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Abstract: We aimed to determine the contribution of various trivalent ions like Al and rare-earths (Y,
Nd, Sm, Eu) on resistance behaviors of different types of bismo-borate glasses. Accordingly, eight
different bismuth borate glasses from the system: 40Bi2O3–59B2O3–1Tv2O3 (where Tv = Al, Y, Nd, Sm,
and Eu) and three glasses of (40Bi2O3–60B2O3; 37.5Bi2O3–62.5B2O3; and 38Bi2O3–60B2O3–2Al2O3)
compositions were extensively investigated in terms of their nuclear attenuation shielding properties,
along with effective conductivity and buildup factors. The Py-MLBUF online platform was also
utilized for determination of some essential parameters. Next, attenuation coefficients, along with
half and tenth value layers, have been determined in the 0.015 MeV–15 MeV photon energy range.
Moreover, effective atomic numbers and effective atomic weight, along with exposure and energy
absorption buildup factors, were determined in the same energy range. The result showed that
the type of trivalent ion has a direct effect on behaviors of bismo-borate glasses against ionizing
gamma-rays. As incident photon energy increases, the effective thermal conductivity decreases
rapidly, especially in the low energy range, where photoelectric effects dominate the photon–matter
interaction. Sample 8 had the minimum heat conductivity at low photon energies; our findings
showed that Eu-reinforced bismo-borate glass composition, namely 40Bi2O3–59B2O3–1Eu2O3, with
a glass density of 6.328 g/cm3 had superior gamma-ray attenuation properties. These outcomes
would be useful for the scientific community to observe the most suitable additive rareearth type
and related glass composition for providing the aforementioned shielding properties, in terms of
needs and utilization requirements.

Keywords: bismo-borate glasses; trivalent ions; rare-earth; effective conductivity; Py-MLBUF; radia-
tion shielding
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1. Introduction

Over the past few decades, radiation has become one of the most significant research
topics. Over time, scientists have gained a better understanding of the potential for bio-
logical harm caused by various forms and characteristics of radiation. The most widely
used classification system for categorizing radiation according to its potential to cause
damage to living tissue divides it into two groups: ionizing and non-ionizing radiation.
Ionizing radiation has come a long way in terms of widespread use and widely spreading
its destructive effects on biological structures and living cells through direct or indirect
effects [1]. It is important to protect people from the harmful effects of ionizing radia-
tion. The word “radiation safety” has gained even more significance as a result of the
application of radiation sciences in a variety of high-tech fields. For several years, certain
traditional nuclear shielding materials have been used in some radiation fields based on
use attributes [2]. Because of its low cost, easy availability, and ability to be shaped into any
shape or form, concrete is the most commonly used shielding material [3,4] in nuclear reac-
tors and cyclotrons. Concrete, however, has a number of drawbacks, which include cracks
that appear after prolonged use, and the presence of water in concrete that reduces the
material’s density and structural strength. Moreover, concrete is opaque by nature, making
it difficult to see through. In the recent years, researchers have been trying to investigate
the features of materials that can be utilized as a replacement for concrete and lead [5]—
ones that are eco-friendly, highly dense, and chemically homogenous. Various materials,
such as compounds, steel [6,7], and alloys [8–11] have been chosen and tested for their
shielding applications in order to investigate the desired features. The findings revealed
that strong, nontransparent concrete and lead outperform, prompting scientists to research
glass systems to serve as radiation shielding materials. The precise composition of a glass
can differ to meet the needs of certain applications. A typical glass can be described as
clear, non-toxic, and usable with advanced material characteristics for a variety of purposes.
Recent attention has been focused on glass samples doped with rare-earth elements, which
show promise for a variety of applications, including optical amplifiers, laser instruments,
and radiation shields. Glass samples with a higher concentration of bridging oxygen are
critical for radiation shielding and mechanical properties [12–14]. The high density and op-
tical transparency of glasses containing heavy metals such as Eu (Z-63), Sm (Z-62) and Nd
(Z-60) make them ideal for radiation shielding applications [15–17]. Aluminum oxide and
yttrium serve as modifiers due to their elemental mass fractions in glass samples. Bismuth
oxide, on the other hand, has a significant density and refractive index advantage [18–20].
Yttria, a boro-bismuthate [21,22]-doped material that is used to control the arrangement
of glass, is more valuable than borate or phosphate glass [23–25]. Additionally, it exhibits
exceptional chemical and photochemical stability, in addition to highly evolved properties.
The literature review, on the other hand, showed that the importance of Al2O3 has been
investigated in terms of its critical properties. In a study, Popov et al. have compared
thermal annealing of the F-type center in Al2O3 single crystals irradiated with heavy ions
and neutrons [26]. Moreover, Kotomin et al. have investigated the kinetics of F center as
well as colloid creation in Al2O3 [27]. As is well recognized, Al2O3 is of considerable impor-
tance due to its material characteristics. In another study, Tucker et al. have investigated
the effects of neutron-irradiation on Al2O3 [28]. The present concept of these promising
investigations has prompted us to do further research on the impact of other reinforcement
types, including Al2O3, on the gamma-ray shielding properties of bismo-borate glasses.
The aim of this study is to look into the nuclear shielding properties of various trivalent
element oxides like Al2O3 and some rare-earth oxide-doped (Y3+, Sm3+, Nd3+, Eu3+) glass
samples, using the Python multilayered buildup factor (Py-MLBUF) online platform [29]
for energies between 0.015 and 15 MeV. Boro-bismuthate was chosen as the basic glass
sample for this study due to its exceptional shielding and clarity properties. It should
be noted that the results of this study will be applicable to the field of glass literature,
particularly radiation shielding. In addition, the obtained findings can be used to evaluate
the composition of rare-earth-doped boro-bismuthate glass in recent amorphous structures
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on a broad scale. The results of this research could help researchers better understand the
suitability of rare-earth doped glass samples as nuclear shielding materials.

