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Abstract

Global sequencing efforts from the ongoing COVID-19 pandemic, caused by the novel coronavirus SARS-
CoV-2, continue to provide insight into the evolution of the viral genome. Coronaviruses encode 16 non-
structural proteins, within the first two-thirds of their genome, that facilitate viral replication and transcrip-
tion as well as evasion of the host immune response. However, many of these viral proteins remain
understudied. Nsp15 is a uridine-specific endoribonuclease conserved across all coronaviruses. The
nuclease activity of Nsp15 helps the virus evade triggering an innate immune response. Understanding
how Nsp15 has changed over the course of the pandemic, and how mutations affect its RNA processing
function, will provide insight into the evolution of an oligomerization-dependent endoribonuclease and
inform drug design. In combination with previous structural data, bioinformatics analyses of 1.9 + million
SARS-CoV-2 sequences revealed mutations across Nsp150s three structured domains (N-terminal, Mid-
dle, EndoU). Selected Nsp15 variants were characterized biochemically and compared to wild type
Nsp15. We found that mutations to important catalytic residues decreased cleavage activity but increased
the hexamer/monomer ratio of the recombinant protein. Many of the highly prevalent variants we analyzed
led to decreased nuclease activity as well as an increase in the inactive, monomeric form. Overall, our
work establishes how Nsp15 variants seen in patient samples affect nuclease activity and oligomerization,
providing insight into the effect of these variants in vivo.

Published by Elsevier Ltd.
Introduction

Coronaviruses are a family of large, positive
stranded RNA viruses that have known zoonotic
potential1. The Middle Eastern Respiratory Syn-
drome (MERS-CoV) and Severe Acute Respiratory
Syndrome (SARS-CoV-1) coronaviruses have
ier Ltd.
caused several epidemics in the early 2000s.
Currently a novel coronavirus, SARS-CoV-2, is
responsible for a multi-year pandemic (COVID-
19). Coronaviruses are also responsible for
10–30% of common colds2. RNA viruses, which
replicate with an RNA-dependent-RNA polymerase
are known to mutate frequently3. Mutations that
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confer a benefit to the virus are useful, but many
mutations are neutral or deleterious. Evolution of
RNA viruses is generally accepted to be driven by
both genetic drift and negative selection (removing
deleterious mutations)4. Coronaviruses encode
proof-reading machinery that reduces mutation
rate, but it is still very high compared to the mutation
rate of cellular replication of DNA. Having low repli-
cation fidelity (i.e. a high error rate) allows coron-
aviruses to sample the mutational space by
supporting a wide range of sequences during an
infection, which leads to fast adaptation in response
to selective pressures5. Mutations in viral RNA can
also arise through damage or the action of RNA edi-
tors6. The enormous sequencing effort throughout
the COVID-19 pandemic has presented the oppor-
tunity to analyze patterns of mutations and investi-
gate the functional effects of predominant
mutants, lending insight into important structural
and functional regions of viral proteins that may
otherwise have remained uncharacterized7–15.
The first two-thirds of the �30 kb coronavirus

genome encodes two open reading frames, pp1a
and pp1ab, that encode 16 non-structural proteins
(nsps) via a ribosomal frame-shifting
mechanism1,16. The latter one-third encodes struc-
tural and accessory proteins, such as the spike pro-
tein. Many of the nsps function in the replication
transcription complex (RTC) and are necessary
for viral replication17. Studies have shown muta-
tional frequency varies across the SARS-CoV-2
genome18; mutation frequency seems to be higher
in regions encoding structural proteins, and lower
in the region encoding nsps18–19. While structural
proteins, especially the spike protein, have been
extensively studied, nsps have had less
focus20–22. However, given their conservation
across coronaviruses and lower mutational rates
compared to structural proteins, nsps make attrac-
tive anti-viral targets.
One such target is Nsp15, a uridine-specific

endoribonuclease that processes viral RNA to
prevent the activation of the dsRNA sensor
MDA523–25. In vivo studies in animal models
infected with coronaviruses with inactivated Nsp15
show lower mortality and reduced pathogenic-
ity23,25–27. Recent structural studies of Nsp15 have
revealed important molecular details regarding
how it processes both single and double stranded
(ds) RNA28–31. SARS-CoV-2 Nsp15 is a hexamer
formed from a dimer of trimers; monomeric Nsp15
is inactive29–30,32–33. Each protomer consists of an
N-terminal (NTD), middle (MD), and catalytic
endoribonuclease (EndoU) domain. Nsp15 is only
active as a hexamer and the hexamer is critical for
supporting dsRNA binding28. Beyond Nsp15,
EndoU domains are found in all kingdoms of life
and share a catalytic triad with RNase A34. Like
RNase A, Nsp15 uses a two-step transesterification
mechanism to cleave RNA 30 of uridines29. While
much progress has been made to understand how
2

