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Research shows that late mild cognitive impairment (LMCI) has a high risk of turning
into Alzheimer’s disease (AD). Due to the invasion of detection methods and physical
damage to the patients, it is not a convenient way to diagnose and detect early AD
and LMCI by cerebrospinal fluid (CSF) data. So there is an urgent need to find the
correlation between peripheral biological data and CSF data in the brain, and to find
new diagnostic methods through changes in the peripheral biological data. Studies
have shown that during the pathogenesis of LMCI and AD, peripheral immune cells
specifically infiltrate into the brain through the blood–brain barrier, causing an imbalance
in the brain’s immune response and dysregulating the clearance of Aβ in CSF. Therefore,
in this paper, canonical correlation analysis (CCA) algorithm is presented to derive the
correlation between peripheral and CSF biomarkers based on LMCI peripheral gene
expression data and plasma marker information. Firstly, to explore the influence of the
infiltration of peripheral blood immune cells on the brain, the abundance of 28 immune
cells were calculated by using the gene set enrichment analysis algorithm of LMCI
samples. Then, to identify the correlation between biomarkers inside and outside of
the brain, we performed CCA to calculate the relationship between CSF and peripheral
biomarkers. Results of CCA showed significant correlations between the variable sets
of 8 peripheral biomarkers and the variable sets of CSF biomarkers (at 0.794). Finally,
according to Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analysis,
it was found that the obtained peripheral biomarkers are involved in many immune-
related pathways and functions which can be activated in peripheral blood of LMCI
patients. Most related genes enriched in immune-related pathways and functions were
up-regulated. Through receiver operating characteristic curve (ROC) analysis, it was
also found that FP40/FP42 and type 1 T helper can accurately predict the pathological
changes of LMCI (at 0.747).

Keywords: peripheral and CSF biomarkers, blood–brain barrier, late mild cognitive impairment (LMCI), gene set
enrichment analysis (GSEA), canonical correlation analysis (CCA), receiver operating characteristic curve (ROC)

INTRODUCTION

Mild cognitive impairment (MCI) is a transitional stage in which normal aging develops into
dementia (Stephan et al., 2007), but it is also an unstable state. In the follow-up study of MCI
patients, the abundance of MCI developing into Alzheimer’s disease (AD) increased year by year.
It can be seen that MCI is an early warning signal for the onset of AD (Hansson et al., 2006;
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Jessen et al., 2014), and the risk of conversion of late mild
cognitive impairment (LMCI) to AD is the highest.

Cerebrospinal fluid (CSF) marker analysis is an effective
method for diagnosing MCI could be a differentiating marker
for the detection of prodromal AD from clinically diagnosed
MCI patients (Park et al., 2019). However, due to the invasion
of detection methods and physical damage to patients, it is not
a convenient way to diagnose and detect early AD and LMCI
by CSF. And the study of MCI in Magaki et al. (2007) found
that the production of cytokines IL-6, IL-8, and IL-10 increased
in peripheral blood, indicating that immune activation is an
early phenomenon before AD. Changes in cytokines produced
by PBMCs can be detected in MCI and can occur before clinical
AD occurs. In the plasma marker study, plasma β amyloid has a
certain relationship with β amyloid in the brain, and plasma Aβ

measurement can be used as an effective marker to measure Aβ

and tau (Risacher et al., 2019). Therefore, in this paper, the easy-
to-measure peripheral blood gene data and plasma biomarkers
are used to establish an association with CSF markers in the brain
of LMCI patients.

To extract the correlation between biological features inside
and outside the brain, feature information of biological signals
inside and outside the brain needs to be extracted separately.
For the calculation of immune cell abundance in peripheral
blood, many new calculation methods can greatly enhance
our investigation of immune cell subtypes. Among them, the
CIBERSORT (Newman et al., 2015) and TIMER (Li et al.,
2016) algorithms are based on deconvolution methods, inferring
immune cells through gene expression profiling reference
matrices and machine learning-based methods. However, these
results are obtained from a mixture of simulated samples of
different tissues (brain, heart, liver, lung, and tumor tissue),
while in blood samples, it is difficult to distinguish (Novershtern
et al., 2011; Shoemaker et al., 2012). Bolen et al. (2011)
proposed a computational method (from enrichment-related
subset prediction, SPEC). The SPEC algorithm is based on
gene set enrichment analysis (GSEA; Quesenberry and Colvin,
2001; Subramanian et al., 2005), but it cannot distinguish
subpopulations of immune cells in the tagged gene set used to
measure immune cells. We obtained a new set of labeled genes
through the article (Charoentong et al., 2017) and improved
the SPEC algorithm. The advantage of this new algorithm is
its robustness, which is insensitive to sample impurities and
noise during preparation compared to deconvolution. And the
subpopulation of immune cells can also be measured with
high resolution.

