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Abstract

Background: RNases are currently studied as non-mutagenic alternatives to the harmful DNA-damaging anticancer drugs
commonly used in clinical practice. Many mammalian RNases are not potent toxins due to the strong inhibition by
ribonuclease inhibitor (RI) presented in the cytoplasm of mammalian cells.

Methodology/Principal Findings: In search of new effective anticancer RNases we studied the effects of barnase, a
ribonuclease from Bacillus amyloliquefaciens, on human cancer cells. We found that barnase is resistant to RI. In MTT cell
viability assay, barnase was cytotoxic to human carcinoma cell lines with half-inhibitory concentrations (IC50) ranging from
0.2 to 13 mM and to leukemia cell lines with IC50 values ranging from 2.4 to 82 mM. Also, we characterized the cytotoxic
effects of barnase-based immunoRNase scFv 4D5-dibarnase, which consists of two barnase molecules serially fused to the
single-chain variable fragment (scFv) of humanized antibody 4D5 that recognizes the extracellular domain of cancer marker
HER2. The scFv 4D5-dibarnase specifically bound to HER2-positive cells and was internalized via receptor-mediated
endocytosis. The intracellular localization of internalized scFv 4D5-dibarnase was determined by electronic microscopy. The
cytotoxic effect of scFv 4D5-dibarnase on HER2-positive human ovarian carcinoma SKOV-3 cells (IC50 = 1.8 nM) was three
orders of magnitude greater than that of barnase alone. Both barnase and scFv 4D5-dibarnase induced apoptosis in SKOV-3
cells accompanied by internucleosomal chromatin fragmentation, membrane blebbing, the appearance of phosphatidyl-
serine on the outer leaflet of the plasma membrane, and the activation of caspase-3.

Conclusions/Significance: These results demonstrate that barnase is a potent toxic agent for targeting to cancer cells.
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Introduction

Barnase, a ribonuclease from Bacillus amyloliquefaciens, is

synthesized as an active proenzyme, processed by the removal of

the amino-terminal signal peptide, and secreted into the

extracellular space. In this bacterial species, barstar, a specific

intracellular inhibitor of barnase, is produced. Barstar tightly binds

to barnase and thereby inhibits its intracellular enzymatic activity

and protects host cells from the damaging effect of this RNase.

Barnase is a small (110 aa) single-chain protein. It has no disulfide

bonds and requires no post-translational modifications, divalent

cations, or other non-peptide components for its function [1,2].

Due to these favorable features, barnase is active in any cell type in

which it is expressed. The ability of barnase to cleave RNA has

been exploited in a wide variety of bio-applications since

introduction of this enzyme into cells causes cell death. Specific

ablation of particular cells is feasible by directing barnase gene

expression via the use of cell-specific promoters [3–5]. Alterna-

tively, proteins that target barnase to specific cells endow

specificity to barnase action [6–8].

The toxic effect of barnase gene expression was used to design

vectors for positive selection of cloned inserts [9,10], to generate

male and female sterility in plants [11,12], to confer nematode

resistance to crops [13], to produce potent agents for killing the

third instar larvae of the cotton bollworm [14], to study the

diseases caused by the loss of a specific cell type in mammals, and

to eliminate cancer cells [5]. These examples clearly illustrate the

effective and specific elimination of cells in different species by the

use of barnase gene expression; however, little work has been

focused on the effects of exogenous addition of barnase on

malignant and normal mammalian cells. In fact, the examination

of barnase nephrotoxicity is the only published example [15].

Therefore, the goal of this work was to characterize the effects of

the ribonuclease barnase on human cancer and normal cells.

RNases are currently under intense investigation for their

anticancer potential [16,17]. The most promising among them are
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human pancreatic-type RNases well tolerated by the human

immune system. But the cytotoxic potential of many of them is

reduced by their sensitivity to inhibition by cytoplasmic ribonu-

clease inhibitor (RI) found in every mammalian cell studied [18].

Several approaches have been explored to reduce the sensitivity of

pancreatic-type RNases to RI [19–22]. The use of RNases

intrinsically resistant to RI provides another way to overcome this

obstacle. We examined the susceptibility of barnase to RI and

found that barnase is fortunately insensitive to inhibition by RI.