Nsp15 functions to processes viral RNA, many
open questions remain. Moreover, in comparison
with the EndoU domain the NTD and MD’s from
SARS-CoV-2 Nsp15 remain poorly characterized.
Increased understanding of the molecular details

of Nsp15 structure and function provides a platform
to better understand the effect of mutations in the
Nsp15 coding sequence. Interestingly, in certain
variants, Nsp15 mutations have been noted as
clade defining markers35–36. For example, in an
analysis of different Delta variant clades, Nsp15
H235Y is a marker for Delta subclade C and
K260R is a marker for Delta clade E. Nsp15 K13N
was identified as a marker for a subclade of the
B.1.1.33 lineage in Brazil37. Additionally, Nsp15
T113I is a marker for Omicron38 and was computa-
tionally predicted to have the greatest impact on fit-
ness of Orf1b (Nsp12-16) mutations analyzed
across 6.4 million SARS-CoV-2 genomes.39 How-
ever, it remains unknown how any of these specific
mutations impact Nsp15 activity.
Our goal was to use the Nsp15 mutational

information from the first year of the COVID19
pandemic to characterize how mutations affect its
endoribonuclease activity, either directly or
through changes in its oligomerization state. We
analyzed Nsp15 mutations found in sequences
deposited in the GISAID database as of June
202140. We selected mutations from each domain
(NTD, MD and EndoU) based on frequency of
mutation and reports of specific variants in the liter-
ature, as well as our knowledge of active site resi-
dues. We then carried out in vitro biochemical
assays of the recombinantly purified mutants to
evaluate their oligomeric state and test nuclease
activity compared to WT. Through this approach
we have established how these amino acids
changes seen in SARS-CoV-2 patient samples
impact Nsp15 function. Moreover, through this
approach we have gained additional knowledge
about important regions of Nsp15.
Results

Identifying Nsp15 mutants from SARS-CoV-2
genome sequencing

Approximately 1.9 million full length sequences of
Nsp15 were extracted from the EpiCov section
(allnuc0614) of the GISAID database, which is a
worldwide repository of viral isolates. The
sequence of Nsp15 of each viral isolate was
compared to the original Wuhan isolate. In line
with the relatively low replication fidelity of
coronaviruses, single nucleotide variants were
present across all three domains of the
endoribonuclease. Of the full-length Nsp15
sequences (1038 bases), 1025 positions were
observed to have nucleotide substitutions
(Supplemental File 1), which were corresponding
to changes in 341 out of 346 amino acids from
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Nsp15. However, 87% of these variants were
observed in less than 100 isolates (Supplemental
File 1). Six amino acid variants were observed in
over 10,000 isolates, where five of them (N74N,
43,964; D79D, 15,684; L214L, 40,846; L217L,
74,888; N278N, 10,718) are synonymous and one
(D220Y, 10,323) is non-synonymous (Figure 1
Figure 1. Variants identified in Nsp15 from the GISAID
sequences (1038 bp) were downloaded from the GISAID
compared to that of the original Wuhan isolate, and single
presented in the lollipop-style plots. Each circle represents
and the color of the circle indicate the frequency of the muta
was observed. (A) Variants are shown at the post-sequencin
are shown. These single nucleotide variants were distribut
Selected variants are shown at the protein level. Variants w
biochemically characterized along with those found in residu
function of Nsp15.

3

(A)). For subsequent biochemical analysis we
focused only on non-synonymous variants that led
to a change in the protein sequence (Figure 1(B)).
As expected, surface residues were more
frequently mutated than core residues19.
A total of 83 variants were observed in over 1,000

isolates which were unlikely to be sequencing
database. Approximately 1.9 million full-length NSP15
database. The sequence of each Nsp15 isolate was
nucleotide variants were then generated, which were

a variant observed at the indicated position. The height
tion event, ie. the number of isolates in which the variant
g DNA level. Only variants found in at least 1000 isolates
ed widely throughout the three domains of Nsp15. (B)
ith prominent numbers of isolates were selected to be
es previously shown to be important to the structure and



I.M. Wilson, M.N. Frazier, J.-L. Li, et al. Journal of Molecular Biology 434 (2022) 167796
artifacts. Among them, 53 variants are non-
synonymous and 30 are synonymous. We
selected several prominent mutations to study
from these 53 non-synonymous variants: K13N
(1716), K13R (1339), T34I (9900), A93S (1081),
T113I (2815), T115A (1810), V128F (4457),
D133Y (1982), L163F (2072), P206S (5849),
R207S (6174), D220Y (10323), H235Y (3630),
K260R (4938), and V321M (3306). In addition to
these variants, others were chosen based on
previous biochemical data29–30,41–42. These vari-
ants were G18E (304), G18R (123), K290N (396),
and W333C (304). Four of the selected residues
(K13, T34, T115, and R207) had also been previ-
Figure 2. Overview of SARS-CoV-2 Nsp15 protein stru
back to back trimers. P1 is shown in ribbon diagram, while P2
(B) Zoom in of an Nsp15 protomer, colored as in Figure 1, by
stick representation, colored purple and labeled. (C-D) The n
rainbow palette (see scale bar at bottom left). (C) One color
the mutation mapped protomer. In addition to the catalytic tria
are shown (T34 and D220).