Biological data sets in CSF can be used to diagnose diseases,
but changes in a single indicator in the data set cannot
measure the status of the disease. For peripheral biological
indicators, a single biological indicator cannot accurately reflect
physiological processes. Therefore, to find indicators that can
reflect changes in CSF biomarker data in peripheral blood
and more comprehensively reflect the physiological process of
disease development, the canonical correlation analysis (CCA;
Hotelling, 1992) algorithm is used in this paper to calculate the
correlation between CSF data sets and peripheral biological data
sets. Canonical correlation analysis is a multivariate statistical

model that maximizes the correlation between the two composite
variables (Kabir et al., 2014). There are more features in the
peripheral data, including 28 types of peripheral blood immune
cell abundance data and four types of plasma Aβ data. Canonical
correlation analysis can more reliably measure the correlation
between brain and peripheral biomarkers.

By analyzing the Pearson correlation between CSF data
and peripheral data, we obtained that there were significant
correlations between peripheral information (including six types
of immune cells and two types of Aβ data) and CSF data.
Receiver operating characteristic curve (ROC) analysis found that
FP40/FP42 (area under the ROC curve, 0.709) and type 1 T helper
cell (area under the ROC curve, 0.703) have clinical significance
in the diagnosis of the disease. Receiver operating characteristic
curve verification found that the combined diagnosis of two
biomarkers further improved the accuracy (area under the ROC
curve, 0.747). By constructing a protein–protein interaction
(PPI) network (Szklarczyk et al., 2015) to find key genes, and
performing Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analysis, the biological processes,
and mechanism for the immune-related correlations between
peripheral and CSF biomarkers were discovered.

MATERIALS AND METHODS

In this section, we describe the measurement of the abundance
of peripheral blood immune cells in patients with LMCI and
introduce three sources of data. The correlation was calculated
and the biological reasons were analyzed.

Data Sources and Preprocessing
Data used in this study were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI; Weiner and Veitch,
2015) database1. The ADNI database was launched in 2003 as
a public-private partnership, led by the principal investigator
Michael W. Weiner, MD. The ADNI participants have been
recruited from more than 50 sites across the United States
and Canada. The primary objective of the ADNI has been to
test whether serial MRI, PET, other biological markers, and
clinical or neuropsychological assessment can be combined to
measure the progression of MCI and early AD. Alzheimer’s
Disease Neuroimaging Initiative database consists of three parts,
including the ADNI 1, the ADNI Grand Opportunities, and the
ADNI 2. To date, these three protocols have recruited more than
1500 adults (age range, 55–90 years) to participate in the research,
including CN older individuals, persons with early or late MCI,
and patients with early AD. The follow-up duration for each
study group was specified in the protocols for the ADNI 1, ADNI
2, and ADNI Grand Opportunities. Regional ethics committees of
all institutions approved of the study. Written informed consent
was obtained from all study participants.

Gene expression profiling from blood samples of ADNI
participants was contributed by Bristol-Myers Squibb (BMS) and
performed at the BMS laboratories for 811 ADNI participants

1http://adni.loni.usc.edu
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from the ADNI WGS cohort. The Affymetrix Human Genome
U219 Array (Affymetrix2, Santa Clara, CA) was used for
expression profiling. Peripheral blood samples were collected
using PAXgene tubes for RNA analysis. Blood RNA samples
from 64 participants did not pass QC and were excluded from
further processing. And we identified three questionable subjects
from the additional QC steps and removed them. The data
we finally downloaded was peripheral blood gene expression
data containing 744 samples. The plasma amyloid-beta (Aβ)
biomarkers and CSF biomarkers were also obtained from the
ADNI database. The plasma Aβ biomarkers contained 305
samples and the CSF biomarkers contained 1250 samples. By
screening out samples that existed in all three data and collected
three types of biological data in the same year (the samples
with missing data were deleted), 36 samples containing three
biological data were obtained. The 36 samples were labeled with
disease status by using the file “AD Challenge Training Data:
Clinical (Updated)” downloaded from the ADNI database.

