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Abstract
Outbreak of Coronavirus (SARS-CoV-2) has thrown a big challenge to the globe by snatching millions of human lives from 
the world. In this study, inhibitory efficiency of ten anti-HIV compounds from different Indian medicinal plant parts have 
been virtually screened against Mpro, PLpro and RdRp proteins of SARS-CoV-2. The molecular docking study reflected that 
among these compounds, Proptine (PTP) has the highest binding affinity for the three cases. Introduction of PTP molecules 
within the binding pocket of these proteins showed a large structural and conformational changes on the structure of proteins 
which is revealed from molecular dynamics (MD) simulation studies. RMSD, RMSF and analysis of thermodynamic param-
eters also revealed that PTP makes a huge impact on the structures of the respective proteins which will pave an opportunity 
for doing advanced experimental research to evaluate the potential drug to combat COVID-19.
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1  Introduction

In late December 2019, a new strain of Coronavirus 
(SARS-CoV-2) has spread swiftly around the globe. WHO 
declared a pandemic situation within 3 months of its initial 
screening in Wuhan, China (Wang et al. 2020; Lu et al. 
2020; Jiang et al. 2020). Hundreds of millions lives of 
approximately 188 countries are affected with this highly 
transmissible disease (Shekerdemian et al. 2020; Baildya 
et al. 2020). This pandemic efficiently strikes the national 
healthcare systems and global economy. While the year 
of 2020 was a challenging one, 2021 looks to be more 
difficult with the appearance of multiple variants SARS-
CoV-2 (Fontanet et al. 2021). A new variant can emerge 
through numerous rounds of viral replication. The variant 
is co-termed as a strain if the sequence variation shows 
a distinctly different phenotypic characteristics (Mascola 
et al. 2021). In December, 2020, there was an unexpected 
rise of the COVID-19 cases due to the emergence of the 
new SARS-CoV-2 variants 501Y.V2 (B.1.351) in South 
Africa and 501Y.V1 (B.1.1.7) in the UK (Fontanet et al. 
2021; Tegally et al. 2020; Volz et al. 2021; Davies et al. 
2021; Xie et al. 2021). New strains are more transmis-
sible than the previously one (Kirby 2021). Cold, flu, 
dihedra, headache, lymphopenia, etc. are the common 
symptoms of COVID-19 but it is not clear new strain-
affected patients are sowing the same symptoms or not 
(Sahin et al. 2020; Graham et al. 2021). SARS-CoV-2, 
the single-stranded positive-sense RNA virus is included 
in β-coronavirus genus, closely related to the genomic 
organization of SARS-CoV identified in 2003 (Pal et al. 
2020). With the interaction of angiotensin converting 
enzyme 2 of Human cell, spike protein of SARS-CoV-2 
helps the virus to enter the human cell (Zhang et al. 2020). 
After entering into the cell, immediately viral replication 
and transcription are started with the functional proteins 
like main protease (Mpro), papain-like protease (PLpro), 
RNA-dependent RNA polymerase (RdRp) (Indwiani 
Astuti 2020). It is reported that in the new strains, muta-
tion (N501Y) occurred in the receptor-binding domain of 
the spike protein, responsible for increased transmission 
(Davies et al. 2021).

With the heavy toll of the pandemic, scientists are 
actively checking various strategies either new or repur-
posed drugs as well as vaccines (Kandeel and Al-Nazawi 
2020) but till now there is no potentially active drug avail-
able in the market which may effectively combat SARS-
CoV-2. 2020 saw the development and testing of some 
COVID-19 vaccines (Fontanet et al. 2021; Baden et al. 
2021; Polack et al. 2020). Till now, it is not clear that 
whether these COVID-19 vaccines can protect against the 
infection from these new SARS-CoV-2 variants or not 

(Fontanet et al. 2021; Mascola et al. 2021). Recently, name 
of the few drugs e.g., Remdesivir, Hydroxychloroquine, 
Chloroquine are the topic of discussion to researchers but 
none of these are potentially efficient against this deadly 
virus (Baildya et al. 2020, 2021a; Elfiky 2020; Khan et al. 
2021; Mandal et al. 2021).