4

ously identified as major mutated residues of
Nsp1518,43. The selected mutations covered all
three domains of Nsp15 (Figure 2).
Four of the Nsp15 non-synonymous substitutions

show multiple base substitutions, G18R, R207S,
K290N, and W333C. In each case there is a
definite skewing of the abundance of one of these
mutations. For G18R, the G to A substitution is
152-fold more prevalent than the G to C
substitution. A simple explanation for this could be
the elevated transition mutations relative to
transversions, which was noted long ago44. How-
ever, the G to A transition on the positive strand of
SARS-CoV-2 is one of the least frequent transition
cture. (A) The Nsp15 hexamer forms from a dimer of
-6 are shown in surface representation (PDB ID: 7 N06).
domain (ND, MD, EndoU). The catalytic triad is shown in
umber of mutations at each residue were colored using a
ed protomer is docked into the hexamer. (D) Zoom in of
d, the two residues with the highest number of mutations



I.M. Wilson, M.N. Frazier, J.-L. Li, et al. Journal of Molecular Biology 434 (2022) 167796
substitutions observed in SARS-CoV-245. The other
three notable transversions are all either G to T or G
to C transversions. The G to T transversion is 152-
to 3087-fold more prevalent in these cases. This is
substantially different from what is seen in either
SARS-CoV-2 or human genomes46 where G to C
transversions are more common. The over-
representation of the G to T events could also be
due to a jackpot effect. While these observations
were made with the GISAID allnuc0614 dataset
(Supplemental File 1), these differences persist in
newer versions (allnuc0215; Supplemental File 2).
There has been significant recent analysis of
genome-wide mutational spectra, especially as it
relates to human cancer. Of particular interest has
been the distribution of trinucleotide-centeredmuta-
tional motifs and the mechanism(s) by which they
occur. The only statistically significant trinucleotide
motif found mutated in SARS-CoV-2 genomes
was uCn45. None of the codons in the substitutions
of interest within Nsp15 match that motif.
While the initial analysis of SARS-CoV-2

sequences in June 2021 provided the rationale for
selecting Nsp15 mutations to characterize
biochemically, we have continued to monitor
SARS-CoV-2 variant lineages to understand how
the Nsp15 mutations we selected appear in Delta
and Omicron (Supplemental File 3). Delta, the
predominant SARS-CoV-2 VOC through most of
2021, was replaced by the Omicron VOC
beginning in late 2021. Omicron is not a direct
descendant of delta; its origin is completely
independent47. One can see this in our analysis of
the mutational frequencies of the non-synonymous
amino acid mutations within Nsp15 (Supplemental
Table 2, Supplemental File 4). If Delta was the pro-
genitor of Omicron, some of the mutations present
in Delta would be present in nearly all of the GISAID
Omicron genomes yet we see that for all non-
synonymous substitutions only a fraction of the
Omicron genomes carry any one substitution seen
in the Delta genomes. Subsets of both Delta and
Omicron genomes carry nearly all of these substitu-
tion mutations suggesting convergent evolution of
these mutations in different SARS-CoV-2 lineages.
Their persistence in both lineages suggests that any
functional alteration to Nsp15 is well tolerated, per-
haps due to compensation by other non-structural
proteins.

N-terminal domain variants

We assessed the impact of mutations on K13,
G18, and T34I (Figure 3(A)) from the NTD of
Nsp15, which has been shown to be critical for
oligomerization30,43,48. In particular, K13 sits at the
interface between neighboring protomers, and par-
ticipates in water-mediated interactions with RNA30

Supplemental Figure 2). G18 is also positioned near
the dsRNA binding platform within the Nsp15 hex-
amer28. Given the importance of the NTD in
oligomerization, we compared the amount of hex-
5

amer and monomer from each purified variant.
WT Nsp15 has a hexamer/monomer ratio around
1 (Table 1, Figure 3(B)). K13R had a slightly greater
amount of hexamer, while T34I had a ratio similar to
WT. The other variants all had increased amounts
of monomer. This provides additional evidence that
disturbances in the NTD affect hexamer stability
and suggests that these variants would result in less
active Nsp15 in virus infected cells since mono-
meric Nsp15 is inactive.
Using an established FRET nuclease assay29,42