Finally, the peripheral blood gene expression profile,
peripheral blood Aβ biomarkers, and CSF markers contained
36 samples from 20 patients with LMCI and 16 control. The
gene expression profile contained 49386 RNAs. The plasma Aβ

contained Aβ40 and Aβ42 free in plasma (FP40, FP42), Aβ40,
and Aβ42 total in plasma (TP40, TP42). We analyzed two ratios,
free plasma Aβ42 to free Aβ40 (FP40: FP42) and total plasma
Aβ42 to total Aβ40 (TP40: TP42), as they had been previously
shown to correlate with amyloid positivity (Perez-Grijalba
et al., 2013, 2019; Fandos et al., 2017; de Rojas et al., 2018).
The CSF biomarkers contained Aβ, tau protein (TAU), and
phosphorylated tau protein (PTAU).

Immune Cell Abundance Calculation
In this study, GSEA was applied to calculate the relative
abundance of immune cells in peripheral blood. As described
in Subramanian et al. (2005) GSEA considers experiments with
genomewide expression profiles from samples belonging to two
classes, labeled 1 or 2. Genes are ranked based on the correlation
between their expression and the class distinction by using any
suitable metric. Given an a priori defined set of genes S (e.g., genes
encoding products in a metabolic pathway, located in the same
cytogenetic band, or sharing the same GO category), the goal of
GSEA is to determine whether the members of S are randomly
distributed throughout L or primarily found at the top or bottom.
We calculate an enrichment score (ES) that reflects the degree to
which a set S is overrepresented at the extremes (top or bottom) of
the entire ranked list L. The score is calculated by walking down
the list L, increasing a running-sum statistic when we encounter
a gene in S and decreasing it when we encounter genes, not in S.
The magnitude of the increment depends on the correlation of
the gene with the phenotype. The ES is the maximum deviation
from zero encountered in the random walk. Tag gene sets of 28
immune cells were obtained from Charoentong et al. (2017), as
a priori defined set of genes S. The code for calculating the ES of
the custom prior defined set of genes S was obtained from Bolen
et al. (2011) (SPEC). We have improved SPEC by replacing the

2www.affymetrix.com

tag gene sets of eight immune cells in the SPEC calculation code
with the tag gene sets of 28 immune cells. Download normal and
patient peripheral blood gene expression data from the ADNI
database, and then GSEA was used to calculate the ESs of 28
immune cell signature genes in the normal and patient sample
gene expression data. The ES is the relative abundance of the
immune cells in the sample.

Canonical Correlation Analysis
Canonical correlation analysis is a suitable technique that can
establish interrelation between two sets of variables as well as
quantify the percentage of variance common to the two sets
(Ventura et al., 2011; Kim et al., 2017). Canonical correlation
analysis indicates a correlation between two linear combinations
of sets of dependent and independent variables as linear
combinations of variables useful for predictive or comparative
purposes (Akbas and Takma, 2005; Cankaya and Kayaalp, 2007;
Sahin et al., 2011). Therefore, the goal of CCA is to find the best
linear combination between two multivariate datasets that can
maximize the correlation coefficient between them (Malacarne,
2014). Linear combinations of original variables can be defined
by canonical variates (Ui and Vi) as follows:

Ui = aiX1+ ai2X2+ · · · + aipXp (1)

Vi = bi1Y1+ bi2Y2+ · · · + biqYq (2)

The correlation between Ui and Vi can be defined as canonical
correlation. Canonical correlation analysis is repeatedly looking
coefficients a and b to maximize the correlation between Ui
and Vi. The maximum number of canonical functions that can
be extracted equals to the number of variables in the smallest
canonical variate (Dattalo, 2014) which is 3 in this study. The
first canonical function is derived to maximize the correlation
between Ui and Vi variables (Laessig and Duckett, 1979).

Standardized canonical coefficients and loadings were used
to evaluate the relative importance of variables in the model
(Dattalo, 2014). Standardized coefficients are interpreted
similarly to standardized regression coefficients in multiple
regressions. Therefore, CCA is used to estimate canonical
coefficients (ai1, ai2, . . ., aip and bi1, bi2, . . ., biq) when the
canonical correlation is at the maximum (Akbas and Takma,
2005). Canonical loading reflects the variance that the observed
variable can be shared with canonical variate and interpreted
like a factor loading in assessing the relative contribution of
each variable to each canonical function (Safari et al., 2013). The
result of canonical loading shows the contribution degree of the
variable to the variable set. Redundancy index (RI) is proposed to
calculate each canonical correlation to determine how much of
the variance in one set of variables is accounted by the other set
of variables (Sharma, 1996; Safari et al., 2013; Kim et al., 2017).
The CCA can use a small number of features to analyze the
correlation between the two sets of variables (CSF and peripheral
biomarkers). The software SPSS 25.0 for Windows was used for
statistical analysis of the data.
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RESULTS