Secondary metabolites from different tropical plants are 
greatly influenced by environmental factors. These second-
ary metabolites have already drawn the attention for devel-
oping medicine against different antiviral diseases (Guerri-
ero et al. 2018; Yang et al. 2018). According to the previous 
reports, extracts from various medicinal plant parts or 
plant-derived natural products have shown anti-HIV activ-
ity and they are under different stages of clinical develop-
ment in different parts of the globe (Bedoya et al. 2001; Min 
et al. 1999, 2001). Different attempts also have been made 
to search the natural products which can inhibit different 
proteins of SARS-CoV-2 (Dutta et al. 2021). Few scien-
tists claimed that the leave extracts of Azadirachta indica 
and Ocimum sanctum showed significant inhibitory activ-
ity against SARS-CoV-2 (Baildya et al. 2021b; Varshney 
et al. 2020). In-silico-based screening is an effective tool to 
meet the challenges of antiviral drug discovery. Computa-
tional screening of natural compounds as docking followed 
by molecular dynamics saves resources in terms of money 
and time (Murgueitio et al. 2012). Generally, the active 
compounds from one plant were considered in the previous 
studies (Borkotoky and Banerjee 2020), but in our study, 
we have considered the most active anti-HIV compounds 
of different plants with the explanation of the effectiveness 
against new SARS-CoV-2 variants.

In this study, we have chosen ten highly active compounds 
(available in traditionally used medicinal plants of India) 
against HIV (Sabde et al. 2011) and virtually screened their 
inhibitory activity against Mpro, PLpro and RdRp protein 
of SARS-CoV-2. Molecular dynamics simulation also per-
formed to check the stability of Mpro, PLpro and RdRp with 
the compound having the highest Molecular Docking score. 
These findings will provide valuable information to other 
researchers to identify the right drug to combat COVID-19.

2 � Methodology

2.1 � Docking of potentially active anti‑HIV 
compounds with Mpro, PLpro and RdRp 
of SARS‑CoV‑2

Structures of Mpro (PDB ID: 6LU7), PLpro (PDB ID: 
6W9C) and RdRp (PDB ID: 6M71) were downloaded from 
Protein Data Bank (http://​www.​rcsb.​org). The “sdf” files 
of the ten anti-HIV compounds were downloaded from the 
PubChem (National Library of Medicine) and was converted 

http://www.rcsb.org
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to respective pdb files. All the structures of proteins were 
cleaned by removing hetero-atoms and water molecules 
using UCSF Chimera (Pettersen et al. 2004). Autodock 
Vina package (Trott and Olson 2010) was used for docking 
between the compounds and the best binding sites of the 
proteins. Autodock Tools was used for the preparation of 
pre-docking necessary files.

2.2 � Molecular dynamics (MD) simulation 
of protein–protopine complex

MD studies using GROMACS (5.0) (Berendsen et al. 1995) 
were performed with the minimum energy conformer 
obtained after docking between proteins and protopine (PTP) 
by applying CHARMM36-mar2019 force-field (Lee et al. 
2014) using TIP3P solvation model (Boonstra et al. 2016). 
CHARMM General Force Field server for was used the 
generation of topology and parameter files of the respective 
drug. Periodic boundary conditions were applied by generat-
ing a cubical box of 1-nm length by keeping 2-nm distance 
between two successive images. All the protein moieties 
were neutralized by adding adequate number of ions. Using 
steepest descent algorithm and conjugate gradient protocol, 
energy minimization was performed until the maximum 
force of at least 10 kJ mol−1 nm−1. Isochoric-isothermal 
(NVT) and isothermal-isobaric (NPT) ensembles were 
applied on the system for 100 ps for equilibration at 300 K 
by keeping 2-fs time step and 1-nm electrostatic and van der 
Waal cut-offs. Particle mesh Ewald (PME) (Abraham and 

Gready 2011) method was used for long range interaction 
calculations. Finally, 2000-ps MD simulation were subjected 
to the equilibrated ensembles with the same cut-offs. In all 
cases, snapshots of the trajectory were saved for each ns.

2.3 � Binding free energy calculation

Binding energies between the proteins and PTP were calcu-
lated by molecular mechanics Poison–Boltzmann surface 
area (MM-PBSA) method, implemented on Gromacs tool 
(g_mmpbsa) (Baker et al. 2001; Kumari et al. 2014). The 
following formulae was used for binding energy calculation:

where Gw-complex is the total free energy of the proteins and 
PTP complex, Gw-protein, Gw-PTP are the free energies of the 
protein and PTP, respectively.