the cleavage activity of the hexameric forms of the
K13N, K13R, G18E, G18R, and T34I variants was
measured (Figure 3(B)). Nsp15 K13N showed the
largest decrease in cleavage activity, while K13R,
G18E, and T34I also had less activity compared
to WT Nsp15 (Figure 3(B)). Nsp15 G18R nuclease
activity was unchanged compared to WT Nsp15
(Figure 3(B)). Given the high number of isolates
with T34I, its decrease in activity contradicts the
notion that variants with high amounts of isolates
are more advantageous for the endoribonuclease.
T34 is a core residue in the NTD, surrounded by
non-polar residues (Supplementary Figure 2). As
a core residue, it is likely important for maintaining
the correct fold and stability of the NTD. Analysis
of T34 variants in the SARS-Cov-2 Molecular
Dynamics database58 suggests that T34I would
have a stabilizing effect on Nsp15 while mutation
to alanine, arginine, or lysine at the same position
would have a destabilizing effect. Thus, we assume
that introduction of a non-polar isoleucine at this
position would likely not disturb the fold of the
NTD. The stabilizing effect of T34I could impact
nuclease activity in other ways such as altering con-
formation dynamics within the hexamer.
Overall, this FRET data supports the hypothesis

that the NTD provides charge-mediated stability to
RNA substrates30. The addition of a positive charge
(G18R) did not negatively impact nuclease activity,
while the loss of a positive residue (K13N) or the
introduction of a negative residue (G18E)
decreased activity. We also tested nuclease activity
on a longer, more physiologically relevant RNA sub-
strate corresponding to the Transcriptional Regula-
tory Sequence (TRS) for the SARS-CoV-2N protein
using a gel-based cleavage assay. The trends seen
in the FRET assay were confirmed by gel-based
cleavage (Table 1, Supplemental Figure 3).

Middle domain variants

We analyzed middle domain variants from two
distinct faces of Nsp150s MD (Figure 4(A)). T113,
V128, D133, and L163 lie on one face of this
domain, while A93 and T115 sit on the opposite
face. All the MD variants had increased amounts
of monomer, highlighting that the MD also plays
an important role in stabilizing the hexamer.
Previous work on MERS Nsp15 characterized
several residues in the MD involved in
oligomerization41. When we mapped these variants



Figure 3. Characterization of Nsp15 N terminal domain variants. (A) Displayed on the structure are the
residues K13, G18, and T34. (B) S200 elution profiles of NTD variants. Hexameric Nsp15 elutes at 11 mL, monomeric
Nsp15 at 15 mL. (C) An embedded visual of the Fluorescence resonance energy transfer cleavage assay to
accompany the FRET time course data for Nsp15 N terminal domain mutants. Nsp15 WT and variants (2.5 nM) were
incubated with RNA (0.8 lM) at room temperature and fluorescence was monitored every 2.5 min for an hour. The
average of a representative technical triplicate is plotted with standard deviation error bars. At least two biological
replicates were performed for each mutant. Each mutant is represented by a different color: WT Nsp15 (black), Nsp15
K13N (blue), Nsp15 K13R (orange), Nsp15 G18E (teal), Nsp15 G18R (pink), and Nsp15 T34I (purple). **p < 0.01,
***p < 0.001, ****p < 0.0001.
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onto our SARS-CoV-2 Nsp15 structure, we see
T115 and L163 facilitate interactions with neighbor-
ing protomers. T113 occupies the same loop as
T115 but faces the opposite direction in our model
and is further removed from the hexamer interface.
Interestingly, T113I is the only MD variant in our
analysis which showed increased hexamer forma-
tion. A recently determined structure of Nsp15
bound to dsRNA revealed that T113 forms part of
a large platform spanning three protomers from
the hexamer that supports dsRNA engagement28.
T115 lies near the interface with a protomer from
the bottom trimer, while L163 sits at the interface
with a neighboring protomer in the same (top) trimer
(Supplemental Figure 2). L163F dramatically
reduced the amount of purified hexamer, suggest-
ing this residue is particularly important for
oligomerization (Table 1, Figure 4(B)).
Our FRET activity assay revealed a large,

significant increase in activity with the T113I and

6

V128F mutants, and a significant decrease in
activity for L163F (Figure 4(C)). The remaining
variants A93S, T115A, and D133Y showed no
significant changes in cleavage activity. The
activity trends seen by FRET were again
confirmed using a longer RNA substrate in a gel-
based cleavage assay (Table 1, Supplemental
Figure 3-4).
Located in the middle domain, V128 resides in a

surface exposed loop away from protomer
interfaces; therefore, structural analysis does not
provide a clear reason for this residue affecting
cleavage significantly—Nsp15 V128F is twofold
more active than WT Nsp15. However, the
change from a small hydrophobic residue to a
large hydrophobic residue could possibly lead to
changes in the domain conformation to avoid
surface exposure. Similarly, T113I also lies in a
surface exposed loop that would not be predicted
to lead to an increase in activity in the cleavage of



Table 1 Summary of Nsp15 variants analyzed in this study. A summary table of the variants categorized by domain of
Nsp15 (light orange, ND; medium orange, MD; dark orange, EndoU). The rate refers to mutation rate as a percentage.
The impact score q value describes its position in the distribution of all variants where the range is 0–1 and 0.5 is the
mean q score58. The hexamer/monomer ratio is displayed along with the activity of the variant compared to WT as a
percentage (based on FRET endpoint data; NSC, no significant change). Residues with asterisks (*) denote variants
below the 1,000 threshold in GISAID that were selected based on previous biochemical data.