Immune Cells Abundance Measurement
The computational method GSEA was applied to estimate
the abundance of 28 kinds of peripheral blood immune cells
including 15 kinds of adaptive immune cells and 13 kinds of
innate immune cells: activated B cell, immature B cell, memory
B cell, activated CD4 T cell, activated CD8 T cell, central memory
CD4 T cell, central memory CD8 T cell, effector memory CD4 T
cell, effector memory CD8 T cell, gamma delta T cell, regulatory
T cell, T follicular helper cell, type 1 T helper cell, type 17 T
helper cell, type 2 T helper cell, plasmacytoid, activated dendritic
cell, immature dendritic cell, natural killer cell, natural killer T
cell, CD56 dim natural killer cell, CD56 bright natural killer
cell, eosinophil, macrophage, mast cell, MDSC, natural, and
neutrophil. These 28 kinds of immune cells include most types of
lymphocytes which produce important cytokines. The abundance
of the 28 peripheral blood immune cells for LMCI and normal
samples inferred by GSEA were shown in Figure 1.

From Figure 1 we can see, compared with normal samples,
the activated CD4 T cell, activated B cell, central memory CD8
T cell, effector memory CD4 T cell, effector memory CD8 T
cell, immature B cell, regulatory T cell, T follicular helper cell,
type 1 T helper cell, activated dendritic cell, mast cell, MDSC,
natural killer T cell appear to be in lower abundance in LMCI
samples. However, gamma delta T cell, memory B cell, type 17

T helper cell, type 2 T helper cell, CD56bright natural killer
cell, CD56dim natural killer cell, eosinophil, immature dendritic
cell, macrophage, monocyte, natural killer cell, neutrophil were
increased in LMCI samples.

Results of Correlation Analysis
At first, to explore the relationship between LMCI and AD,
we select proper biomarkers by comparing the changes of
CSF biomarkers in LMCI with AD relative to their normal
samples respectively (see Supplementary Figure 1). From the
Supplementary Figure 1A to Supplementary Figure 1C, we can
see that compared with the normal samples, the levels of Aβ are
lower, and the levels of TAU and PTAU are higher in the CSF of
LMCI. From the Supplementary Figure 1D to Supplementary
Figure 1F, the changes in the levels of Aβ, TAU, and PTAU in AD
are in the same situation. These results are consistent with the
literature in Magaki et al. (2007), McKhann et al. (2011), Dubois
et al. (2014) which found that Aβ has a lower level, and TAU
and PTAU have a higher level in AD. We can suggest that the
LMCI sample has a very high risk of developing AD. Therefore,
we selected Aβ, TAU, and PTAU data at baseline as the significant
biomarkers of the CSF of LMCI.

Not all peripheral biomarkers are related to CSF biomarkers.
To evaluate the correlation between CSF and peripheral
biomarkers, the Pearson correlation coefficient (Pearson,
1920) was calculated between CSF and peripheral biomarkers,

FIGURE 1 | Abundance of 28 peripheral blood immune cells in LMCI and normal samples.
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including three variables in the CSF biomarkers and 34 variables
in the peripheral biomarkers. The Pearson correlation coefficients
of CSF and peripheral marker variables are shown in Table 1.

The level of statistical significance was set at α = 0.05. From
the Table 1 we can see 8 peripheral biomarkers were significantly
associated with CSF biomarkers under significant conditions. The
Pearson correlation coefficient between T follicular helper cell
and Aβ was −0.408 (α = 0.014 < 0.05); the Pearson correlation
coefficient between gamma delta T cell and PTAU was −0.332
(α = 0.048 < 0.05); the Pearson correlation coefficient between
immature B cell and TAU was −0.350 (α = 0.036 < 0.05); the
Pearson correlation coefficient between regulatory T cell and
TAU was −0.373 (α = 0.025 < 0.05); the Pearson correlation
coefficient between regulatory T cell and PTAU was −0.372

TABLE 1 | Pearson correlation between CSF and peripheral biomarkers.