2. Materials and Methods

In this study, eight different bismuth borate glass systems [30] were extensively
investigated in terms of their nuclear attenuation shielding properties, along with their
effective conductivity and buildup factors. The chemical composition of the studied glasses
can be defined as below.

(i) 37.5Bi2O3–62.5B2O3
(ii) 38Bi2O3–60B2O3–2Al2O3
(iii) 40Bi2O3–60B2O3
(iv) 40Bi2O3–59B2O3–1Al2O3
(v) 40Bi2O3–59B2O3–1Y2O3
(vi) 40Bi2O3–59B2O3–1Nd2O3
(vii) 40Bi2O3–59B2O3–1Sm2O3
(viii) 40Bi2O3–59B2O3–1Eu2O3

In the reference study, material densities of glass samples were reported as 6.006 g/cm3,
6.07 g/cm3, 6.313 g/cm3, 6.233 g/cm3, 6.301 g/cm3, 6.341 g/cm3, 6.321 g/cm3, 6.328 g/cm3

for Sample 1, Sample 2, Sample 3, Sample 4, Sample 5, Sample 6, Sample 7 and Sample 8,
respectively (see Table 1). In this section, we will present the determined nuclear radiation
shielding parameters along with their technical details. Moreover, we will present a brief
definition of the used Py-MLBUF online platform.

Table 1. The codes, elemental compositions, weight fractions and densities of the studied glass samples.

Sample
Code B O Bi Al Y Nd Sm Eu Density

(g/cm3)

1 0.061915 0.219923 0.718162 - - - - - 6.006
2 0.058731 0.217306 0.719077 0.004886 - - - - 6.07
3 0.056857 0.210372 0.732771 - - - - - 6.313
4 0.05583 0.210074 0.731734 0.002362 - - - - 6.233
5 0.055529 0.208942 0.727789 - 0.007741 - - - 6.301
6 0.055263 0.20794 0.7243 - - 0.012498 - - 6.341
7 0.055233 0.20783 0.723916 - - - 0.013021 - 6.321
8 0.05523 0.20780 0.72382 - - - - 0.00658 6.328

2.1. Nuclear Radiation Shielding Parameters

It is essential to comprehend the Lambert–Beer law [31,32], shown in Equation (1), to
simplify the mass attenuation coefficient.