Residue Rate

(%)

Impact score (q) Hex/Mono Ratio Activity

(%)

K13N 0.070 0.83 0.63 19

K13R 0.090 0.83 1.18 54

G18E* 0.006 0.24 0.56 50

G18R* 0.016 0.24 0.88 NSC

T34I 0.520 0.69 1.01 44

A93S 0.057 0.30 0.49 NSC

T113I 0.148 0.10 1.79 250

T115A 0.095 0.14 0.55 NSC

V128F 0.234 0.36 0.50 275

D133Y 0.104 0.73 0.48 NSC

L163F 0.109 0.33 0.23 24

P206S 0.307 0.19 2.49 NSC

R207S 0.324 0.77 0.14 22

D220Y 0.542 0.40 0.63 NSC

H235Y 0.191 0.90 1.61 5.8

K260R 0.260 0.48 1.80 42

K290N* 0.021 0.61 2.12 0.2

V321M 0.173 0.45 0.65 194

W333C* 0.016 0.73 0.77 17
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single stranded RNA. This is not seen when T115,
two residues down on the same loop, is mutated.
These two variants also show opposite trends in
oligomerization; T113I yields increased hexamer,
while T115A leads to increased monomer. These
data suggest surface exposed loops can alter
structural conformations to affect cleavage. In
virus, increased nuclease activity could potentially
tip the balance from being protective (cleaving
viral RNA to avoid dsRNA sensors) to harmful
(preventing viral replication due to increased
cleavage). Thus, our in vitro nuclease assays
suggest these mutations could be detrimental to
viral proliferation, yet they were found in
numerous isolates. In fact, T113I was
computationally predicted to increase viral
fitness39. Finally, in a recently determined structure
of Nsp15 bound to a dsRNA substrate, T113 forms
part of a large platform for dsRNA binding, thus
T113 likely facilitates the binding of longer RNA
substrates (Supplemental Figure 5)28. In the future
to better understand the impact of the T113I muta-
tion and the other variants, mutational studies in
virus would be beneficial.
Along with a significant reduction in hexamer, the

remaining L163F hexamer was less active thanWT.
The combined oligomerization and nuclease activity
results for this variant suggest this mutant would
produce very little active enzyme in virus. This
residue is located near residues N164 in SARS-
CoV-2 (equivalent to N157 in MERS)41. Mutation
of MERS N157 decreased RNA binding affinity,
reduced nuclease activity, decreased oligomeriza-
7

tion, and decreased the thermal stability of the
endoribonuclease41. Our analysis of L163F in
SARS-CoV-2 supports earlier work that this inter-
face is critical for nuclease activity and protein
stability.
EndoU domain variants

Finally, we analyzed specific variants from the
EndoU domain, which contains the uridine binding
pocket and catalytic core (Figure 5(A)). P206
(which exists at the end of the long linker between
the MD and EndoU domains), R207, K260 and
V321 occupy the face of the EndoU domain
opposite of the active site. H235, K290, and W333
lie in the active site on the other side of the EndoU
domain and have been well-characterized
biochemically29–30,41–42. H235 and K290, along with
H250, form the catalytic triad and interact with the
scissile phosphate. It is therefore somewhat sur-
prising that H235Y would be found in so many iso-
lates (3630)—in fact, recent work characterized
this mutation as a lineage marker for a clade of
the Delta variant, Delta D. W333 forms important
p-stacking interactions with the base 30 of the
cleaved uridine. D220 occupies the same face as
the active site but is farther removed from the
RNA binding sites. It is surface exposed, and the
side chain does not form any interactions with other
residues (defined by a distance of <5�A). In contrast
to the other domains, several EndoU variants
showed an increased hexamer/monomer ratio:
P206S, H235Y, K260R, and K290N. R207S,