Immune Cells CSF data

ABETA TAU PTAU

Activated B cell −0.132 −0.111 0.171

Activated CD4 T cell 0.078 0.048 0.062

Activated CD8 T cell −0.007 −0.135 −0.083

Central memory CD4 T cell 0.290 −0.187 −0.216

Central memory CD8 T cell −0.003 0.135 0.121

Effector memory CD4 T cell 0.165 −0.181 −0.060

Effector memory CD8 T cell 0.018 −0.221 −0.180

Gamma delta T cell 0.135 −0.042 −0.332*

Immature B cell 0.162 −0.350* −0.169

Memory B cell −0.069 0.202 −0.023

Regulatory T cell −0.051 −0.373* −0.372*

T follicular helper cell −0.408* 0.123 0.117

Type 1 T helper cell 0.290 −0.327 −0.401*

Type 17 T helper cell −0.013 −0.276 −0.107

Type 2 T helper cell −0.247 −0.011 −0.040

Activated dendritic cell 0.036 0.004 0.133

CD56bright natural killer cell 0.080 0.413* 0.163

CD56dim natural killer cell −0.230 −0.074 −0.289

Eosinophil 0.231 0.031 −0.178

Immature dendritic cell −0.046 −0.060 0.209

Macrophage −0.063 −0.086 0.003

Mast cell −0.128 −0.105 0.013

MDSC 0.212 −0.078 −0.200

Monocyte −0.147 −0.116 −0.036

Natural killer cell 0.185 0.166 0.003

Natural killer T cell −0.151 −0.187 −0.200

Neutrophil 0.116 0.099 0.014

Plasmacytoid −0.029 0.118 0.182

FP40 −0.175 −0.238 −0.207

TP40 0.000 −0.376* −0.266

FP42 −0.033 −0.243 −0.328

TP42 0.115 −0.222 −0.282

FP40/FP42 0.074 0.093 0.346*

TP40/TP42 0.093 −0.133 0.031

*At the 0.05 level, the correlation is significant. The meaning of bolded values are
significant results obtained in the article.

(α = 0.025 < 0.05); the Pearson correlation coefficient between
type 1 T helper cell and PTAU was −0.401 (α = 0.015 < 0.05);
the Pearson correlation coefficient between TP40 and TAU was
−0.376 (α = 0.024 < 0.05); Pearson correlation coefficient of
FP40/FP42 and PTAU was 0.346 (α = 0.038 < 0.05). The levels of
8 peripheral biomarkers in LMCI and normal samples are shown
in Figure 2.

Compared with the normal samples, we can see from Figure 2
that the abundances of gamma delta T cell increased slightly;
the abundance of immature B cell, regulatory T cell, T follicular
cell, and TP40 decreased slightly; the abundance of CD56 bright
natural killer cell and FP40/FP42 increased significantly; type 1 T
helper cell abundance reduced significantly.

Bivariate correlations among variables of CSF biomarkers
and variables of peripheral biomarkers are shown in Table 1.
Results showed correlations between variable sets of Aβ, TAU,
or PTAU (CSF biomarkers) and variable sets of gamma delta
T cell, immature B cell, regulatory T cell, T follicular cell,
type 1 T helper cell, CD56bright natural killer cell, TP40, or
FP40/FP42(8 of the peripheral biomarkers). As we know that
MCI was a complicated brain disease and the occurrence of
MCI was accompanied by changes in the levels of multiple CSF
biomarkers. One CSF biomarker cannot accurately determine the
occurrence of disease. Since the Pearson correlation only could
explain the correlation between two variables, it is impossible
to simultaneously discover the relationship between the variable
set of CSF and peripheral biomarkers. Base on that, in this
study, CCA was introduced to explain the relationship between
CSF biomarkers and peripheral biomarkers. Table 2 shows
direct results for the correlation between the two variable sets,
which presented the canonical correlation coefficients and the
significance of the research.

Table 2 showed that two of the 3 confirmed canonical
correlations were statistically significant. The first canonical
correlation was 0.794. It represented the highest possible
correlation between any linear combinations for three CSF
biomarkers (U1) and eight peripheral biomarkers (V1)
(p < 0.01). The second canonical correlation was 0.709. It
indicated that the relationship between canonical variates was
significant (p = 0.008 < 0.01). However, the canonical correlation
of correlation 3 was not statistically significant.

