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Abstract: Barium stannate is known as a promising proton-conducting material for clean energy
applications. In this work, we elucidate the effect of the interaction of protons and oxygen vacancies
with acceptor impurities on proton conduction in acceptor-doped BaSnO3. The analysis relies on our
theoretical developments in hydration and proton hopping in proton-conducting perovskites. The
transport theory, based on the master equation and effective medium approximation, provides the
analytical description of hopping conduction considering the effects of disorder and changes in the
potential energy landscape for protons caused by acceptor impurities. Using the proposed approach,
we establish the dependence of the proton mobility and conductivity on the energies of the acceptor-
bound states of ionic defects and external conditions. It is shown that the considered interactions
can substantially affect the effective activation energies and prefactors of these transport coefficients.
We also demonstrate that the correlation between the ionic radius rA of an acceptor impurity and
the energies of its interaction with ionic defects leads to a non-monotonic dependence of the proton
conductivity on rA. The obtained results are in reasonable agreement with the experimental data on
the bulk conductivity of BaSnO3 doped with different acceptors.

Keywords: proton conduction; acceptor-doped oxide perovskites; acceptor impurities; trapping;
BaSnO3

1. Introduction

Acceptor-doped proton-conducting oxides are garnering significant attention due to
their potential use in clean energy applications such as protonic ceramic fuel cells and
electrolyzers [1–4]. Acceptor impurities, required for the hydration and appearance of
protonic charge carriers, can substantially affect various properties of proton-conducting
oxides. Tuning the properties important for applications by optimal acceptor doping is one
of the key issues in the development of these materials. The influence of acceptor impurities
on hydration and proton transfer has been extensively studied in both experimental [5–11]
and theoretical [12–21] works. Abundant evidence has been obtained showing that the
interaction between acceptor impurities and ionic defects is of fundamental importance
for these phenomena in proton-conducting oxides. The main theoretical results on the
influence of such interactions on proton transport were obtained by computer simulations—
in particular, by the Monte Carlo method [18–21]. In our recent study [22], we proposed an
analytical theory of proton conduction in acceptor-doped perovskites accounting for the
fundamental effects caused by acceptor impurities (disorder, acceptor-bound defect states,
changes in the potential energy landscape for proton hopping, percolation effect). This
approach, which relies on the master equation for proton hopping and effective medium
approximation, allowed us to describe the experimental data on the proton conductivity of
BaZr1–xRxO3–δ [22] (R here and below denotes an acceptor impurity).

In this work, based on the theoretical developments in hydration [8,16] and proton
hopping conduction [22], we explore the impact of the interaction between impurities
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and ionic defects on proton transport in acceptor-doped BaSnO3. High proton conduc-
tivity and chemical stability make acceptor-doped BaSnO3 potentially interesting as a
proton-conducting material [7,23,24]. Due to its high electron mobility, n-type BaSnO3 is a
promising material for electronic applications [25–27]. We have recently demonstrated that
barium stannate is a good model object to analyze the role of the interaction of protons and
oxygen vacancies with acceptor impurities in the hydration of proton-conducting oxides [8].
Taking into account this interaction allowed us to explain the effect of dopant type and
concentration on the observed hydration behavior of BaSn1–xRxO3–δ [8].

Here, we elucidate the effect of the considered interactions on the dependence of the
proton mobility uH and conductivity σH, as well as their effective activation energies and
prefactors, on external conditions for acceptor-doped BaSnO3. The relationships between
the studied transport characteristics and the trapping energies of ionic defects by acceptor
impurities are established. It is shown that the low-temperature behavior of σH and its
effective activation energy Eσ

a is determined by the proton trapping energy, while, at
higher temperatures, σH and Eσ

a depend on the trapping energies of both protons and
oxygen vacancies. This, in particular, can alter the order in which the values of σH and
Eσ

a corresponding to different impurities increase as temperature changes. To compare
our findings with experiments, we exploit the values of the trapping energies for specific
impurities determined by the DFT method [28]. The obtained theoretical results are in
reasonable agreement with the experimental data on the bulk proton conductivity of
BaSn1–xRxO3–δ [7,29].

In addition, we analyze the implications of the trapping effect for the dependence of
the proton conductivity on the ionic radius rA of the acceptor impurity in BaSnO3. The
calculated dependence σH(rA) is non-monotonic, in accordance with the experimental
observations for BaSn1–xRxO3–δ and other acceptor-doped perovskites.