Cancer cells are a specific cell population, characterized by the

presence of tumor-specific promoters and cancer markers. One of

these markers is the HER2 antigen (also called HER-2, ERBB2,

p185HER-2), which is overexpressed in a wide variety of human

neoplasms [23], particularly in ovarian and breast carcinomas

[24,25]. We fused two barnase molecules to single-chain variable

fragment (scFv) of the humanized antibody 4D5, which recognizes

the extracellular domain of HER2, to produce scFv 4D5-

dibarnase [8]. We made an immunoRNase (IR) that included

two ribonucleases per carrier, since specific cytotoxicity is limited

by the cell surface density of the HER2 antigen. This configuration

enabled the introduction of twice the ribonuclease activity into

cells with just one HER2 receptor. As shown previously [26], a

two-fold increase in the number of RNase molecules in the

immunoconjugate potentiated it by fifteen-fold. The purpose of

this study was to examine whether scFv 4D5-dibarnase is able to

interact specifically with HER2-positive human ovarian cells, be

internalized into the cells, and exert cytotoxicity.

Consequently, in this work we estimated advantages of barnase

for developing anticancer drugs and demonstrated the potency of

barnase-based immunoRNase for cancer cell ablation.

Results

Characterization of barnase and scFv 4D5-dibarnase
Recombinant proteins were produced in E. coli and purified as

described in Materials and Methods. The proteins obtained were

of the expected size and homogenous according to SDS-PAGE

(data not shown). The enzymatic activity of prepared barnase was

1.86106 units/mg, which was consistent with previously published

values [27]. The ribonuclease activity of each barnase enzyme in

the scFv 4D5-dibarnase fusion protein was 75% of native barnase

(Figure 1A). The ribonuclease activity of scFv 4D5-dibarnase was

inhibited by barstar (Figure 1B, dashed line). Thus, barnase moiety

of scFv 4D5-dibarnase retained its functionality.

Following penetration into cells, the exogenously added RNase

may fail to be active due to susceptibility to the cytoplasmic

ribonuclease inhibitor [18]. Therefore, before testing the cytotox-

icity of scFv 4D5-dibarnase, we examined the sensitivity of barnase

to human ribonuclease inhibitor (hRI). At a concentration of four

times greater than that required to inhibit RNase A by 50%

(determined according to the manufacturer’s instructions), hRI did

not inhibit barnase (Figure 1B, solid line).

Binding of barnase and scFv 4D5-dibarnase to cells
The binding of barnase and scFv 4D5-dibarnase to HER2-

overexpressing human ovarian carcinoma SKOV-3 cells [28] and

murine CTLL-2 cytotoxic T-cells lacking human HER2 was

determined by fluorescent microscopy. The membrane fluores-

cence of SKOV-3 cells, but not CTLL-2 cells, stained with 20 nM

scFv 4D5-dibarnase was observed (Figure 2, B and D). In controls,

when scFv 4D5-dibarnase or rabbit anti-barnase antiserum were

omitted, no fluorescence was detected in SKOV-3 cells and

CTLL-2 cells (data not shown). The addition of scFv 4D5 to scFv

4D5-dibarnase led to notable quenching of cell membrane

fluorescence (Figure 2, compare B and C), indicating that scFv

4D5-dibarnase bound to the HER2 receptor. No fluorescence was

detected in either SKOV-3 cells or CTLL-2 cells in the presence of

20 nM barnase (data not shown). At barnase concentration of

20 mM, a bright cytoplasmic staining of SKOV-3 cells was

observed (Figure 2E), suggesting penetration of barnase into cells.

Appropriate controls without either barnase or rabbit anti-barnase

antiserum were negative (data not shown).