Standardized canonical coefficients for pairs of all canonical
variables [Ui and Vi in formula (1) and (2)] were shown
in Table 3. Canonical variates representing optimal linear
combinations of dependent and independent variables were
defined by C1. Standardized canonical coefficients of Aβ (0.435
in C1 and −0.493 in C2), TAU (0.867 in C1 and −0.886 in
C2), and PTAU (0.339 in C1 and 1.062 in C2) as variables
of CSF biomarkers suggested that they contributed importantly
to the first and second canonical variate (U1, U2). On the
other hand, the first standardized canonical coefficients of
immature B cell, regulatory T cell, CD56 bright natural killer cell,
gamma delta T cell, TP40 as variables of peripheral biomarkers
were −0.392, −0.585, 0.514, −0.423, and −0.456, respectively,
indicating that they contributed importantly to the first canonical
variate (V1). The second standardized canonical coefficients of
FP40/FP42(0.61), T follicular helper cell (0.641), type 1 T helper
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FIGURE 2 | Eight peripheral markers significantly associated with CSF biomarkers. Panel (A–F) represents the distribution of the abundance of six immune cells.
Panels (G–H) represents two peripheral biomarker indicators.

cell (−0.390), gamma delta T cell (−0.580), and TP40 (0.340)
contributed importantly to the second canonical variate (V2).

To find out the key factors in each group of variables, we
presented the loadings for the canonical function in Table 4.
Canonical loading presents a product-moment correlation
between the original variable and its corresponding canonical
variate. These values reflect the degree of a variable to be
represented by a canonical variate. Canonical loadings for
variables of CSF biomarkers suggested that TAU (0.905) and
PTAU (0.723) had more effect than Aβ (0.07) to form the first
fair for variables of CSF biomarkers (U1). In the second fair for
variables of CSF biomarkers (U2), Aβ (−0.561) and PTAU (0.691)
were more important factors. On the other hand, canonical
loadings for regulatory T cell (−0.595), CD56bright natural

TABLE 2 | Summary of results from canonical correlation analysis.

Correlation Eigenvalue Wilks Statistic F Sig.

1 0.794 1.702 0.131 3.094 0.000

2 0.709 1.013 0.354 2.530 0.008

3 0.536 0.404 0.712 1.818 0.133

The meaning of bolded values are significant results obtained in the article.

killer cell (0.565), TP40 (−0.525), type 1 T helper cell (−0.370),
immature B cell (−0.366), and FP40/FP42 (0.290) had stronger
effects compared to other factors to form the first fair for variables
of peripheral biomarkers (V1). And the FP40/FP42 (0.351), T
follicular helper cell (0.305), type 1 T helper cell, CD56bright

TABLE 3 | Standardized canonical correlation coefficients.

Variable C1 C2 C3

Aβ 0.435 −0.493 0.914

TAU 0.867 −0.886 −0.530

PTAU 0.339 1.062 0.752

FP40/FP42 −0.019 0.613 0.657

Immature B cell −0.392 0.171 0.240

Regulatory T cell −0.585 −0.040 −0.247

T follicular helper cell 0.123 0.641 −0.573

Type 1 T helper cell 0.158 −0.390 0.422

CD56bright natural killer cell 0.514 −0.259 0.071

Gamma delta T cell −0.423 −0.580 −0.146

TP40 −0.456 0.340 0.328

C1,C2,C3:1st,2nd,3rd standardized canonical coefficients. The meaning of bolded
values are significant results obtained in the article.
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natural killer cell (−0.326), and gamma delta T (−0.538) cell were
more important factors to form the second fair for variables of
peripheral biomarkers (V2).

Numbers of dimensions explaining the relationships between
variable sets were reduced from 11 to 2 by CCA. These results
indicated a high correlation between the set of CSF biomarkers
(U1) and the set of peripheral biomarkers (V1) (at 0.794). Cross
loadings represent correlations between original variables and
opposite canonical variables. According to cross-loading results,
the first pair of canonical variables TAU (0.718) and PTAU (0.574)
provided a relatively strong contribution to canonical variate V1
whereas regulatory T cell (−0.472), CD56bright natural killer cell
(0.448), TP40 (−0.417), type 1 T helper cell (−0.294), immature
B cell (−0.291), and FP40/FP42 (0.230) highly contributed to U1
(Table 5). The second pair of canonical variables Aβ (−0.398)
and PTAU (0.49) provided a greater contribution to canonical
variate V2 whereas FP40/FP42 (0.249), T follicular helper cell
(0.216), type 1 T helper cell (−0.279), CD56bright natural killer
cell (−0.231), and gamma delta T cell made an important
contribution to U2 (Table 5).

ROC Analysis
To verify the practical significance of the correlation between
CSF and peripheral biomarkers, we conducted the ROC analysis.
Through CCA analysis, variables with a significant correlation
between CSF and peripheral biomarkers were found. Receiver
operating characteristic curve analysis by using the peripheral
biomarkers (type 1 T helper cell, CD56bright natural killer
cell, and FP40F/P42 highly contributed to U1 and U2) which
highly contributed to V1 and V2 was performed to find
peripheral biological indicators with clinical significance for
disease classification. Then multiple peripheral biomarkers were
used for logistic regression, and ROC analysis of multi-index
combined classification was performed. We used SPSS software
to draw the ROC curve. The results of the ROC analysis were
shown in Figure 3.