I = Ioe−µt (1)

I: Intensity of the secondary gamma rays
I0: Intensity of the initial gamma rays
µ: Linear attenuation coefficient
t: Thickness of the absorber
The mass attenuation coefficient (g/cm3) [33,34] is a measure of how likely incident

photons are to interact with matter per unit density. It is calculated using the formula
demonstrated in Equation (2):

µ/ρ = ∑
i

wi(µ/ρ)i (2)

where µ (1/cm) is the linear attenuation coefficient, and ρ is the density of the sample, wi is
the weight fraction of the ith constituent of the element. The Mean Free Path (MFP cm) [35]
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is the average distance traveled by photons before tcollision. For any photon passing
through a material, MFP is calculated using Equation (3):

MFP =
1
µ

(3)

After traveling 1 mfp through a shielding medium in an ideal narrow-beam geometry,
the power of monoenergetic gamma-rays is reduced by approximately 37%. By multiplying
the linear attenuation coefficient by the distance in cm between the point source and the
detector, a dimensionless quantity is obtained. The term “optical thickness (OT)” refers to
this dimensionless quantity. When gamma-photons traverse the shield, the OT shows how
many mean free path lengths they completed. Have Value Layers (HVL cm) is described
as the absorber thickness necessary to eliminate the radiation intensity to half its original
value. It is calculated using Equation (4):

HVL =
ln (2)
µ

(4)

Another metric that is comparable to HVL cm [36,37] is the Tenth Value Layer
(TVL cm), which is defined as the thickness of absorber required to decrease the radiation
intensity to one-tenth of its original value. It is computed using the following Equation (5):

TVL =
ln (10)

µ
(5)

The effective conductivity Ceff (s/m) [38] of a shielding-material for attenuation at
room temperature (300 K) is related to the effective number of electrons (Neff) by the
following Equation (6):

Ceff =

(
Neff ρ e2 τ

me

)
× 103 (6)

In Equation (7), ρ, e and me denote the density of shielding materials (g·cm−3), the
charge on an electron (C), and the electron’s rest mass (kg), respectively. τ depicts the
electron’s relaxation time and is calculated using the following equation:

τ =
h

600πk
(7)

where h is Planck’s constant and k is the is the Boltzmann constant. In radiation studies,
the term Zeff is a crucial parameter. The effective atomic number function can also be used
to characterize the improvement of shielding in complex shielding materials. The effective
atomic number was determined in this research using the direct method of examining the
atomic and electronic cross sections.

Zeff =
ΣifiAi

(
µ
ρ

)
i

Σjfj

(
Aj
Zj

)
(µρ )j

(8)

where fi: fraction by mole
Ai: atomic weight
Zj: Atomic number of ith constituent element
The atomic number (Zeq) of a shielding material is assigned exclusively by incoherent

scattering. Values of Zeq aid in buildup factor (BUF) calculations.
Zeq values in this study were obtained using the interpolation method, demonstrated

in Equation (9):

Zeq =
Z1(logR2 − logR) + Z2(logR − logR1)

logR2 − logR1
(9)
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where the ratio R is the determining factor for the equivalent atomic number, for a particular
photon energy.

R =
µm compton

µm total
(10)

Z1 and Z2 are the atomic numbers of the respective elements, which correspond
to their respective ratios R1 and R2. The buildup factor is a multiplicative factor that
takes into account the contributions of scattered photons to the corrected response to
uncollided photons. In simpler terms, it is the ratio of incident photons to total photons.
The ANS-standard was developed to compute gamma-ray BUFs for a point isotropic source
operating between 0.015 and 15 MeV. The energy absorption build-up factor is a factor in
which the quantity of interest is the amount of energy absorbed or stored in the interacting
material. The geometric progression (G-P) fitting technique is often used to log EABFs. In
this study, Py-MLBUF has been used for exposure (EBF) and energy absorption (EABF)
buildup factors.