The interaction of scFv 4D5-dibarnase with HER2-overex-

pressing human breast carcinoma BT-474 cells [25] was studied

by confocal microscopy. BT-474 cells were incubated with 20 nM

scFv 4D5-dibarnase at either 4uC to suppress internalisation or

37uC to let internalization and stained with rabbit anti-barnase

antiserum followed by phycoerythrin-conjugated goat anti-rabbit

IgG. The fluorescence was observed predominantly on the surface

of the cells incubated at 4uC (Figure 3A) and inside the cells

Figure 1. Ribonuclease activity assay. (A) The ribonuclease
activities of barnase (dashed line and diamonds) and scFv 4D5-
dibarnase (dotted line and circles) were determined according to the
method of Rushizky et al. [58]. The x-axis represents the concentration
of barnase alone or the half-concentration of scFv 4D5-dibarnase. The
absorbance of 0.5 AU260 corresponds to the activity of 2 nM native
barnase as previously described [27]. (B) Susceptibility of barnase to hRI
(solid line and circles) and of scFv 4D5-dibarnase to barstar (dashed line
and triangles). Data are means6SD of triplicate determinations; the
curves are the results of sigmoid regression performed with SigmaPlot
software.
doi:10.1371/journal.pone.0002434.g001
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incubated at 37uC (Figure 3B), indicating that scFv 4D5-dibarnase

binds to and penetrates into BT-474 cells. In controls, when scFv

4D5-dibarnase or rabbit anti-barnase antiserum were omitted, no

fluorescence was detected in BT-474 cells (data not shown).

Internalization of scFv 4D5-dibarnase investigated by
electron microscopy

The intracellular localization of scFv 4D5-dibarnase was

explored by electron microscopy. The scFv 4D5-dibarnase was

complexed with gold particles (Au). The scFv 4D5-dibarnase-Au

complex bound to SKOV-3 cells (Figure 4) but did not bind or

penetrate CTLL-2 cells (data not shown) at 4uC and 37uC. Upon

binding of the complex to the cell surface of SKOV-3 cells, the

gold particles were deposited on protrusions and smooth parts of

the cell membrane (Figure 4, A–D). The penetration of scFv 4D5-

dibarnase-Au into SKOV-3 cells was observed at 37uC but not at

4uC, implying that penetration is a temperature-dependent

process. The internalization of scFv 4D5-dibarnase-Au involved

the formation of coated pits (Figure 4D) that budded from the cell

membrane and transformed into coated vesicles (Figure 4E). Inside

the cells, most of the gold particles were located in endosomes

(Figure 4, F and G). A few gold particles were found free in the

cytoplasm adjacent to the endosomes (Figure 4, F and G,

arrowheads). These observations suggest that scFv 4D5-dibarnase

may be released from endosomes into the cytoplasm. The gold

particles also occurred in multivesicular bodies (Figure 4H). Nuclei

were not labeled (Figure 4F).

Effect of barnase and scFv 4D5-dibarnase on cell survival
We investigated the effects of recombinant barnase and scFv

4D5-dibarnase on the survival of different human cancer cell lines.

Human peripheral blood mononuclear cells (hPBMCs) were

Figure 2. Binding of barnase and scFv 4D5-dibarnase to cells. The cell-binding ability of the recombinant proteins demonstrated by
fluorescent microscopy. Cells were incubated at 4uC for 1 h with either 20 nM scFv 4D5-dibarnase (A, B and D), or a mixture of 20 nM scFv 4D5-
dibarnase and 20 nM scFv 4D5 (C), or 20 mM barnase (E). Unbound proteins were removed, and then living (A–D) or fixed (E) cells were stained with
rabbit anti-barnase antiserum and GAR-TR as described in Materials and Methods. The scFv 4D5-dibarnase bound to HER2-positive SKOV-3 cells (A
and B), this specific binding was inhibited by scFv 4D5 (C). The scFv 4D5-dibarnase did not bind to HER2-negative CTLL-2 cells (D). Cytoplasmic
staining of SKOV-3 cells with 20 mM barnase was observed (E). Magnification, 4006.
doi:10.1371/journal.pone.0002434.g002

Figure 3. Binding and internalization of scFv 4D5-dibarnase in BT-474 cells visualized by confocal microscopy. (A) Cells were
incubated with scFv 4D5-dibarnase at 4uC or (B) at 37uC. The scFv 4D5-dibarnase was detected with rabbit anti-barnase antiserum followed by GAR-
PE. Fluorescence was observed predominantly on the surface of cells incubated at 4uC and inside the cells incubated at 37uC. This difference in the
localization of the fluorescent label suggests internalization of scFv 4D5-dibarnase at 37uC in BT-474 cells.
doi:10.1371/journal.pone.0002434.g003
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isolated from the peripheral blood of healthy donors and