Through the ROC analysis, we found that FP40/FP42 (area
under the ROC curve, 0.709) and type 1 T helper cell (area under
the ROC curve, 0.703) had clinical significance for the diagnosis
of the disease (Figures 3A,B). Logistic regression was performed
by using two indicators (set the coefficient significance to p < 0.1).
The coefficients of FP40F/FP42 (p = 0.046 < 0.1) and type 1 T
helper cell (p = 0.093 < 0.1) satisfy the significance. The ROC
analysis of the combined diagnosis of the two indicators showed
that the combined diagnosis further improved accuracy (the area
under the ROC curve, 0.747) (Figure 3C).

Reconstruction of the PPI Network
The immune-related PPI network was constructed to explore
the biological significance of the correlation between CSF
and peripheral biomarkers. For the differential analysis of the
microarray data used to calculate the abundance of immune cells,
differential RNA extraction was performed by using the Limma
algorithm. We chose p-value < 0.05 as the threshold for screening
differentially expressed genes. This process is implemented using
the R package ’Limma’ (Ritchie et al., 2015). A total of 1324
differentially expressed genes (DEGs) were identified, of which
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801 were up-regulated and 523 were down-regulated in LMCI.
For all the differentially expressed genes, we constructed the PPI
network by using the STRING database3. The final DEGs PPI
network was constructed with 1050 gene nodes and 4547 edges
through the STRING v10 data database.

Protein–protein interaction network related to the
abundances of immune cells was constructed by retaining
genes related to immunity and node genes directly linked
to them. In the correlation analysis, six immune cells were
significantly correlated with CSF biomarkers. 1324 differentially
expressed genes were matched with the tag genes of 6 immune
cells, and 26 immune-related differentially expressed genes were
obtained. We used 26 immune-related differentially expressed
genes to search in the constructed PPI network and found that 1
gene does not exist in the PPI network and 1 gene is an isolated
node. Finally, 2 genes were deleted and 24 immune-related
differentially expressed genes were retained. In the PPI network,
24 immune-related differentially expressed genes and gene nodes
directly connected to them were selected, the immune-related
PPI network was constructed by 223 gene nodes and 1123 edges
finally. The visualization of the immune-related PPI network
was built using Cytoscape v3.6.0 software (Shannon et al.,
2003) (Figure 4).

Then the 223 significant genes were analyzed by DAVID for
GO and KEGG, and we investigated the role of these genes in
biological functions and processes (see Figure 5). The GO and
KEGG analysis used the online database DAVID v6.8 (Sherman
and Lempicki, 2009), and visual display through R software (R
Core Team, 2013).

The results of the enrichment analysis showed that these
genes were related to the inflammatory response and had a
certain relationship with the expression of some cytokines. In
the reconstructed PPI network, most genes were up-regulated
(a total of 223 genes, 157 genes were significantly up-regulated
and 68 genes were significantly down-regulated). Among the 24
immune-related genes, 19 genes were significantly up-regulated
and 5 genes were down-regulated. It shows that LMCI is closely
related to the systemic inflammatory response. LMCI may show
similar physiological processes as AD, such as the recruitment
of peripheral immune cells to the brain, and the permeability
of blood–brain barrier (BBB). It may be the biological reason
for the significant correlation between the LMCI peripheral data
and the CSF data.

DISCUSSION

MCI is a chronic degenerative disease of the nervous system,
which refers to a state of cognitive impairment between normal
aging and dementia. It appears that memory loss is not
commensurate with age, but it has not yet reached the standard
of AD. However, patients diagnosed with MCI are at high risk
of developing AD. The AD conversion rate is 6–25% per year.
In the AD research, many clinical cases have shown that the
treatment effect is not good in the middle and advanced stages,

3https://string-db.org/
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FIGURE 3 | (A) ROC analysis in FP40F/FP42. (B) ROC analysis in type 1 T helper cell. (C) ROC analysis in the combination of FP40/FP42 and type 1 T helper cell.