2.2. Python Multilayered (Py-MLBUF) Online Platform

Py-MLBUF [26] is a simple-to-use online calculator for determining gamma shielding
parameters (GSP). Designed to measure the sum, 36 GSP (gamma shielding parameters) is
used for gamma shielding enclosures used in radiation protection with an energy range
of 0.015–15 MeV. This online platform’s feedback system was developed in the form of a
question–answer format. Following sign-in, the user is prompted for the number of layers
(n) in the GSE (gamma shielding energy), which is set to one for the sake of this study. The
second issue concerns the composition form of the sample, which can be either elemental or
compound; in this case, an elemental composition was chosen. The OT’s maximum value
is set to 40 mfp by default. The energy range chosen for this analysis was 0.015–15 MeV.
Last but not least, the densities and weight fractions of each substance were entered. After
that, the platform calculates all of the required shielding parameters, such as MAC—mass
attenuation coefficient, LAC—Linear attenuation coefficient, BUFs—buildup factor, Zeq—Z
equivalent, Zeff—effective atomic number, HVL, TVL, and so on.

3. Results and Discussion

The shielding properties of eight high-density glass samples were determined in
terms of their gamma-ray attenuation competencies in this study. Figure 1 shows the linear
attenuation coefficients (µ) of glass samples, which vary in accordance with the photon
energy; the energy range is from 0.015 to 15 MeV. There are two distinct ways to get energy
for photons, and both techniques need the use of electrons. Absorption may vary in two
different cases: In one instance, the photon is fully absorbed; in the other, only a portion
of the light is absorbed, with the remainder being scattered. There is a direct relationship
between the probability of these events occurring and the temperature and photon capacity
of the medium. For low-energy photons, the photoelectric effect appears to be stronger
(less than 100 keV); it grows to a higher probability of occurrence as Z increases. When the
energy of photons is between moderate and high, the Compton effect is significant (more
than 100 keV). When an electron’s energy is more than 1.02 MeV, it will form a pair with
a photon. Due to these numerous interactions, the linear attenuation coefficient may be
concluded to be energy-dependent and to vary with different photon energy regions.
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Figure 1. Variation of linear attenuation coefficient (µ) against Photon energy for all glasses.

In Figure 1, a fast drop of 0.015 MeV to 0.08 MeV was observed. As was the case with
the first field, a smooth decrement was observed in the second, demonstrating Compton
scattering’s supremacy. Our results indicate that for the measured Sample 8, the highest
values were discovered. This can be explained by the Eu reinforcement (Z = 63) amount
in Sample 8. As is seen in Table 1, Eureinforced Sample 8 has almost the maximum glass
density (i.e., 6.328 g/cm3). This is due to the higher atomic number of Eu compared to
other additive types such as Al, Y, Nd, and Sm.

In the other hand, it might be more efficient to express the attenuation rate in terms of
the mass of the photon-experienced target, rather than a radius. The factor affecting the
attenuation rate is not the overall mass of the attenuator, but rather the region mass [39,40].
The simplest description of this phenomenon is in terms of mass attenuation coefficients
(µm). µm is a density-independent quantity that can be used to quantify a material’s
shielding abilities. The µm values of the samples were calculated in the 0.015 MeV and
15 MeV photon energy ranges in this analysis. The distribution of m as a function of
incident photon energy is depicted in Figure 2 for all glasses; µm values reported a similar
attitude toward m. Additionally, the predominance of the above interactions was stated in
terms of µm values. This relation is due to the seamless transitions between the densities
of glass samples. Due to the fact that µm can be found by dividing by density, a similar
variance pattern is predicted. However, Sample 8 had the highest µm values among the
studied samples. This may be because the total mass of Sample 8 was closely related to the
Eu’s Z value.
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Figure 2. Variation of mass attenuation coefficient (µm) against photon energy for all glasses.
1—37.5Bi2O3–62.5B2O3; 2—38Bi2O3–60B2O3–2Al2O3; 3—40Bi2O3–60B2O3; 4—40Bi2O3–59B2O3–
1Al2O3; 5—40Bi2O3–59B2O3–1Y2O3; 6—40Bi2O3–59B2O3–1Nd2O3; 7—40Bi2O3–59B2O3–1Sm2O3;
8—40Bi2O3–59B2O3–1Eu2O3.