2.4 � MD simulation result analysis

Using trjconv implemented on GROMACS, structural tra-
jectories were calculated for protein and PTP complexes. 
To re-centre the proteins, PTP, ions and water molecules 
within the cubical box the same tool was used. gmx energy 
tool of GROMACS was applied for calculation of van der 
Waals interaction, electrostatic energy, interaction energy 
values, etc. With the help of xmgrace plotting tool RMSD 

(1)ΔGbind = Gw - complex − Gw - protein − Gw - PTP,

Fig. 1   Docking score of anti-
HIV compounds against SARS-
CoV-2 proteins
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plots, RMSF plot, Radius of gyration and SASA plots were 
generated.

3 � Results and discussion

The binding affinities of the ten anti-HIV compounds against 
Mpro, PLpro and RdRp are shown in Fig. 1. Highest binding 
affinity of − 7.9, − 7.4 and − 7.5 kcal/mol is achieved by 
protopine (PTP) against Mpro, PLpro and RdRp, respec-
tively. This signifies that among these compounds PTP is 
strongly binds with these proteins.Ta
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Fig. 2   Docked structure of PTP and SARS-CoV-2 proteins
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Moreover, to determine the level of toxicity of the 
selected anti-HIV compounds, we have examined out 
ADME toxicity analyzed by pkCSM online server (Pires 
et al. 2015).

3.1 � Prediction of ADMET

Evaluation of pharmacokinetic properties of the studied 
anti-HIV compounds suggested that they were effectively 
absorbed by the gastro-intestinal part with low blood–brain-
barrier (BBB) permeability value and these drugs do not 
affect CYP2D6, CYP2C9 and CYP2D6 cytochromes. 
Skin permeability for these compounds was found to be in 
between − 3.078 and 1.089 units. The toxicity table is shown 
in Table S1.

3.2 � Prediction of toxicity

All compounds show negative hERGI inhibition activity. 
The LD50 values of the examined anti-HIV compounds fall 
in between 2.0 and 2.993 (mol/kg), while the chronic oral 

rat toxicity (LOAEL) values fall in between 1.112 and 2.49 
(log mg/kg_bw/day). Most of the compounds do not show 
AMES toxicity and hepatotoxicity. None of the compounds 
show skin sensitization. T. pyriformis and minnow toxicity 
values are tabulated in Table 1.

From the above analysis, it is clear that the studied drugs 
showed a descent toxicity level. From the binding affinity 
and toxicity level analysis, we have selected PTP to carry 
out further analysis.

The binding interactions of PTP on the binding pock-
ets of Mpro, PLpro and RdRp are shown in Fig. 2a–c. The 
major interactions that contributes to the binding of the cor-
responding proteins are electrostatic and Van der Waal types. 
The donor and acceptor sites that are engaged in H-bonding 
are shown 3D-contour in the left panel of Fig. 2a–c. The res-
idues corresponding proteins that are involved to the binding 
of active compound PTP molecule are shown on the right 
panel of Fig. 2a–c.

To analyze the stability of the PTP–protein complexes, 
we have performed MD simulation. The root mean square 
deviation (RMSD) plots of corresponding complexes are 

Fig. 3   Root mean square deviation of docked a Mpro b PLpro and c RdRp during MD simulation
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shown in Fig. 3a–c. It is clear from Fig. 3 that Mpro–PTP, 
PLpro–PTP and RdRp achieved an equilibrium for about 
500, 250 and 500 ps with an RMSD value around 2.2, 1.9 
and 2.2 Å, respectively.

We found the RMSD fluctuation of the docked 
PLpro–PTP complex accounts lower RMSD fluctuation with 
respect to undocked one confirming introduction of PTP in 
the binding cavity of PLpro stabilizes the corresponding 
complex.