Figure 4. Characterization of Nsp15 Middle domain variants. (A) Displayed on the structure are the residues
A93, T115, V128, D133, and L163. (B) S200 elution profiles of MD variants. Hexameric Nsp15 elutes at 11 mL,
monomeric Nsp15 at 15 mL. (C) FRET time course data for Nsp15 Middle domain mutants. Nsp15 WT and variants
(2.5 nM) were incubated with RNA (0.8 lM) at room temperature and fluorescence was monitored every 2.5 min for
an hour. The average of a representative technical triplicate is plotted with standard deviation error bars. At least two
biological replicates were performed for each mutant. Each mutant is represented by a different color: WT Nsp15
(black), Nsp15 A93S (blue), Nsp15 T113I (green), Nsp15 T115A (orange), Nsp15 V128F (purple), Nsp15 D133Y
(pink), and Nsp15 L163F (teal). ****p < 0.0001.
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D220Y, V321M and W333C showed a decreased
hexamer/monomer ratio indicative of increased
monomer (Figure 5, Table 1).
As expected, our FRET endoribonuclease assay

confirmed that the catalytic residue variants
H235Y and K290N were inactive (Figure 5(C)).
The other active site residue W333C also showed
significantly reduced cleavage activity, confirming
its importance in pi-stacking with the RNA
substrate. R207S and K260R also showed
significantly reduced activity, while P206S and
D220Y were not significantly different and V321M
had increased activity. Gel-based cleavage
assays with a longer RNA substrate showed
similar trends to the FRET assay data (Table 1,
Supplemental Figure 6).
V321M appears to be involved in the structural

integrity of the EndoU fold, as part of a b-sheet
packed against an a-helix on the side opposite the
active site. Our cleavage data suggests a larger
sidechain at that position may change the shape
of the EndoU domain to promote more efficient
cleavage. This is interesting because V321M was
8

also identified in the same computational fitness
analysis as T113I, making it another great
candidate for future studies in virus.
P206S and D220Y having similar activity as WT

aligns with our initial hypothesis that mutants with
high numbers of isolates would not significantly
change nuclease function. Too much viral RNA
cleavage and too little viral RNA cleavage are
both likely to be detrimental to the virus, thus we
would expect the more common Nsp15 variants to
retain relatively the same nuclease activity.
Discussion

In this work we biochemically characterized
Nsp15 variants extracted from the GISAID
database of SARS-CoV-2 sequences acquired
during the pandemic. Nsp15 variants are unlikely
to drive viral evolution and become lineage
defining markers because the protein is not
involved directly in viral entry or replication.
Several studies have identified Nsp15 mutations



Figure 5. Characterization of Nsp15 EndoU domain variants. (A) Displayed on the structure are the residues
P206, R207, D220, H235, K260, K290, V321, and W333. H235 and K290 interact with the 30-PO4 of uridine in the pre-
cleavage RNA structure (PDB: 7 N33) (B) S200 elution profiles of EndoU variants. Hexameric Nsp15 elutes at 11 mL,
monomeric Nsp15 at 15 mL. (C) FRET time course data for Nsp15 EndoU domain mutants. Nsp15 WT and variants
(2.5 nM) were incubated with RNA (0.8 lM) at room temperature and fluorescence was monitored every 2.5 min for
an hour. The average of a representative technical triplicate is plotted with standard deviation error bars. At least two
biological replicates were performed for each mutant. Each mutant is represented by a different color: WT Nsp15
(black), Nsp15 P206S (blue), Nsp15 R207S (pink), Nsp15 D220Y (teal), Nsp15 H235Y (orange), Nsp15 K260R
(purple), Nsp15 K290N (green), Nsp15 V321A (green) and Nsp15 W333C (light blue). Asterisk (*) signifies mutants
were separated using a different AKTA system which affected elution volume. ***p < 0.001, ****p < 0.0001.
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that may have increased fitness and clinical
significance, likely by suppressing interferon I
response39,49. Thus, characterizing variants seen
in patient samples provides new knowledge about
protein function beyond characterizing the active
site residues directly involved in catalysis. Identify-
ing new regions of Nsp15 that affect oligomerization
and nuclease activity builds a base for mapping reg-
ulatory regions and additional drug design targets.
We specifically analyzed changes in

oligomerization state and nuclease activity. The
majority of the variants studied resulted in
decreased Nsp15 activity. This work highlights the
importance of combining bioinformatics and
structural data to predict mutation effects and then
testing those hypotheses in vitro. For example,
based on Nsp15 structures alone, we would not
have predicted a large impact of the T34I
mutation, as it is a core residue that only interacts
with other residues in the N-terminal domain.
Indeed, the oligomeric state is not perturbed;
however, our nuclease assays reveal a significant
decrease in activity. Similarly, V128F would also
9

not be predicted to have a great impact based
solely on structural information, since it is not
directly involved in any protomer interfaces and far
from any EndoU active sites. However, our
assays showed it decreases the formation of
hexamer, but the hexamer formed has a
substantial increase in nuclease activity. This
suggests that structural conformations in that
region could be manipulated to regulate nuclease
activity, perhaps making it a surface where
protein–protein interactions take place inside
infected cells. Biochemical characterization is not
high throughput, therefore identification and
selection of variants to test is important. Mutations
with a high number of isolates are an easy
selection criterion; our selection of K13, T34,
T115, and R207 agree with bioinformatics analysis
of main mutated residues across the SARS-CoV-2
proteome published in early 202118. Knowledge of
molecular mechanisms is also important; this led
us to select N-terminal residue and active site resi-
due mutations to further test the established roles of
these amino acids30,41–42,48. We recently deter-
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mined a structure of Nsp15 bound to dsRNA28; of
the Nsp15 mutants we characterized here, the only
non-active site residues in the area of the dsRNA
are T113 (�4 �A), D133 (�5 �A) and V128 (�9 �A)
(Supplemental Figure 5).
Coronavirus genomes have a bias for uridines50–