The term HVL (T1/2) is important for calculating the shield thickness of a material,
since it may decrease the incoming photon intensity to half its value (as 50 percent). Thus,
this configuration method may be utilized to account for future practical considerations
such as the optimum physical environment for shielding equipment and operational
efficiency. We calculated the T1/2 values of investigated samples within the same energy
spectrum using attenuation coefficients in this analysis. The variance of the half value layer
(T1/2) as a feature of photon energy is shown in Figure 3.

With increasing photon energy, we found a direct improvement in the necessary
glass thickness, which will result in a 50% reduction in incident photon density. This is
demonstrated by the fact that the penetration properties of energetic photons shift as they
progress from low to high energy levels [41]. In other terms, photons with a higher energy
need tougher materials to achieve a halving of their power. However, it is necessary to
equate the appropriate material thickness of various materials in order to halve the energy
of a certain photon. As previously discussed, Sample 8 was reported with the maximum
linear attenuation coefficients. Since there is an inverse relationship between T1/2 and
linear attenuation coefficients (see Equation (5)), one can say that shields with higher linear
attenuation coefficients can provide lower T1/2 values. This is supported by our observation
that Sample 8 had the lowest T1/2 values of all the glasses studied. Similar to HVL, the term
TVL (T1/10) is also a significant parameter in determining the appropriate shield thickness
of a substance, since it is possible for the incoming photon intensity to be reduced to a tenth
of its initial value. Consequently, this configuration function can be used for shielding
products and cost effectiveness. The T1/10 values of investigated samples within the same
energy spectrum were calculated in this analysis using attenuation coefficients. Figure 4
illustrates the variance of the tenth value layer (T1/10) as a characteristic of photon energy.
A similar variation trend with HVL was reported for studied glass samples. The lowest
T1/10 vales were also reported for Sample 8.
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Figure 3. Variation of half value layer (T1/2) against photon energy for all glasses. 1—37.5Bi2O3–62.5B2O3;
2—38Bi2O3–60B2O3–2Al2O3; 3—40Bi2O3–60B2O3; 4—40Bi2O3–59B2O3–1Al2O3; 5—40Bi2O3–59B2O3–
1Y2O3; 6—40Bi2O3–59B2O3–1Nd2O3; 7—40Bi2O3–59B2O3–1Sm2O3; 8—40Bi2O3–59B2O3–1Eu2O3.
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Figure 4. Variation of tenth value layer (T1/10) against photon energy for all glasses. 1—37.5Bi2O3–
62.5B2O3; 2—38Bi2O3–60B2O3–2Al2O3; 3—40Bi2O3–60B2O3; 4—40Bi2O3–59B2O3–1Al2O3; 5—40Bi2O3–
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This outcome can be considered as a confirmation of the shielding effectiveness of 
Sample 8 in terms of halving the primary radiation intensity as well as reducing it to one 
tenth. MFP is the average distance traveled by photons before colliding. We determined 
the MFP values of studied glass samples in terms of their attenuation behaviors as a func-
tion of the average distance of an incident photon [42–44]. The difference in MFP as a 
function of photon energy is depicted in Figure 5 for all glasses. 
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Figure 4. Variation of tenth value layer (T1/10) against photon energy for all glasses. 1—37.5Bi2O3–
62.5B2O3; 2—38Bi2O3–60B2O3–2Al2O3; 3—40Bi2O3–60B2O3; 4—40Bi2O3–59B2O3–1Al2O3; 5—40Bi2O3–
59B2O3–1Y2O3; 6—40Bi2O3–59B2O3–1Nd2O3; 7—40Bi2O3–59B2O3–1Sm2O3; 8—40Bi2O3–59B2O3–1Eu2O3.
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This outcome can be considered as a confirmation of the shielding effectiveness of
Sample 8 in terms of halving the primary radiation intensity as well as reducing it to one
tenth. MFP is the average distance traveled by photons before colliding. We determined the
MFP values of studied glass samples in terms of their attenuation behaviors as a function
of the average distance of an incident photon [42–44]. The difference in MFP as a function
of photon energy is depicted in Figure 5 for all glasses.
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Sample 8 in terms of halving the primary radiation intensity as well as reducing it to one 
tenth. MFP is the average distance traveled by photons before colliding. We determined 
the MFP values of studied glass samples in terms of their attenuation behaviors as a func-
tion of the average distance of an incident photon [42–44]. The difference in MFP as a 
function of photon energy is depicted in Figure 5 for all glasses. 
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Figure 5. Variation of men free path (λ) against photon energy for all glasses. 1—37.5Bi2O3–62.5B2O3;
2—38Bi2O3–60B2O3–2Al2O3; 3—40Bi2O3–60B2O3; 4—40Bi2O3–59B2O3–1Al2O3; 5—40Bi2O3–59B2O3–
1Y2O3; 6—40Bi2O3–59B2O3–1Nd2O3; 7—40Bi2O3–59B2O3–1Sm2O3; 8—40Bi2O3–59B2O3–1Eu2O3.