2. Theory
2.1. Hydration

To describe the hydration of barium stannate, we exploit the statistical approach re-
cently proposed to elucidate the effect of acceptor-bound complexes of ionic defects on
the hydration and defect thermodynamics of ABO3 perovskites [16]. Herein, we consider
hydration taking into account two-particle complexes formed by acceptor-bound protons
and oxygen vacancies. In this model, there exist two types of states for ionic defects. These
states, bound and free, correspond to oxygen sites located in the vicinity of acceptor impuri-
ties and away from them, respectively. In our previous studies [8,16], we demonstrated that
the implemented approach allows one to correctly describe the hydration of acceptor-doped
perovskites BaZrO3, BaCeO3 and BaSnO3.

In the exploited model [16], the concentration of protons cH in cubic perovskites
AB1–xRxO3–δ in the case of moderate dopant content can be written as

cH =
3
4

Khydr pH2O

(
−1 +

√
1 +

8cR

3Khydr pH2O

)
. (1)

Here, pH2O is the partial pressure of water vapor (in atm); cR is the concentration
of acceptor impurities (per formula unit); Khydr is the equilibrium constant of hydration,
given by:

Khydr = exp

(
−

∆H0
hydr − T∆S0

hydr

kT

)
Ktrap

hydr, (2)
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where ∆H0
hydr and ∆S0

hydr are the enthalpy and entropy of hydration in the absence of

trapping; Ktrap
hydr is the component of the equilibrium constant associated with trapping.

Within the adopted approach, Ktrap
hydr can be expressed as [16]

Ktrap
hydr =

[
p f + pbexp(∆EH/kT)

]2

p f + pbexp(∆EV/kT)
, (3)

where ∆EH and ∆EV are the trapping energies of protons and oxygen vacancies, defined as
the difference between the formation energies in free and bound states; pb = 1 − (1 − cR)2

and pf = (1 − cR)2 are the probabilities that an oxygen site is located near acceptor impurities
and away from them, respectively.

Figure 1 shows the dependence of Ktrap
hydr on the proton trapping energy ∆E and the

ratio ∆EV/∆EH. There are two regions of the ∆EH and ∆EV values, in which hydration
is enhanced (Ktrap

hydr > 1) or suppressed (Ktrap
hydr < 1) by trapping. The boundary between

these two regions is determined by Ktrap
hydr = 1. A detailed thermodynamic analysis of

hydrogen dissolution taking into account acceptor-bound states of ionic defects is given in
Reference [16].
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Figure 1. Trapping-related component of the equilibrium constant of hydration as a function of
the proton trapping energy ∆EH/kT and the ratio ∆EV/∆EH for an acceptor-doped perovskite
AB0.9R0.1O3−δ. The points on the surface indicate the boundary separating the regions, in which
hydration is enhanced (Ktrap

hydr > 1) or suppressed (Ktrap
hydr < 1) by trapping.

2.2. Proton Transport

The consideration of proton transport in this study relies on our recently developed
analytical description of proton-hopping conduction in proton-conducting oxides [22]. Let
us outline the physical model and the main assumptions underlying this approach.

The proton migration at elevated temperatures in the studied cubic perovskites
AB1–xRxO3–δ is considered to be the result of thermally activated hopping between neigh-
boring oxygen sites [19,22]. To analyze the effect of acceptor impurities on conduction, we
consider two models of the potential energy landscape for proton hopping [22]. The first
model implies that acceptor impurities deepen potential wells for protons at the nearest
oxygen sites (bound states), but have little effect on the saddle point energies for proton
inter-site transitions (Figure 2a). In the second model, impurities considerably reduce both
the proton energy at the nearest oxygen sites and the saddle point energy for transitions
between neighboring bound sites (Figure 2b).
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Figure 2. Schematic representation of the two models of the potential energy landscape for proton
hopping corresponding to (a) ∆Q = 0 and (b) ∆Q = ∆EH.

Under equilibrium, the rate of the thermally activated transition from the occupied
site i to the empty site j is

W0
ij = νiexp

(
−

Qij

kT

)
, (4)

where the superscript “0” denotes the equilibrium value; Qij is the potential barrier for
the jump i→ j and νi is the prefactor (with dimension of frequency), which is assumed to
be the same for all sites: νb = νf = ν. The barriers Qij for the different types of sites in the
pairs (i, j) are: Qff = Qfb = Q, Qbf = Q + ∆EH and Qbb = Q + ∆EH − ∆Q. For the potential
energy landscapes depicted in Figure 2a,b, the parameter ∆Q takes the values of 0 and
∆EH, respectively.