51 so the evolution of a uridine-specific nuclease is
interesting. Clearly, regulation of viral RNA through
cleavage of uridines both in the polyU sequence of
the negative strand (complementary to the polyA
tail)23and throughout the positive strand52 is impor-
tant for the coronavirus life cycle. Except for the
Nsp15 H235Y mutation, which serves as a marker
of a Delta viral clade35, none of the active site resi-
dues accumulated mutations above the 1000 iso-
late threshold we used. The lack of nuclease dead
isolates signifies the importance of nuclease activity
for the virus. Thus, Nsp15 H235Y stands out as a
candidate to further study in viruses.
A recent computational modeling study

suggested Nsp15 serves as a scaffold for the
assembly of the Replication Transcription
Complex (RTC)53. Thus, some of the variants may
disrupt RTC protein–protein interactions. In the
MD, Nsp15 T115 appears to interact with Nsp8,
while D133 is positioned near Nsp10 (Supplemental
Figure 7). Nsp15 EndoU residues D220 and V3231
neighbor the Nsp16/10 complex in the RTC, with
V321 at the end of Nsp10 not interfacing with
Nsp16 and D220 close to Nsp16 (Supplemental
Figure 7). In this function of scaffolding the RTC,
nuclease activity may not be necessary. Thus, the
H235Y and K290N mutations which kill catalytic
activity but increase hexamer formation (Table 1),
could support the RTC model. The Delta clade with
Nsp15 H235Y has adaptations in other virally-
encoded immune evasion proteins that may fill the
gap of a nuclease dead Nsp15. However, a recent
preprint analyzed transmission dynamics of
SARS-CoV-2 variants and found the H235Y muta-
tion along with several other mutations in that Delta
clade led to transmission suppression compared to
other lineages54, evidence that a lack of Nsp15
activity may contribute to poor viral transmission.
Work to develop virus-like particles to study

SARS-CoV-2 variants found that an important
RNA packaging signal overlaps with the Nsp15
coding sequence55; therefore, variants that do not
affect oligomerization or activity nonetheless could
affect RNA packaging. Similarly, synonymous
amino acid mutations may also result in changes
to RNA packaging. More research is needed to
understand the determinants of that cis-acting ele-
ment55. Additionally, a recent preprint proposes an
RTC model that positions Nsp15 to discriminate
cleavage sites based on RNA structure as opposed
to sequence56. This may be another way that vari-
ants impact function at the RNA level as opposed
to the protein level.
Biochemical and in vivo studies of SARS-CoV-2

protein variants beyond the spike protein will
10
contribute to a fuller picture of how the
coronavirus proteome functions and changes over
time. Recent work analyzing RdRp variants and
the effect on remdesivir inhibition serve as one
example57. Earlier this year a SARS-CoV-2 molec-
ular dynamics database was created that takes
the wealth of bioinformatics data and structural
information we have on SARS-CoV-2 and applied
molecular dynamics simulations to estimate the
impact of variants58. This high-throughput source
of information is a great starting point to better
understand viral protein evolution. The addition of
in vitro data points, like the analyses presented in
this paper, as well as in vivo analyses, to reposito-
ries like this database could facilitate a holistic
understanding of the molecular impacts of viral
mutations.
Materials and Methods

Nsp15 variants analysis

A total of 51,536,473 entries of the SARS-CoV-2
nucleotide sequences were downloaded from
GISAID (version: allnuc0614). The downloaded
data contains the coding sequences for genes
including Nsp15 based on the hCoV-19/Wuhan/
WIV04/2019 reference. Only full-length Nsp15
sequences (1038 bp) were retained for the
downstream analysis, so 1,905,411 entries were
included in the mutational analysis. The
sequences of Nsp15 isolates were then aligned to
that of the original Wuhan isolate (GenBank
NC_045512.2) using the nucmer command from
MUMmer 4.0 package59 with default parameters.
Variant data from the nucmer alignments were gen-
erated using show-snps command and the output
was parsed directly using a custom perl script to
convert MUMmer snps file to a tab delimited vcf-
like table. Protein annotation was included in the
final table (Supplemental File 1). Variants selected
for testing were primarily at the amino acid level.
Mutations that did not result in a specific amino acid
change were discarded. The snps caused the same
amino acid change (i.e. H235Y) were then summed
to provide the total number of isolates per amino
acid mutation. Visualizations of the variants on the
Nsp15 DNA and protein sequences were generated
via the lollipop function in trackViewer R package60.
Protein expression of Nsp15 variants