It is observed that the average travel distance of an incident gamma-ray increased as
photon energy increased. This can be explained by the fact that photons have different
direct penetration properties depending on their initial energy. However, Sample 8 was
stated to have almost the lowest MFP values across the entire range of incident photon
energies. This can be explained by the atomic structure and material density of Sample 8,
as its dense atomic structure prevented these gammas from passing through. Figure 6
depicts the difference in effective atomic number values due to photon radiation. Therefore,
combinations with a greater percentage of Z-valued compounds have a higher absorption
rate for gamma rays. According to our results, Sample 8 has the highest Zeff values across
all energy levels tested. However, there was no discernible difference in Zeff values. This
may be clarified by the fact that the molar concentrations of glass specimens vary slightly.
However, the largest difference in Zeff values was observed at high energy, while the
highest value was observed at 0.015 MeV in the photoelectric effect’s dominant region.
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Figure 6. Variation of effective atomic number (Zeff) against Photon energy for all glasses.  1—
37.5Bi2O3–62.5B2O3; 2—38Bi2O3–60B2O3–2Al2O3; 3—40Bi2O3–60B2O3; 4—40Bi2O3–59B2O3–1Al2O3; 
5—40Bi2O3–59B2O3–1Y2O3; 6—40Bi2O3–59B2O3–1Nd2O3; 7—; 8—40Bi2O3–59B2O3–1Eu2O3. 

Figure 7 illustrates the difference in effective atomic weight for absorption (Aeff) as a 
function of photon energy for all glasses. The changes in the overall atomic weight of the 
mixture are directly related to the additive properties, which resulted in densities ranging 
from 6.006 g/cm3 to 6.328 g/cm3. As illustrated in Figure 7, the additive types in the glass 
samples had an effect on the effective atomic weight for photon absorption. As a result, 
Sample 8 was reported to have the highest Aeff value of the examined glasses. 
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62.5B2O3; 2—38Bi2O3–60B2O3–2Al2O3; 3—40Bi2O3–60B2O3; 4—40Bi2O3–59B2O3–1Al2O3; 5—40Bi2O3–
59B2O3–1Y2O3; 6—40Bi2O3–59B2O3–1Nd2O3; 7—40Bi2O3–59B2O3–1Sm2O3; 8—40Bi2O3–59B2O3–1Eu2O3.

Figure 7 illustrates the difference in effective atomic weight for absorption (Aeff) as a
function of photon energy for all glasses. The changes in the overall atomic weight of the
mixture are directly related to the additive properties, which resulted in densities ranging
from 6.006 g/cm3 to 6.328 g/cm3. As illustrated in Figure 7, the additive types in the glass
samples had an effect on the effective atomic weight for photon absorption. As a result,
Sample 8 was reported to have the highest Aeff value of the examined glasses.