The energy landscape with ∆Q = 0, corresponding to the known lattice gas model
with site-energy disorder, was previously used in computer simulations and interpre-
tation of the experimental data on proton dynamics in proton-conducting oxides (see,
e.g., Refs. [5,19,20]). The model with ∆Q > 0 was also exploited in several works: in Monte
Carlo simulations of proton transport and the interpretation of nuclear magnetic resonance
data [9,19].

Proton hopping in our work [22] is considered to be governed by the standard master
equation, which, in the mean field approximation, gives the rate equation for the occupation
probability fi of site i. Under an external electric field, both the rate Wij of the transitions
i→ j and the occupation probability fi deviate from their equilibrium values W0

ij and f 0
i ,

resulting in a current of proton charge carriers. The calculation of this current is a complex
problem due to the effects of disorder and different types of inter-site transitions.

Our approach [22] to the analysis of proton conduction is based on the mapping of
the hopping problem onto the random resistor network of Miller and Abrahams [30], and
treating it using effective medium theory (see, e.g., Ref. [31]). The local conductances gij
between pairs of neighboring oxygen sites (i, j = f, b) corresponding to our problem can be
written as follows [22]:

g f f = g f b = gb f =
e2

kT
ν f 0

f exp
(
− Q

kT

)
, (5)

gbb =
e2

kT
ν f 0

b exp
(
−Q + ∆EH − ∆Q

kT

)
, (6)

where f 0
f and f 0

b are the equilibrium occupation probabilities for free and bound sites. To
obtain the expressions for the conductances (5) and (6), we exploited the detailed balance
condition and Boltzmann statistics ( f 0

i � 1) for protons. The latter is possible because, for
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the considered moderate dopant content, we can neglect the prohibition for several protons
to occupy the same oxygen sites simultaneously [19,22].

In the effective medium approximation, the effective conductance geff of the network
of randomly distributed resistors is determined by the equation [31]

∫ w(g)
(

geff − g
)

g + (z/2− 1)geff dg = 0, (7)

where w(g) is the probability distribution function for gij values; z is the coordination
number for the network sites (z = 8 in our case).

Within the considered model with bound and free sites,

w(g) = ∑
lm

plmδ(g− glm), (8)

where plm is the probability that two nearest neighboring oxygen sites are of types l and m
(l, m = b, f ).

For the adopted uniform distribution of acceptor impurities, Equations (5)–(8) have
an exact analytical solution for geff. The corresponding expression for the macroscopic
conductivity is [22]

σH =
e

V0
cH

Mtrap

pf + pbexp(∆EH/kT)
u0

H =
e

V0
cHuH. (9)

Here, V0 is the volume of the formula unit; uH is the proton mobility and u0
H is the

proton mobility in the absence of the interaction between protons and acceptor impurities:

u0
H =

Au

T
exp
(
− Q

kT

)
, (10)

where Au is the prefactor. The component of the proton mobility associated with the
interaction of ionic defects with acceptor impurities is defined as utrap

H = uH/u0
H.

The function Mtrap(cR, ∆Q/kT) in Equation (9) is

Mtrap = 1
6 [(4pbb−1)exp(∆Q/kT) + 3− 4pbb

+
√
[(4pbb − 1)exp(∆Q/kT) + 3− 4pbb]

2 + 12exp(∆Q/kT)
]

,
(11)

where pbb = cR
(
1 + cR − c2

R
)

is the probability that two nearest neighboring oxygen sites
are of type b. The above expression for σH corresponds to the diagonal component of the
conductivity tensor in a crystal with cubic symmetry. In Equation (9) and below, the tensor
indices are omitted.

Consider the main features of the proton mobility behavior as a function of dopant
content cR for the adopted models of the potential energy landscape. The results for the
second type of the landscape are given for ∆Q = ∆EH; however, the behavior of uH(cR,
∆Q/kT, ∆EH/kT) is quite general [22].