immediately used to examine the cytotoxicity of barnase and scFv

4D5-dibarnase on normal human cells. Murine CTLL-2 cytotoxic

T-cells lacking human HER2 were also used. All cell lines and

hPBMCs were incubated with proteins at various concentrations

in complete culture media for 72 h and cell viability was evaluated

in MTT assay (Table 1). The human breast carcinoma BT-474

cells demonstrated the highest sensitivity to barnase

(IC50 = 0.21 mM), the lowest one was shown by the myelocytic

leukemia HL-60 cells (IC50 = 82 mM). For other cancer cell lines,

barnase was toxic with IC50 ranging from 2.4 to 13 mM. The dose-

response curves did not reach saturation plateau, suggesting

nonspecific interaction of barnase with cells. The SKOV-3 cells

showed moderate sensitivity (IC50 = 5 mM), demonstrating more

general response to the barnase-induced cytotoxicity than BT-474

cells. Therefore SKOV-3 cells were used for further characteriza-

tion of the scFv 4D5-dibarnase effects on HER2-overexpressing

cells. For hPBMCs, the maximal cytotoxic effect (27%) was

achieved at 110 mM barnase (Figure 5A, short dashed line) while

for SKOV-3 cells, 1.2 mM of barnase was sufficient to produce the

same effect. Thus, barnase toxicity was two orders of magnitude

greater for human cancer SKOV-3 cells than for hPBMCs.

Exposure of HER2-overexpressing SKOV-3 cells to scFv 4D5-

dibarnase for 72 h demonstrated a dose-dependent cytotoxicity

from 0.1 nM to 20 nM (Figure 5A, solid line). Further increases in

the concentration enhanced the cytotoxicity slightly, pointing to

that the effect of scFv 4D5-dibarnase was limited by the cell

surface density of the HER2 receptor. The IC50 of scFv 4D5-

dibarnase was 1.8 nM, which was 2800 times less than the IC50 of

barnase (Figure 5A, compare solid and long dashed lines). The

BT-474 cells showed the scFv 4D5-dibarnase sensitivity compa-

rable to that of SKOV-3 cells. As IC50 and IC30 of scFv 4D5-

Figure 4. Internalization of scFv 4D5-dibarnase into HER2-positive SKOV-3 cells demonstrated by electron microscopy. SKOV-3 cells
were incubated with 20 nM scFv 4D5-dibarnase-Au for 1 h at 4uC or at 37uC. (A and B) At 4uC, the gold label was deposited on the cytoplasmic
membrane (m) and protrusions (asterisks) but not inside the cell. (C–H) At 37uC, scFv 4D5-dibarnase-Au bound to the cell surface in the same manner
as at 4uC but was also found inside the cells in coated pits (cp) (D), coated vesicles (cv) (E), endosomes (e) (F and G), cytoplasm (c) (F and G,
arrowheads), and multivesicular bodies (MVB) (H). The scFv 4D5-dibarnase-Au was not found in the nucleus (n) (F). Bar, 200 nm.
doi:10.1371/journal.pone.0002434.g004
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dibarnase was 1.3 times higher for BT-474 cells than for SKOV-3

cells but IC70 was 1.5 times lower for BT-474 cells than for

SKOV-3 cells (Table 1). Noteworthy, while effects of barnase

alone on SKOV-3 and BT-474 cells differed 25 times, the scFv

4D5-dibarnase demonstrated similar effects on these HER2-

positive cells. At the same time, HER2-negative hPBMCs were not

affected by scFv 4D5-dibarnase at concentrations up to 2600 nM

(Figure 5A, dashed-dotted line). These findings indicate that the

effect of scFv 4D5-dibarnase was specific and receptor-mediated.

To further confirm that the cytotoxicity of scFv 4D5-dibarnase

was mediated by the interaction of the scFv 4D5 moiety with the

HER2 receptor, we examined the effect of scFv 4D5-dibarnase on

SKOV-3 cells in the presence of scFv 4D5 at a concentration of

300 nM. While scFv 4D5 itself did not affect SKOV-3 cells

(Figure 5B, white squares) at concentrations of 0.1 nM to 2000 nM,

the miniantibody diminished the cytotoxicity of scFv 4D5-dibarnase

in a dose-dependent manner (Figure 5B, white triangles). This

dependence suggests that scFv 4D5 and scFv 4D5-dibarnase

compete for the same binding site and further confirmed the

specific interaction of scFv 4D5-dibarnase with the HER2 receptor.