In this analysis, the EBF and EABF values were determined using the geometry
progressive (G-P) method. As a result, the difference between the exposure buildup factor
(EBF) and the energy absorption buildup factor (EABF) for glass samples with penetration
depths of 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, and 40 mfp has been visualized in
Figures 8–15. Other than the variance in EBF values, Sample 8 was determined to have
the highest EBF values. In the interaction of the product and the detector material, the
amount of energy in the product affects the quantity that is influenced by the amount
of energy in the product and the detector function. Concerning the whole region of
concentration, it is called exposure, and in the air, a detector reacts to that which is being
absorbed. In EABF, the results indicated a similar attitude toward EBF; the Sample 8
EABF values were also captured as a consequence. In the 0.015–15 MeV photon energy
range, the effective conductivity Ceff (s/m) values of the investigated glasses were finally
obtained. The effective conductivity Ceff (s/m) of a shielding material for attenuation at
room temperature (300 K) is related to the effective number of electrons. This parameter
might provide useful information about investigated materials in terms of their attenuation
condition at room temperature.
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Figure 7. Variation of effective atomic weight (Aeff) against photon energy for all glasses. 1—37.5Bi2O3–
62.5B2O3; 2—38Bi2O3–60B2O3–2Al2O3; 3—40Bi2O3–60B2O3; 4—40Bi2O3–59B2O3–1Al2O3; 5—40Bi2O3–
59B2O3–1Y2O3; 6—40Bi2O3–59B2O3–1Nd2O3; 7—40Bi2O3–59B2O3–1Sm2O3; 8—40Bi2O3–59B2O3–1Eu2O3.

Materials 2021, 14, 5894 10 of 16 
 

 

 
Figure 7. Variation of effective atomic weight (Aeff) against photon energy for all glasses. 1—
37.5Bi2O3–62.5B2O3; 2—38Bi2O3–60B2O3–2Al2O3; 3—40Bi2O3–60B2O3; 4—40Bi2O3–59B2O3–1Al2O3; 
5—40Bi2O3–59B2O3–1Y2O3; 6—40Bi2O3–59B2O3–1Nd2O3; 7—; 8—40Bi2O3–59B2O3–1Eu2O3. 

In this analysis, the EBF and EABF values were determined using the geometry pro-
gressive (G-P) method. As a result, the difference between the exposure buildup factor 
(EBF) and the energy absorption buildup factor (EABF) for glass samples with penetration 
depths of 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, and 40 mfp has been visualized in 
Figures 8–15. Other than the variance in EBF values, Sample 8 was determined to have the 
highest EBF values. In the interaction of the product and the detector material, the amount 
of energy in the product affects the quantity that is influenced by the amount of energy in 
the product and the detector function. Concerning the whole region of concentration, it is 
called exposure, and in the air, a detector reacts to that which is being absorbed. In EABF, 
the results indicated a similar attitude toward EBF; the Sample 8 EABF values were also 
captured as a consequence. In the 0.015–15 MeV photon energy range, the effective con-
ductivity Ceff (s/m) values of the investigated glasses were finally obtained. The effective 
conductivity Ceff (s/m) of a shielding material for attenuation at room temperature (300 K) 
is related to the effective number of electrons. This parameter might provide useful infor-
mation about investigated materials in terms of their attenuation condition at room tem-
perature. 

  
(a) (b) 

-2 0 2 4 6 8 10 12 14 16

44

46

48

50

52

54

Ef
fe

ct
iv

e 
at

om
ic

 w
ei

gh
t f

or
 a

bs
or

pt
io

n 
(A

ef
f)

Energy (MeV)