At ∆Q = 0, Mtrap = 1 and the expression for the proton mobility simplifies:

uH = u0
H

[
p f + pbexp(∆EH/kT)

]−1
. In this case, uH decreases with increasing the con-

centration of acceptors cR and the proton trapping energy ∆EH (see Figure 3a).
In the model of the potential landscape with ∆Q = ∆EH, the barriers for the transitions

b→ b are significantly lower than in the first model: Qbb = Qff (see Figure 2). Low barriers
Qbb result in a non-monotonic dependence uH(cR), as seen in Figure 3b. At low dopant
concentrations, when the clusters of bound sites are isolated, uH decreases with increasing
cR, as in the first model. Further increase in cR results in the overlapping of the regions of
bound states and the formation of an infinite cluster at cR = c∗R, where c∗R is the percolation
threshold. At cR > c∗R, the mobility uH increases with increasing cR due to a growing
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contribution of proton transfer over the network of pair-connected bound sites. The c∗R
value in the considered problem can be found analytically ( c∗R ≈ 0.21). For a more detailed
discussion concerning the behavior of uH, see [22].
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Figure 3. Component of the proton mobility utrap
H related to the effect of acceptor impurities as

a function of dopant content cR for an acceptor-doped perovskite AB1−xRxO3−δ. The results are
presented for the two models of the potential energy landscape with (a) ∆Q = 0 and (b) ∆Q = ∆EH for
different ∆EH/kT ratios.

Note that the behavior of uH, predicted within our analytical approach, agrees with
the results of Monte Carlo simulations for similar potential energy landscapes [19–21]. It
should also be noted that, in our consideration, we neglect the correlation effects caused by
the interactions between charge carriers. These effects can be significant at high dopant
content. However, as the Monte Carlo results showed [19,20], the influence of proton–
proton and proton–vacancy interactions on proton conduction is not too significant and
can be neglected in many cases up to concentrations cR~0.20–0.25.

At moderate dopant content and reasonable values of the parameter ∆Q and trapping
energies, the difference in the proton mobilities, corresponding to the considered models of
the potential energy landscape, is not too significant for most problems [22]. This difference
is illustrated in Figure 4 for a perovskite AB0.9R0.1O3–δ. Since altering the heights of the
barriers for transitions between bound states has little effect on the results at the considered
dopant content and relevant model parameters, further analysis is given for the potential
energy landscape with ∆Q = 0.
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Figure 4. Component of the proton mobility utrap
H related to the effect of acceptor impurities as a

function of the proton trapping energy ∆EH normalized to kT for an acceptor-doped perovskite
AB0.9R0.1O3−δ. The results are presented for the two models of the potential energy landscape with
∆Q = 0 (black line) and ∆Q = ∆EH (red line).
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3. Results and Discussion
3.1. Model Parameters for Barium Stannate

To determine the hydration and proton transfer parameters, which are independent of
the interaction between defects and impurities, we used the experimental data on hydrogen
dissolution and bulk conductivity for BaSn0.875Sc0.125O3–δ [7]. The trapping energies of
protons ∆EH and oxygen vacancies ∆EV required for the calculation of hydration and
conductivity are taken from the DFT study [28] (see Table 1). Note that we use the same
set of trapping energies as in our previous work on the hydration of acceptor-doped
BaSnO3 [8].

Table 1. Model parameters for R-doped BaSnO3.

Trapping energies of protons and oxygen vacancies for
BaSnO3 doped with different acceptor impurities [28]

∆EGa
H = 0.47 eV, ∆EGa

V = 0.86 eV
∆ESc

H = 0.29 eV, ∆ESc
V = 0.44 eV

∆EIn
H= 0.24 eV, ∆EIn

V = 0.56 eV
∆ELu

H = 0.18 eV, ∆ELu
V = 0.25 eV

∆EY
H= 0.17 eV, ∆EY

V = 0.32 eV
∆EGd

H = 0.19 eV, ∆EGd
V = 0.36 eV

∆ESm
H = 0.26 eV, ∆ESm

V = 0.55 eV
∆ELa

H = 0.33 eV, ∆ELa
V = 0.82 eV

Effective dopant content for barium stannate with
nominal composition BaSn0.875R0.125O3–δ [7]

ceff
Sc = 0.1046, ceff

Y = 0.0836
ceff

Gd= 0.0996, ceff
In = 0.0769

Enthalpy and entropy of hydration in the absence of
trapping

∆H0
hydr = –73 kJ mol−1

∆S0
hydr = –110 J mol−1K−1

Activation energy and prefactor of the proton mobility
in the absence of the interaction with acceptor impurities

Q = 0.34 eV
Au = 19 cm2K V−1s−1

The trapping-independent components of the hydration enthalpy ∆H0
hydr and entropy