To determine whether the enzymatic activity of barnase was

essential for cytotoxicity, barstar, a specific inhibitor of barnase,

was utilized. Barstar alone did not inhibit the viability of SKOV-3

cells at concentrations up to 2000 nM. (Figure 5C, black squares).

Addition of barstar to barnase at equimolar amounts abolished

barnase cytotoxicity at a concentration range 0.4–13 mM

(Figure 5C, white triangles). When added in three-fold excess,

barstar reduced the toxic effect of scFv 4D5-dibarnase at

concentrations of 0.6 nM to 80 nM (Figure 5C, black triangles).

The inhibition of scFv 4D5-dibarnase cytotoxicity by barstar and

scFv 4D5 confirmed that both 4D5 scFv and barnase contribute to

the cytotoxicity of scFv 4D5-dibarnase to SKOV-3 cells.

To test whether hRI influences the effects of scFv 4D5-

dibarnase on cancer cells, hRI and scFv 4D5-dibarnase were

incubated at a ratio of 100 units hRI to 1 mg scFv 4D5-dibarnase

for 30 min at 4uC and then were added to the cells. The hRI alone

neither influenced SKOV-3 cell survival (Figure 5D, black

diamonds) nor scFv 4D5-dibarnase cytotoxicity (Figure 5D,

compare black circle and white diamonds).

RNA degradation induced by barnase in SKOV-3 cells
Polyacrylamide gel analysis of total cellular RNA isolated from

SKOV-3 cells demonstrated that cellular RNA undergoes

degradation in cells treated with 50 mM barnase (Figure 6).

Extensive RNA degradation was evident 24 h after exposure of

cells to barnase (lane 3); after 48 h, degradation of cellular RNA

was nearly complete (lane 4). Both low molecular weight tRNA

and 5.8S rRNA, but not 5S rRNA, seemed more susceptible to 24-

h barnase treatment. The appearing of the additional bands (lane

3, asterisks) indicates the enzymatic cleavage of high molecular

weight rRNA by barnase. Digital image analysis of the gel in

Figure 6 (lanes 2 and 3) shows that the relative abundance of

tRNA and 5.8S rRNA was decreased to 30% and 16% of control

cells, respectively, while levels of 5S, 18S, and 28S rRNA were

decreased to 60%, 43%, and 54% of control cells, respectively.

Mechanism of action of barnase and scFv 4D5-dibarnase
on SKOV-3 cells

To identify and characterize the mode of cell death triggered by

barnase or scFv 4D5-dibarnase treatment, SKOV-3 cells were

prepared as described in Materials and Methods. Both barnase

and scFv 4D5-dibarnase induced a characteristic apoptotic

blebbing of the cellular membrane that was detectable in certain

cells as early as 6 h after treatment and continued to be evident for

the following 72 h (Figure 7).

DNA fragmentation in dying cells is a general end point that is

common to both necrotic and apoptotic mechanisms of cell death.

To determine whether barnase and scFv 4D5-dibarnase induce

DNA breaks in SKOV-3 cells, propidium iodide (PI) stained cells

were analyzed for alterations in cell cycle distribution using DNA

content measurements via flow cytometry. Treatment of SKOV-3

Table 1. Cytotoxic activity of recombinant barnase and scFv 4D5-dibarnase proteins1.

Cells2 Type barnase, nM 4D5 scFv-dibarnase-His5, nM

IC30 IC50 IC70 IC30 IC50 IC70

*SKOV-33 ovarian carcinoma 1.56103 5.06103 186103 0.55 1.8 14

HEK293 embryonal kidney 3.06103 106103 466103 74 490 1.86103

*A-431 epidermoid carcinoma 2.56103 106103 636103 .740 - -

*BT-4743 breast carcinoma 0.016103 0.216103 2.06103 0.72 2.4 9.2

MCF7 breast carcinoma 3.16103 136103 406103 .300 - -

LOX malignant melanoma ND ND ND .300 - -

U-937 monocytic leukemia5 1.16103 2.46103 6.26103 .8.16103 - -

HL-60 myelocytic leukemia5 366103 826103 .826103 .8.16103 - -

K-562 erythrocytic-megakaryocytic leukemia5 5.86103 126103 316103 140 460 16103

CTLL-2 murine cytotoxic T-lymphocytes .806103 - - 64 .74 -

hPBMCs4 human peripheral blood mononuclear cells .1106103 - - .2.66103 - -

ND, not determined; -, not reached
1Cell viability assays were performed as described in Materials and Methods. The ICnn is the concentration that results in nn% reduction of cell viability after 72 h of
incubation with protein.