Figure 4a–c illustrates the radius of gyration (Rg) plot 
(left panel) and solvent accessible surface area (SASA) 

plot (right panel). Rg measures the compactness of a sys-
tem. Except Mpro–PTP complex the docked PLpro and 
RdRp corresponds lower Rg value compare to undocked 
one revealing that these complexes are much compact. 
Higher value indicates lower fluctuation of proteins with 
time. Figure 4 (left panel) shows that all the docked struc-
ture has lower SASA value compare to undocked one 
which reveals the lower fluctuation of the docked struc-
ture. To further assess the flexibility and local motion of 
the drug–protein complexes, we have further analyzed root 
mean square fluctuation (RMSF) as shown in Fig. 5a–c. 

Fig. 4   Radius of gyration (left) and SASA plot (right) of a Mpro, b PLpro and c RdRp during MD simulation
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The lower fluctuation of the PTP-protein as compare to 
the protein clearly reveals that PTP moiety strongly inter-
acts with the protein residues establishing stability of the 
complexes. We further noted that RMS fluctuation for the 
residue GLY143 for Mpro, LYS232 for PLpro and LYS545 
and ARG858 for RdRp experienced lower fluctuation 
revealing that they are involved in interaction with the 
drug and located at the binding loop of the corresponding 
complexes. Furthermore, we have performed g_MMPBSA 

energy analysis. By applying the said tool, we have ana-
lyzed the contribution energy of each residue as shown in 
Fig. 6a–c.

Both the RMSF and the contribution energy graph 
showed the residues which directly interacts with the PTP 
moiety expose their highest energy contributions as indi-
cated by the residue numbers in corresponding RMSF 
graphs (left panel Fig. 5). Different free energy parameters 
that contribute to the binding energy are plotted in Fig. 7. 

Fig. 5   Root mean square fluctuation of before and after docking of a Mpro, b PLpro and c RdRp
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It is clear from the figure that none of the parameter has its 
contribution to the overall binding. Highest Van der Waal 
interaction is achieved by RdRp, while least is seen by Mpro. 
Same trend is followed in case of non-polar energy term. 

Gibb’s free energy change for binding is highest with PLpro, 
while least is experienced by RdRp.

Furthermore, to analyze the effect of entry of drug to the 
binding pocket of the corresponding complexes, we have 
plotted the snapshots after every 1000 ps. We note that there 
is a huge conformational change experienced by the cor-
responding proteins at 2000 ps, 1000 ps and 2000 ps for 
Mpro, PLpro and RdRp, respectively. The snapshots at 0 ps 
and 2000 ps clearly raised the profound structural changes 
for stronger binding interactions between drug and proteins 
during the trajectory.

As per the report, the new variants of SARS-CoV-2 
[i.e., 501Y.V1 (B.1.1.7), 501Y.V2 (B.1.351)] carry a 
mutation in spike protein and for that reason, the trans-
mission rate is increased upto 70% (Xie et al. 2021; Gu 
et al. 2020; Tang et al. 2020). Our study shows that PTP 
has potential inhibitory activities against Mpro, PLpro 
and RdRp proteins of SARS-CoV-2. Hence, there is a 
chance of PTP to show the effectiveness against the new 
variants of SARS-CoV-2 (Fig. 8).

Fig. 6   Contribution energy of different residues of a Mpro, b PLpro and c RdRp

Fig. 7   Different types of free energies of the PTP docked proteins
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4 � Conclusions

The present work deals with the virtual screening of ten anti-
HIV compounds which are extracted from various Indian 
medicinal plants to retard the overall replication and trans-
mission process associated with SARS-CoV-2. Molecular 

docking studies revealed that out of ten compounds high-
est binding affinity is found with PTP against Mpro, PLpro 
and RdRp. Furthermore, molecular dynamics simulation 
and evaluation of different parameters such as RMSD, 
RMSF, Rg, SASA and thermodynamic parameters revealed 
that introduction PTP moiety to the binding loop of the 

Fig. 8   Structural changes of Mpro, PLpro and RdRp during MD simulation
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corresponding proteins has a huge impact on overall struc-
tural and conformational changes. Analysis of the results 
revealed that PTP could be a potential therapeutic drug to 
combat the replication and transcription process of SARS-
CoV-2. It is expected that PTP will be effective against the 
new strains of SARS-CoV-2 but more research is required 
for a proper understanding of the continuous mutation pro-
cess of the SRAS-CoV-2 such that PTP can be converted 
from an experimental level to a conclusion.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s13721-​021-​00309-3.
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