∆S0
hydr (Equation (2)) obtained by the fitting of the experimental hydration isobars for

BaSn0.875Sc0.125O3–δ are presented in Table 1. The validation of the model by comparison of
the theoretical predictions, obtained using the determined parameters, with the hydration
data for Y-, In- and Gd-doped BaSnO3 is given in our previous study [8]. In general,
the exploited theory provides good agreement with the experimental isobars for BaSnO3
doped with various acceptors [8]. It is noteworthy that, according to the thermogravimetry
measurements [7], the effective and nominal dopant content of the considered oxides differs.
The possible reasons for such difference are discussed in more detail elsewhere [14,16].
Henceforth, we use the effective dopant content [7] for the calculation of the hydration and
transport properties of barium stannate with nominal composition BaSn0.875Sc0.125O3–δ
(see Table 1).

The activation energy Q and prefactor Au of the proton mobility in the absence of
the interaction with acceptor impurities (Equation (10)) were determined by fitting of
the conductivity data for Sc-doped BaSnO3 [7]. Since protons provide the dominant
contribution to charge transfer at low temperatures [7], only the bulk conductivity data
below ~700 K were used for fitting. The parameters Q and Au were determined for the
potential energy landscape for proton hopping with ∆Q = 0. As mentioned in Section 2.2,
two models of the potential landscape (Figure 2) yield similar results at the moderate
dopant content and energy parameters considered in this study. Therefore, here and below,
we consider only one model.
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3.2. Dependence of the Proton Conductivity on the Trapping Energies of Ionic Defects

The dependence of the proton conductivity and its activation energy on the trapping
energies of protons and oxygen vacancies is shown in Figure 5. The effective activation
energy is calculated as

Eσ
a = kT2 dln(σHT)

dT
. (12)
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Figure 5. Proton conductivity σH (a) and its activation energy Eσ
a (b) as a function of the proton

trapping energy ∆EH and the ratio ∆EV/∆EH for BaSn0.9R0.1O3−δ in a humidified atmosphere
(pH2O = 0.021 atm, T = 500 K). The points on the surfaces correspond to the conductivities and
activation energies calculated using the trapping energies for BaSnO3 doped with different impurities
(see Table 1).

In contrast to hydration, which can be enhanced or suppressed by trapping depending
on the relationship between the energies ∆EH and ∆EV (Figure 1), the proton conductivity
σH is always reduced by the trapping effect at dopant concentrations below the percolation
threshold, as illustrated in Figure 5a. At low temperatures, when the oxide is fully hydrated,
an increase in the proton trapping energy ∆EH results in the reduction of σH due to a
decrease in the proton mobility. However, at higher temperatures, when the oxide is
partially hydrated, the dependence σH(∆EH) can be non-monotonic (for more details,
see [22]). Increasing the trapping energy of oxygen vacancies ∆EV shifts the hydration
isobars to the low-temperature region [16]. Correspondingly, at a certain ∆EV value, when
the contribution of oxygen vacancies to the charge neutrality condition becomes noticeable,
σH begins to decrease with increasing ∆EV, as can be seen in Figure 5a. Such behavior of
the proton conductivity results in a significant change in the effective activation energy
(Figure 5b). The points on the surfaces in Figure 5 indicate the theoretical values of σH and
Eσ

a calculated using the trapping energies corresponding to particular acceptor impurities.
The effect of specific dopants on the temperature dependence of the components of the

equilibrium constant Ktrap
hydr and proton mobility utrap

H related to the interaction of defects

with acceptor impurities is illustrated in Figure 6. Ktrap
hydr depends on the trapping energies

of both protons ∆EH and oxygen vacancies ∆EV. The hydration properties of an oxide can
be improved by choosing an acceptor dopant with maximum and minimum values of ∆EH
and ∆EV, respectively. Figure 6a shows that maximum equilibrium constant is expected
for Sc and Lu, while La provides the worst hydration among the considered dopants. In
contrast to Ktrap

hydr, the proton mobility under the considered conditions is determined only
by the trapping of protons and decreases with increasing ∆EH (Figure 6b). Accordingly, the
highest proton mobility is expected for dopants with the lowest values of ∆EH. Note that
for dopants with large ionic radii, there may be an additional effect of trapping on proton
conduction; this will be discussed further in Section 3.5.
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for each acceptor impurity were performed using the corresponding trapping energies (see Table 1).