 1
 2
 3
 4
 5
 6
 7
 8

0.01 0.1 1 10
100

103

106

109

1012

1015

1018

1021

1

EB
F

E (MeV)

   mfp
 0.5
 1
 2
 3
 4
 5
 6
 7
 8
 10
 15
 20
 25
 30
 35
 40

0.01 0.1 1 10
100

103

106

109

1012

1015

1

EA
B

F

E (MeV)

   mfp
 0.5
 1
 2
 3
 4
 5
 6
 7
 8
 10
 15
 20
 25
 30
 35
 40

Figure 8. Variation of (a) EBF and (b) EABF against photon energy for Sample 1.
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Figure 9. Variation of (a) EBF and (b) EABF against photon energy for Sample 2.
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Figure 10. Variation of (a) EBF and (b) EABF against photon energy for Sample 3.
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Figure 11. Variation of (a) EBF and (b) EABF against photon energy for Sample 4.
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Figure 12. Variation of (a) EBF and (b) EABF against photon energy for Sample 5.
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Figure 16 shows variation of effective conductivity (Ceff) at 300 K (s/m) for all glasses.
The results imply that as incoming photon energy rises, the effective thermal conductivity
quickly falls, particularly in the low energy region, where the photoelectric effect dominates
the photon–matter interaction [45,46]. However, Sample 8 was found to have the lowest
Ceff values of all the samples examined at low energies. The findings clearly reflect that
Sample 8 has the minimum heat conductivity at all photon energies, which can also be
considered another beneficial feature of Sample 8 in terms of radio-protective properties
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4. Conclusions

Currently, a fascinating field of study is the fabrication of optical instruments using
rare-earth element-doped materials. Rare-earth element-doped glasses are frequently used
for a variety of uses, including laser materials, optical amplifiers, optical memory systems,
magneto-optical instruments, surgical lasers, eye-safe lasers, flat panel displays, fluorescent
lighting, and white led lasers. In addition to all these advantages, glasses doped with rare-
earth oxides are used effectively in radiation shielding studies due to their high densities
and their ability to decrease the number of non-bridging oxygens in the glass network
that they are doped to, and thus result in a more compact structure and increased density
in the newly formed material. In our study, eight different bismuth borate glasses were
investigated in terms of their nuclear attenuation shielding properties, along with effective
conductivity and buildup factors, for potential use in nuclear radiation facilities. Our
research uncovered the following key points;

(i) The µm values of 64.49 cm2/g, 64.59 cm2/g, 65.79 cm2/g, 65.70 cm2/g, 65.87 cm2/g,
65.49 cm2/g, 65.52 cm2/g, 69.48 cm2/g were recorded for Sample 1, Sample 2, Sample 3,
Sample 4, Sample 5, Sample 6, Sample 7 and Sample 8 glasses at 0.015 MeV, respectively.
Generally, the µm values obeyed the trend: (µm)8 > (µm)7 > (µm)6 > (µm) 5 > (µm) 4 >
(µm)3 > (µm) 2 > (µm) 1

(ii) The T1/2 values of 2.5193 cm, 2.4923 cm, 2.3943 cm, 2.4251 cm, 2.4004 cm, 2.3857 cm,
2.3934 cm, 2.3831 cm were recorded Sample 1, Sample 2, Sample 3, Sample 4, Sample 5,
Sample 6, Sample 7 and Sample 8 glasses at 2 MeV, respectively.

(iii) The findings indicated that Sample 8 had the lowest values of MFP at the photon
energies investigated.

(iv) The findings indicate that Sample 8 has the highest Zeff values at all energy levels examined.
(v) Sample 8 was reported as having the maximum EBF and EABF values, while the

minimum values were reported for the Sample 1.

From the results, it can be concluded that the effect of Eu is higher than other types of
rare-earth elements such as Y, Nd, Sm and Al in terms of radiation attenuation competencies
and effective conductivity at 300K. The literature review showed that researchers are
considering different types of investigations in terms of adding rare-earth for nuclear
radiation shielding improvements. As a result of the findings, the scientific community will
be able to determine the most appropriate additive rare-earth types and glass compositions
to offer the aforementioned shielding characteristics in terms of demands and usage criteria.
Additionally, advanced research such as mechanical and thermal analyses of these glasses
are suggested in order to get a better knowledge of their overall appropriateness for
shielding applications in various kinds of radiation facilities.
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