2All the cells, except for CTLL-2, are of human origin; cell lines marked by asterisk were from American Type Cell Collection, the others were from cell collection of
Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russia.

3Cell lines overexpressing HER2.
4hPBMCs were isolated from the peripheral blood of healthy donors.
5Types of myeloid leukemia cell lines are termed according to [60].
doi:10.1371/journal.pone.0002434.t001
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cells with either barnase or scFv 4D5-dibarnase resulted in a

gradual elevation of the proportion of cells in the sub-G1 phase

(cells containing less DNA than 2N), compared with untreated

control cells (Figure 8A). Barnase-treated SKOV-3 cells showed

increases of 2.1%, 4.5%, and 23.9% in the number of cells in sub-

G1 phase and decreases in 4.0%, 0.2%, and 19.5% in the number

of cells in G1 phase of the cell cycle compared with controls after

24, 48, and 72 h of treatment, respectively. Similarly, scFv 4D5-

dibarnase-treated SKOV-3 cells showed increases of 8.5%, 8.1%,

and 19.7% in the number of cells in sub-G1 phase and decreases

of 7.5%, 3.0%, and 20.6% in the number of cells in G1 phase

compared with their respective controls. In addition, the number

Figure 6. Cellular RNA undergoes degradation in SKOV-3 cells
treated with barnase. SKOV-3 cells were exposed to 50 mM barnase
for 24 h (lane 3) or 48 h (lane 4). Total RNA was isolated as described in
Materials and Methods and analyzed on a 9% polyacrylamide gel
containing 7.5 M urea. Each sample lane was loaded with RNA from
26105 treated (+) or untreated (2) cells. Lane 2 corresponds to mock-
treated control. The positions of the RNA molecular weight standards
(lane 1) are shown as the number of bases to the left of panel. Asterisks
indicate the most prominent bands that appear as a result of enzymatic
cleavage of high molecular weight rRNA by barnase (lane 3).
doi:10.1371/journal.pone.0002434.g006

Figure 5. Effects of recombinant proteins on cell viability as
determined by MTT assay. (A) The effects of barnase and scFv 4D5-
dibarnase on the viability of human cancer and normal cells. SKOV-3
cells were treated for 72 h with barnase (long dashed line) or scFv 4D5-
dibarnase (solid line), and hPBMCs were treated with barnase (short

dashed line) or scFv 4D5-dibarnase (dashed-dotted line). (B) The
competitive inhibition of scFv 4D5-dibarnase cytotoxicity by scFv 4D5.
SKOV-3 cells were treated for 72 h with scFv 4D5-dibarnase in the
absence (black circles) or presence (white triangles) of 300 nM scFv 4D5
or with scFv 4D5 alone (white squares). (C) The inhibition of barnase
cytotoxicity and scFv 4D5-dibarnase cytotoxicity by barstar. SKOV-3
cells were treated for 72 h with barnase (white circles), barnase and
equimolar amounts of barstar (white triangles), scFv 4D5-dibarnase
(black circles), scFv 4D5-dibarnase with three-fold molar excess of
barstar (black triangles), or barstar alone (black squares). (D) The effects
of hRI on the cytotoxicity of scFv 4D5-dibarnase. SKOV-3 cells were
treated for 72 h with either scFv 4D5-dibarnase in the absence of hRI
(black circles), scFv 4D5-dibarnase in the presence of hRI (white
diamonds), or hRI alone (black diamonds). Cell viability is expressed as
the percentage of the metabolic activity of treated cells with respect to
untreated cells (crosshair). Each regression curve in panel A (with 95%
confidence intervals indicated by dotted lines) represents at least three
independent experiments. Sigmoid regression was performed with
SigmaPlot software. Curves in B–D represent typical experiments. Error
bars (B–D) were obtained from triplicate measurements.
doi:10.1371/journal.pone.0002434.g005
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of cells in S phase was decreased by 4.9% and 3.1% in barnase-

treated cells after 48 and 72 h, respectively, and by 3.6% in scFv

4D5-dibarnase-treated cells after 48 h. On the other hand, cell

cycle analysis revealed no significant differences in cells in G2/M

stage of the cell cycle between control and treated cells (Figure 8A).