In the low-temperature region, when the oxide is fully hydrated, the change in the
proton conductivity σH upon replacement of an acceptor impurity is predominantly de-
termined by the change in the ∆EH value. At higher temperatures, when the contribution
of oxygen vacancies to the charge neutrality condition is significant, σH depends on both
energies ∆EH and ∆EV. Therefore, the order in which the conductivity value of an oxide
doped with different impurities changes can differ at high and low temperatures.

3.3. Proton Conductivity as a Function of the Ionic Radius of the Acceptor Dopant

To further elucidate the effect of acceptor impurities on the transport properties of
barium stannate, we consider the dependence of the proton conductivity σH and its effective
activation energy Eσ

a on the ionic radius rA of the dopant. In our model, this dependence
results from the correlation between the radius rA and the trapping energies ∆EH and ∆EV.
For barium stannate, such correlation was established by the DFT simulation [28].

Figure 7 shows the results of the calculations of σH and Eσ
a for BaSn0.9R0.1O3–δ with

different dopants. As can be seen, the conductivity increases with increasing ionic radius
for small dopants (with In being an outlier at elevated temperatures) and decreases with
increasing rA for large dopants (Figure 7a). The calculated activation energies alter sub-
stantially upon varying rA, and the dependence Eσ

a (rA) is also non-monotonic (Figure 7b).
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3.4. Effect of Temperature on the Activation Energies and Prefactors of Proton Conductivity
and Mobility

Figure 8 reports the temperature dependence of the effective activation energy Eσ
a

and prefactor σ0
H of the proton conductivity for Sc-, Y-, Gd- and In-doped BaSnO3. The

prefactor is determined by

ln
(
σ0

H

)
=

d(Tln(σHT))
dT

(13)

and the expression for Eσ
a is given by Equation (12).
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Figure 8. Temperature dependence of the (a) activation energy and (b) prefactor of the proton
conductivity (Eσ

a and σ0
H) and mobility (Eu

a and u0
H) in BaSn0.875R0.125O3−δ (R = Sc, Y, Gd, In) in

a humidified atmosphere (pH2O = 0.021 atm). The calculations were performed for the proton
concentrations derived from the thermogravimetry data [7]. The left and right axes in (b) show the
prefactors of the conductivity (σ0

H) and mobility (u0
H), respectively.

Both parameters Eσ
a and σ0

H increase with decreasing temperature and attain a satura-
tion limit in the region of complete oxide hydration (cH ≈ cR). Such behavior of Eσ

a (T) and
σ0

H(T) is mainly related to the variation in the proton concentration cH with temperature. To
illustrate this relation, we calculated the temperature dependence of the activation energy
Eu

a and prefactor u0
H of the proton mobility using equations similar to (12) and (13). As seen

in Figure 8, Eu
a and u0

H weakly depend on T, in contrast to a pronounced decline in Eσ
a and

σ0
H with increasing temperature.

As temperature decreases and cH approaches the saturation value cR, Eσ
a (12) and

σ0
H (13), in the region of moderate dopant concentrations, tend to the limits

Eσ, low T
a = Q + ∆EH, (14)

σ0, low T
H =

e
V0

cR

pb
Au M0

trap, (15)

where M0
trap is the low-temperature limit of the function Mtrap (11). M0

trap = 1 and M0
trap =

(1 − 4pbb)−1 for the potential energy landscapes with ∆Q = 0 and ∆Q = ∆EH, respectively.
At high temperatures, when the proton concentration is low (cH << cR), the activation

energy can be approximated by

Eσ,high T
a = Q + 0.5∆H0

hydr +
0.5pb∆EV

pb + p f exp(−∆EV/kT)
+ kT2 dln

(
Mtrap

)
dT

. (16)



Materials 2022, 15, 4795 11 of 15

The last term in Equation (16) equals zero for ∆Q = 0 and attains a constant value,
depending on ∆EH and cR, at high temperatures for ∆Q = ∆EH. Thus, the observed weak
temperature dependence of Eσ

a at high T in Figure 8a is determined by the third term
in Equation (16). In the case of negligible trapping, the high-temperature limit of Eσ

a is
constant and equals Q + 0.5∆H0

hydr.
Equations (14) and (15) show that the low-temperature limit of Eσ

a linearly depends on
the proton trapping energy ∆EH (Figure 8a), while the saturation limit of σ0

H is the same for
all dopants (Figure 8b). As a result, at low temperatures, the activation energy decreases in
the order Sc > In > Gd > Y, in accordance with the ∆EH values (see Table 1). However, at
higher temperatures, the trend is different since the activation energy and prefactor depend
on both energies ∆EH and ∆EV. It should be noted that, outside the region of small dopant
concentrations, varying cR within reasonable limits has virtually no effect on the calculated
values of Eσ

a and σ0
H.