so researchers have turned their attention to its early diagnosis
and preventive intervention in recent years. There is evidence
that peripheral immune cells in AD recognize Aβ and treat it,
present it to T cells, and trigger adaptive immunity (Jóźwik
et al., 2012; Begum et al., 2014). This indicates that peripheral
biomarkers may be potentially associated with AD. The CSF
biomarker changes in LMCI patients are very similar to those in
AD, so the study of LMCI patients is of great significance for early
detection and early intervention of AD. CCA was introduced to
explain the relationship between CSF biomarkers and peripheral
biomarkers. The results indicated a high correlation between
variable sets of CSF biomarkers and variable sets of peripheral
biomarkers. It may be due to Aβ transported to the periphery and
activated adaptive immunity. Receiver operating characteristic
curve analysis found that the diagnostic accuracy of two of

the peripheral biomarkers (FP40/FP42 and type 1 T helper
cell) for the disease was 0.747. It was found that the systemic
immune response plays an important role in the correlation
between peripheral biomarkers and CSF biomarkers through
KEGG and GO analysis.

About 223 differentially expressed genes related to immunity
were used for KEGG and GO analysis. It was found that
these genes are closely related to the IL-6 signaling pathway,
TNF signaling pathway, IFN-γ signaling pathway, γ-interferon-
mediated signaling pathways, tumor necrosis factor-mediated
signaling pathway, chemokine signal pathway, inflammatory
response function, immune response function, and so on. From
the biological analysis we can see that these pathways and
functions in KEGG and GO results are related to immunity,
inflammation, and cytokines. We also found other biological
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FIGURE 4 | PPI network associated with immune cells. Twenty-four triangular nodes are gene nodes associated with immune cells. Other gene nodes were
obtained by screening from PPI networks constructed from differentially expressed genes. Red is up-regulated in gene expression and green is down-regulated in
gene expression.

FIGURE 5 | Enrichment analysis of genes associated with immune cells. The circle size represents the number of enriched genes and the color represents the
P-value. The vertical axis represents the name of the relevant pathway and biological process, and the horizontal axis represents the percentage of the gene.
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processes related to the immune response, such as positive and
negative regulation of inflammatory response function, type I
interferon signaling pathway, tumor necrosis factor-activated
receptor activity function, positive regulation of tumor necrosis
factor production function, regulation of γ-interferon-mediated
signaling pathway. Most genes enriched in these pathways and
functions are up-regulated.

The further molecular biological analysis shows that the
expression of Aβ in CSF and peripheral is closely related. It
has been found in AD studies that Aβ enters peripheral blood
to trigger an inflammatory response. PBMCs from AD patients
are induced to release pro-inflammatory cytokines such as IL-6,
TNF, and IFN-γ (Pellicano et al., 2010). It further promoted the
production of amyloid precursor protein and enzymes that cleave
it, leading to increased Aβ production (Sutinen et al., 2012).
Aβ can also stimulate the pro-inflammatory NF-κB dependent
signaling pathway (Kumar et al., 2014). Through regulated
transport, peripheral inflammatory markers can cross the BBB
and perform neuromodulation (Banks, 2005). INF-γ stimulated
the release of CXCL-10, and INF also increased. In AD, CXCL-
10 has been found to bind to the chemokine receptor CXC
chemokine receptor 3, which is involved in T cell initiation and
maintenance of natural killer cells in the body, thereby inducing
extracellular signal-regulated kinases Pathways eventually lead to
neuronal dysfunction and apoptosis (Nelson and Gruol, 2004;
Sui et al., 2006; Cho et al., 2009). Compared with normal
samples, the concentrations of peripheral blood cytokines IL-2,
IL-6, and epidermal growth factor (EGF) in AD patients were
significantly increased (Lai et al., 2017). Physiological changes
including inflammatory responses and changes in cytokines were
found in AD. Kyoto Encyclopedia of Genes and Genomes and
GO analysis of differentially expressed genes in this study also
found similar physiological changes in pathways and functions
in LMCI patients. Kyoto Encyclopedia of Genes and Genomes
and GO analysis of differentially expressed genes in peripheral
blood of LMCI patients revealed that most of the genes enriched
in cytokine-related signaling pathways were up-regulated. Aβ

clearance in the brain mainly depends on peripheral clearance
to achieve local lymph node degradation. In LMCI, Aβ in the
brain is transported to the peripheral blood and releases pro-
inflammatory cytokines, activating immune-related pathways
and functions. This indicates that patients with LMCI have
shown a systemic inflammatory response similar to AD patients.
These results show that peripheral biomarkers can reflect the
pathological changes of LMCI in the brain. Peripheral biomarkers
may develop new diagnostic methods for LMCI. The research
on LMCI will also help to predict AD at an early stage, and also
provide an important basis for AD immunotherapy.
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