These results suggest that both barnase and scFv 4D5-dibarnase

induced DNA breaks predominantly in G1 cells. In contrast,

serum-starved SKOV-3 cells exhibited an increase in the

percentage of cells in sub-G1 phase (35.7%), accompanying

decreases in the other three phases [G1 (12.7%), S (9.1%), and

G2/M (13.8%)] compared with control cells.

To elucidate which apoptotic or necrotic mode of DNA

fragmentation was triggered by barnase and scFv 4D5-dibarnase,

genomic DNA that was isolated from SKOV-3 cells treated with

either 50 mM barnase or 50 nM scFv 4D5-dibarnase was

electrophoresed through a 1.5% agarose gel (Figure 8B). Seven-

ty-two hours after barnase or scFv 4D5-dibarnase treatment,

SKOV-3 cells displayed characteristic internucleosomal chromatin

cleavage (Figure 8B, lanes 2 and 6), differing from the irregular

DNA cleavage of serum-starved SKOV-3 cells (Figure 8B, lane 7).

Furthermore, treatment of SKOV-3 cells with scFv 4D5-dibarnase

induced a distinct pattern of nuclear pyknosis and fragmentation

(karyorrhexis) as observed by fluorescence microscopy after

staining of cells with acridine orange (Figure 8C).

We also used Annexin-V-FITC/PI staining to measure the

appearance of phosphatidylserine, a marker of apoptosis, on the

outer leaflet of the plasma membrane of SKOV-3 cells (Figure 9,

A–C). Cells treated for 72 h with either 50 mM barnase or 50 nM

scFv 4D5-dibarnase were found to be Annexin-V-FITC positive

and PI negative at a higher percentage (21.7% and 32.7%,

respectively) than in untreated cells (1.5%). These results indicate

that the nature of the cell death induced by both barnase and scFv

4D5-dibarnase is apoptotic. An increase in necrotic cells (Annexin-

V-FITC positive and PI positive) was 2.0% for barnase-treated

cells and 2.6% for scFv 4D5-dibarnase-treated cells compared with

controls, ten-fold less than that for apoptotic cells.

To further investigate the mode of cell death induced by

barnase and scFv 4D5-dibarnase, we measured the activation of

an apoptosis-specific caspase-3 by proteolytic cleavage assay of

PhiPhiLux-G1D2 substrate (Figure 9, D and E). Caspase-3-like

activity was increased by 13.1% for barnase- and by 11.6% for

scFv 4D5-dibarnase-treated SKOV-3 cells compared with un-

treated controls.

In conclusion, the ability of barnase and scFv 4D5-dibarnase to

induce membrane blebbing, the appearance of phosphatidylserine

on the outer leaflet of the plasma membrane, internucleosomal

chromatin fragmentation, and the activation of caspase-3 support

the notion that these proteins trigger apoptotic cell death.

Discussion

Barnase has been successfully employed in a number of studies

for the removal of cells in various species [3–5 and 9–14];

however, the cytotoxic effects of barnase on cancer cells have not

been investigated sufficiently. Here, recombinant barnase was

shown to be toxic to human carcinoma cell lines with IC50 values

ranging from 0.2 to 13 mM and to leukemia cell lines with IC50

values ranging from 2.4 to 82 mM (Table 1). Compared with other

RNases [29], barnase is moderately toxic to human cancer cells.

The effects of barnase on different cancer cell lines varied 400-fold.

The most sensitive cell line was BT-474 (IC50 = 0.21 mM), and the

least sensitive one was HL-60 (IC50 = 82 mM). The wide spread in

the IC50 values for various cells lines is also inherent to the bovine

seminal ribonuclease (BS RNase) and onconase, a ribonuclease

from Rana pipiens. The effects of BS RNase on carcinoma cell lines

varied 570-fold; and effects of onconase on carcinoma and

leukemia cell lines varied 6000-fold [30]. The observed variety in

the susceptibility of cell lines to barnase can be caused by

differences in modifications and/or composition of the cell surface

molecules which determine the binding of barnase to the cell

surface. The manner and strength of the binding influence the

efficiency of cellular uptake of RNase [31] or the internalization

pathway of RNase. This pathway, which determines the

intracellular location and, ultimately, the access to the RNA

substrate, was shown to vary in malignant and normal cells for the

same RNase [32].