Figure 8a demonstrates that in order to obtain the low-temperature limit of the acti-
vation energy of the proton conductivity from the experimental dependence σH(T), the
temperature range should be chosen in the region of complete oxide hydration. However,
this can be complicated providing that the oxide hydration is poor and/or the conductivity
measurements are performed at elevated temperatures, when cH < cR.

It is important to note that the activation energy is usually determined within the
temperature range that exceeds the region of complete oxide hydration. In this case, the
obtained temperature-averaged Eσ

a value would be lower than the low-temperature limit
determined by Equation (14). For example, the low-temperature limit of the activation
energy for Sc-doped BaSnO3 equals Q + ∆ESc

H ≈ 0.63 eV (see Figure 8a). At the same time,
the theoretical value of Eσ

a averaged over the temperature range 500–700 K is approximately
0.48 eV, which is close to the result of Wang et al. [7].

3.5. Comparison with Experimental Data

Figure 9 shows the proton conductivity of Sc-, Y-, Gd- and In-doped BaSnO3 calculated
within our model, along with the experimental data [7,29]. The conductivity of Sc-doped
BaSnO3 is a result of the fitting procedure (see Section 3.1). The conductivity of BaSnO3
doped with other acceptor impurities is obtained without any fitting, using the determined
model parameters (Table 1) and the trapping energies from the DFT study [28]. The
calculations for BaSn0.875R0.125O3–δ were performed using the effective values ceff

R of the
dopant content [7]. For BaSn0.75R0.25O3–δ, we used the nominal value cR = 0.25 since there
are no hydration data for these samples in [29].

It should be noted that the conductivities of BaSn0.875R0.125O3–δ and BaSn0.75R0.25O3–δ
do not differ significantly under the considered conditions. Such a weak dependence σH(cR)
outside the regions of small and large cR values is not unusual; it was experimentally
observed for other proton-conducting perovskites (see, e.g., Ref. [32]). The Monte Carlo
simulations also showed that, under certain conditions, the dependence σH(cR) can be
relatively weak at intermediate dopant concentrations [19,20]. This effect can be explained
by the mutually compensating influence on the conductivity of two factors—an increase in
the proton concentration cH and a decrease in the proton mobility uH with increasing cR.
Such a decreasing dependence uH(cR) at the considered moderate dopant content is caused
by the trapping effect (see Figure 3 and Refs. [19,20]).

It can be seen from Figure 9 that the shifts in the calculated proton conductivity for
In and Y relative to Sc generally follow the experimental data, although the slopes of the
conductivity curves for In are somewhat different in the low-temperature region. The
agreement between theory and experiment for Gd-doped BaSnO3 is worse than for the
oxide with other dopants. The reasons for this discrepancy in the case of Y and Gd can
be partially explained by their large ionic radius, as will be seen further below. Another
important factor that can lead to lower conductivity values, as compared to the theoretical
results, is slow kinetics caused by the high density of the samples. In particular, it can
hinder the attainment of the theoretically expected degree of hydration, especially at low
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temperatures. For example, the relative density of BaSn0.875R0.125O3–δ (R = In, Gd) [7] and
BaSn0.75In0.25O3–δ [29] was above 98%.
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(b) BaSn0.75R0.25O3−δ in a humidified atmosphere (pH2O = 0.021 atm). The symbols correspond
to the experimental data on bulk conductivity in wet Ar [7,29]. The parameters Au and Q for the
proton mobility were determined by fitting of the conductivity data for Sc-doped BaSnO3 (Table 1).
Solid black lines are the fitting curves. Red, blue and green lines are the theoretical conductivities
calculated using the determined parameters and DFT results for the trapping energies [28]. Dopant
concentrations cR are taken to be equal to the (a) effective [7] and (b) nominal, cR = 0.25, values (since
the effective values for BaSn0.75R0.25O3−δ are unknown). Red and blue arrows indicate the results
of the estimates for the oxide with large dopants (Y, Gd) made using the trapping regions around
acceptor impurities extended up to the second neighbors.

