. Although we considered a specific silicon-based opto-
mechanical crystal, these methods can be readily generalized to
other materials and designs. These devices may find application
to on-chip heat management and quantum information proces-
sing, both to increase coherence time and to exploit phonons as
information carriers59.

In our approach, we proposed a coherent dynamical control of
low-energy phonons by using optomechanical structures, and
combined it with incoherent control of high-energy phonons by
designing bulk material properties through the introduction of
disorder. This strategy of combing low-energy and high-energy
phononic physics could be generalized to designing of other
thermal technologies such as thermoelectrics, thermal insulation,
and the development of new metamaterials.

Methods
Implementation with optomechanical crystals. In an optomechanical cavity
electromagnetic and mechanical modes are co-localized. The coupling between
these modes arises due to radiation pressure, which changes the cavity’s electro-
magnetic resonance frequency. More rigorously, the energy �hωðx̂Þ of a cavity
depends on its shape, where x̂ ¼ xZPFðb̂þ b̂yÞ is the quantized mechanical dis-
placement, and xZPF denotes zero point fluctuations. The Hamiltonian describing a
single defect cavity is

H ¼ �hωðx̂Þâyâþ �hωmechb̂
yb̂: ð18Þ

The optomechanical coupling arises as the shape of the dielectric boundary
changes. Expanding ωðx̂Þ to first order in x̂ results in

Ĥ ¼ �hωcav â
y âþ �hωmechb̂

yb̂� �hgây âðb̂y þ b̂Þ; ð19Þ

where g can be calculated from moving boundaries perturbation theory for
Maxwell’s equations60,61. Equation (19) reproduces the form of Ĥsites (1).

Imperfect localization within each cavity leads to nearest-neighbor hopping of
the phonons and photons as captured by Htunneling (4). Using finite-element
simulations (FEM), we find that to a very good approximation these bands follow
the dispersion ω∝ cos(k) as predicted by the tight-binding model (see
Supplementary Note 2). Typical values of ωcav, and ωmech for a silicon
optomechanical crystal are 100 THz, and 10 GHz, respectively26. The laser
frequency ωd should be ωcav− ωmech ≈ 100 THz to bring it in resonance with the
mechanical mode.

To linearize the Hamiltonian Ĥsites þ Ĥtunneling with the laser driveP
n ϵde

iθn cosðωdtÞ ðayn þ anÞ, we solve for the steady-steady of the cavity in the
absence of the optomechanical coupling (g= 0)15, and find that the steady-state is
given by

α ¼ ϵd
Δ� iγcav=2þ 2J cosðθÞ ; ð20Þ

where |α|2 is the number of photons in the cavity. Consequently, displacing the
cavity field by ân ! ân þ αeiθn , and using RWA results in Ĥeff (4).

The phases (einθ) can be tuned off the chip by using stretchable fiber phase
shifters26. An on-chip implementation is possible by using a 1 ×N multi-mode
interferometer to divide the power, and meandered waveguides or zero-loss
resonators to tune the phase (see Supplementary Note 4).

Scattering rates. The scattering rate associated with the alloy disorder of SixGe1−x

is described by an effective mass-difference Rayleigh scattering62,63

τ�1alloy ¼ xð1� xÞAω4; ð21Þ

where A= 3.01 × 10−41 s5 10,55 is a constant that depends on the alloy properties.
Scattering due to nanoparticles can be described by interpolating between the long-
and short-wavelength scattering regimes55,64,

τ�1np ¼ vgðσ�1s þ σ�1l Þ
�1 f

V
; ð22Þ

where f and V= 4πr3/3 are the filling fraction and the volume of nanoparticles, vg
is the magnitude of the group velocity of phonons, and

σs ¼ 2πr2; ð23Þ

σ l ¼ πr2
4
9
ðΔD=DÞ2ðωr=vgÞ4: ð24Þ

Here, r is the radius of nanoparticles, ΔD is the difference between particle and
alloy densities, and D is the alloy’s density. In our calculations, we consider a filling
fraction of f= 0.05, σs= 6.28 × 10−16 m2, and σl= 2.2 × 10−48 m6 × (ω/vg)4, cor-
responding to r= 10 nm germanium nanoparticles in Si90Ge10.

The anharmonic scattering rate, which takes both the normal and umklapp
processes into account, is given by

τ�1an ¼ BTω2e�C=T ; ð25Þ

where B(T)= 3.28 × 10−19 s K−1 and C= 140 K for Si90Ge1010,55. Scattering from
the boundaries of a thin film can be modeled by lb ¼ 1þp

1�p t
65,66, where t, the

thickness of the sample, is the mean free path in the diffusive limit. The parameter
p is the probability that the scattering is specular. It takes the effect of surface
roughness into account and depends on the phonon’s wavelength. It is given
by65,67

p ¼ exp � 16π2η2

Λ2

� �
; ð26Þ

where Λ is the wavelength of the phonons, and η is the surface roughness of the
sample, which is taken to be 1 nm in our calculations, and corresponds to an
estimated surface roughness achieved in silicon thin film fabrications51.

Thermal current. In Fig. 3, we compared the operation of our optomechanical
crystal with a nanobeam of nonporous silicon. The thermal current in the latter can
be calculated as follows. At the temperatures considered, only phonons with fre-
quencies smaller than 3 THz are relevant for thermal transport. In this frequency
range, only the acoustic branch contributes to thermal conductivity and the dis-
persion is approximately linear. Specifically, we employed the Debye dispersion,
i.e., ω= cs|k|, where cs is the sound velocity, and k is the wavevector. The density of
modes is given by MðωÞ ¼ S3ω2=4πc2s , where S is the cross sectional area. In
addition, because the sample in this case is nonporous, f(ϕ)= 1, and the only
scattering mechanisms are scatterings due to surface roughness and crystal
anharmonicities.

The thermal current for the proposed Si90Ge10 optomechanical crystal with
nanoparticles is calculated using a hybrid method, depending on the frequency of
phonons54. Specifically, The mean free path of phonons depends on their
frequency. As the frequency of phonons is lowered, their mean free path becomes
comparable with the superlattice spacing, and therefore, the bulk dispersion is no
longer a good description. In our system this threshold frequency corresponds to
25 GHz. To get this number, using the silicon bulk dispersion and Eqs. (17) and
(21–26), we find the frequency for which the mean free path is comparable to
several lattice spacings.

For phonons with frequencies above the threshold, we use the bulk Debye
dispersion and associated group velocities and density of states. For phonons with
frequencies lower than this threshold, we use the superlattice dispersion, calculated
by FEM simulations, which gives group velocities and density of states different
from those of the bulk. The scattering rates are then calculated using the
superlattice dispersion in this regime. Taken together, these account for the total
reciprocal phonon contribution to the thermal current. Finally, we add the
contribution of the single non-reciprocal optomechanically coupled band to the
calculated current. For this single band, we have used θ= 1.3π and parameters
ωmech/2π= 4.3 GHz, J/2π= 0.5 GHz, t/2π= 0.2 GHz, and G/2π= 0.1 GHz, which
leads to asymmetric gaps in 3.96 GHz < ω/2π < 4.13 GHz, and 4.47 GHz < ω/2π <
4.64 GHz for right-going, and left-going phonons, respectively.

Data availability. The data that support the findings of this study are available
from the authors upon reasonable request.
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