WT Nsp15 was previously synthesized by
Genscript (Piscataway, NJ), and contains an N-
terminal His tag with thrombin and TEV cleavage
sites in pET14b29. For this study, Genscript mutated
the WT sequence to our variants of interest (Sup-
plemental Table 1). WT Nsp15 and Nsp15 variants
were overexpressed in E. Coli C41 (DE3) compe-
tent cells cultured in Terrific Broth supplemented
with 100 lg/mL ampicillin. Transformed cell cultures
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were grown to an optical density (600 nm) of
0.6–1.0 at 37 �C prior to induction with 0.2 mM IPTG
and overnight incubation at 16 �C. Harvested cells
were stored at �80 �C until needed.
Protein purification

Protein purification was carried out as previously
described29. Cells were resuspended in lysis buffer
(50 mM Tris pH 8.0, 500 mM NaCl, 5% glycerol,
5 mM b-ME, 5 mM imidazole) and then supple-
mented with complete EDTA-free protease inhibitor
tablets (Roche). They were disrupted by sonication
and the lysate was clarified by centrifugation at
15,000 rpm for 50 min at 4 �C, followed by incuba-
tion for 45minutes with a TALONmetal affinity resin
(Clontech). His-Thrombin-TEV-Nsp15 variants
were eluted with 250 mM imidazole and incubated
with thrombin (Sigma) at room temperature in
Thrombin Cleavage Buffer (50 mM Tris pH 8.0,
150 mM NaCl, 5% glycerol, 2 mM b-ME, 2 mM
CaCl2) for a 4 h time period. Thrombin cleavage
was quenched by the addition of 1 mM PMSF
(phenylmethylsulfonyl fluoride). The cleavage reac-
tions were incubated with TALON metal affinity
resin, and tagless protein was eluted in batch and
resolved by gel filtration using a Superdex-200 col-
umn equilibrated with SEC buffer (20 mM HEPES
pH 7.5, 150 mM NaCl, 5 mM MnCl2, 5 mM b-ME).
The peak fraction corresponding to the hexamer
was used in subsequent assays. SDS-PAGE was
used to assess protein purity (Supplemental
Figure 1).
Nsp15 endoribonuclease FRET assay

Real-time Nsp15 RNA cleavage was monitored
as previously described29–30 with minor modifica-
tions to the protocol. The 50-fluorescein (FI) label
on the RNA substrate is quenched by its 30-
TAMRA label (50-FI-AAAUAA-TAMRA-30). A nega-
tive control substrate (50-FI-AAAAAA-TAMRA-30

was also used (no cleavage observed; data not
shown). The FRET RNA substrate (0.8 lM) was
then incubated with a constant amount of Nsp15
variant (2.5 nM) in RNA cleavage buffer (20 mM
HEPES pH 7.5, 75 mM NaCl, 5 mM MnCl2, 5 mM
b-ME) at 25 �C for a 60 min time period. RNA cleav-
age wasmeasured as an increase in fluorescein flu-
orescence. The fluorescence was measured every
2.5 min using a POLARstar Omega plate reader
(BMG Labtech) set to excitation and emission
wavelengths of 485 ± 12 nm and 520 nm, respec-
tively. Three technical replicates were performed
to calculate the mean, standard deviation, and pair-
wise comparison test. (Dunnett’s T3 multiple cor-
rections test, Prism/Graphpad).
Gel-based endoribonuclease assay

Gel-based cleavage assays were performed as
described previously30. Double labeled RNA sub-
11
strates (50-FI and 30-Cy5, 500 nM) were incubated
with Nsp15 (50 nM) in RNA cleavage buffer
(20 mM HEPES pH 7.5, 150 mM NaCl, 5 mM
MnCl2, 5 mM DTT, 1 u/ll RNasin ribonuclease inhi-
bitor) at room temperature for 30 min with the reac-
tion samples collected at 0, 1, 5, 10 and 30min. The
reactions were quenched with 2x urea loading buf-
fer (8 M urea, 20 mM Tris pH 8.0, 1 mM EDTA).
Loading buffer without dye was used due to the
expected size of cleavage products and the size
of bromophenol blue. To monitor the gel front, con-
trol lanes of protein only with bromophenol blue
were run. To generate a ladder, alkaline hydrolysis
of the RNAwas carried out for 15 min at 90 �C using
1 lM RNA in alkaline hydrolysis buffer (50 mM
sodium carbonate pH 9.2, 1 mM EDTA) and
quenched with 2x urea loading buffer. The cleavage
reactions were separated using 15% TBE-urea
PAGE gels and visualized with a Typhoon RGB
imager (Amersham) using Cy2 (kex = 488 nm,
kem = 515–535 nm) and Cy5 (kex = 635 nm,
kem = 655–685 nm) channels.
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