According to a number of DFT studies for BaSnO3 [13,28], in the case of acceptor
dopants with large ionic radii, the trapping energies of protons and oxygen vacancies in
the first and second neighbor positions can be comparable. In order to roughly estimate the
implications of this effect, we extend the trapping regions around such impurities up to the
second neighbors, accordingly redefining the probabilities pf and pb. The total number of
proton positions in such trapping regions is large, and we are beyond the applicability of
our theory (especially if the effect of impurities on the saddle point energies for inter-site
transitions is significant, as in the potential landscape model with ∆Q = ∆EH). Nevertheless,
to demonstrate a possible trend, we provide these estimates for the potential landscape
with ∆Q = 0. As shown in Figure 9, the extension of the trapping region leads to good
agreement between theory and experimental data for Y-doped BaSnO3. However, the
results for Gd-doped BaSnO3 still do not agree quite well with the experiment, although
the calculated conductivity values become closer to the experimental data.

In another study, Li and Nino [33] measured the bulk conductivities for BaSn0.9R0.1O3–δ
(R = In, Lu, Er, Y, Gd) under oxidizing and reducing conditions. The results indicate that
the order in which the conductivity corresponding to different acceptor impurities changes
is quite different from that obtained by Wang et al. [7,29]. However, the external con-
ditions of the conductivity measurements in Reference [33] differed from those in the
experiments [7,29], which were carried out in a humidified Ar atmosphere. According to
the EMF measurements [33], a significant contribution to the total conductivity in oxidizing
and reducing atmospheres is provided by electronic charge carriers. Since this contribution
can also differ for samples with different dopants, a comparison of our theoretical results
with the bulk conductivity data [33] would be incorrect.
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We now turn to the dependence of the proton conductivity on the ionic radius of the
dopant rA. To compare the results with experiments, the bulk conductivity data for Sc-, In-,
Y- and Gd-doped BaSnO3 [7,29] and the calculated conductivities are plotted as a function
of rA in Figure 10. It is seen that the behavior of the theoretical conductivities correlates well
with the experimental data, including the downward shift for In at elevated temperatures.
The estimates of σH(rA) for the oxide with large dopants Y and Gd were also made using
the extended trapping regions around acceptor impurities, see above. The obtained values
of σH (blue points in Figure 10) are shifted downwards and closer to the experimental data.
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Figure 10. Proton conductivity σH of (a) BaSn0.875R0.125O3−δ and (b) BaSn0.75R0.25O3−δ as a function
of the ionic radius rA of the dopant in a humidified atmosphere (pH2O = 0.021 atm). The black and
red symbols are the experimental conductivities [7,29] and the theoretical values calculated within
our model, respectively. The blue symbols are the results of the estimates with the trapping regions
around impurities extended up to the second neighbor positions. The calculations were performed
using the (a) effective, ceff

R , [7] and (b) nominal, cR = 0.25, dopant concentrations.

A non-monotonic dependence σH(rA), similar to that predicted by our model for
acceptor-doped BaSnO3 (see Figures 7a and 10), was also experimentally observed for
perovskites BaZrO3 [10,17] and BaCeO3 [34] doped with different acceptor impurities.

4. Conclusions

We have applied our recently developed statistical theory of proton-hopping conduc-
tion in oxide perovskites to reveal the role of the interaction between ionic defects and
acceptor impurities in proton transport in acceptor-doped barium stannate. Accounting for
this interaction within the proposed approach allowed us to explain the observed behavior
of the bulk proton conductivity σH of BaSn1–xRxO3–δ. The experimental dependences of
σH on temperature, type of acceptor impurity and its ionic radius are described reasonably
well. A number of results concerning the influence of impurities on proton conductivity
and mobility are quite general for perovskites with moderate dopant content. For example,
in the low-temperature region of complete oxide hydration, the main effect of the inter-
action between acceptor impurities and ionic defects on the behavior of σH is due to the
proton trapping. In the low-temperature limit, the effective activation energy Eσ

a of σH
increases linearly with increasing the proton trapping energy. At higher temperatures, Eσ

a
depends on the trapping energies of both protons and oxygen vacancies and decreases
with increasing temperature. The predicted non-monotonic dependence of σH on the
dopant ionic radius is observed not only for BaSnO3, but also for other acceptor-doped
perovskites. Our findings contribute to the understanding of the role of acceptor impurities
in proton transport in oxides and can be useful for selecting optimal acceptor doping for
proton-conducting materials.
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