To influence cell survival, barnase must first interact effectively

with the cell membrane. The cell-binding ability of RNases

correlates with their net positive charge [33]. The high positive net

charge of barnase (pI ,9) [34] aids its binding to the negatively

charged cell membrane. Cytoplasmic fluorescence was observed in

cells stained with barnase, indicating that barnase penetrated the

cells. Following penetration into the cytoplasm, the RNase would

be able to effectively cleave RNA provided that the RNase is

resistant to RI, a ribonuclease inhibitor that has been shown to

exist in all mammalian cells [18]. We found that barnase was not

inhibited by hRI. This finding is consistent with data for other

members of the N1/T1 ribonuclease family, such as RNase Sa and

RNase Sa3 [35], RNase T1, and ribonuclease U1 [36], which are

unaffected by RI. This ability to escape hRI increases the cytotoxic

Figure 7. SKOV-3 cells treated with either barnase or scFv 4D5-dibarnase for 72 h demonstrated membrane blebbing. (A) The mock-
treated cells were attached to the plate and were flat. (B and C) Cells incubated with either 50 mM barnase or 50 nM scFv 4D5-dibarnase became
rounded and detached. Membrane blebbing (B and C, asterisks) and disrupted cells (B, arrowhead) were observed. Phase-contrast microscopy of a
random field at a magnification of 4006.
doi:10.1371/journal.pone.0002434.g007
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potential of barnase. Besides, barnase possesses the conformational

stability (melting temperature, Tm = 54uC) that resembles that of

the highly toxic G88R mutant of RNase A (Tm = 60uC) [37]. The

stability of the RNase is essential for cytotoxicity since its structure

determines the resistance of the protein to intracellular proteases.

The catalytic activity of barnase [10.96106 M21s21, poly(I)] [38]

markedly exceeds the activity of many RNases and, in particular,

that of the highly toxic onconase [1.46103 M21s21, poly(C)] [37].

Thus, a high positive net charge, resistance to RI, conformational

stability, and high catalytic activity are intrinsic properties of

barnase that are especially suited for cytotoxicity.

An examination of RNA integrity in cells treated with barnase

demonstrated serious RNA degradation, suggesting that barnase

preserved its enzymatic activity in cells, interacted with cellular

RNA, and hydrolyzed it. The abrogation of barnase cytotoxicity

by barstar observed here supports the hypothesis that the

cytotoxicity of barnase is caused by its ribonuclease activity.

Furthermore, a mutant barnase lacking catalytic activity failed to

Figure 8. Barnase and scFv 4D5-dibarnase cause DNA fragmentation in SKOV-3 cells. (A) Flow cytometric analysis of the cell cycle
distribution was performed as described in Materials and Methods. Histograms represent the differences in the percentages of cells between barnase-
or scFv 4D5-dibarnase-treated and untreated cells for each cell cycle stage (sub-G1, G1, S, and G2/M) measured after 24 h (black bars), 48 h (blue
bars), and 72 h (green bars) of treatment. Error bars show the standard deviation. Positive controls for DNA fragmentation were SKOV-3 cells cultured
for 7 days in serum-free medium (orange bars). (B) DNA electrophoresis assay. Cells were treated with either 50 mM barnase or 50 nM scFv 4D5-
dibarnase. Seventy-two hours later, genomic DNA of both treated (+) and untreated (2) cells was isolated and DNA from equal numbers of cells was
resolved in non-denaturing 1.5% agarose gels. The DNA was visualized by ethidium bromide staining. Chromatin fragments resulting from
internucleosomal cleavage were present in samples of DNA from cells treated with barnase (lane 2) and scFv 4D5-dibarnase (lane 6). DNA of serum-
starved (ss) cells were cleaved irregularly (lane 7). Lanes 3 and 5 represent untreated controls. Lanes 1 and 4 are molecular weight markers ((M)
HyperLadder I, Bioline). (C) Cells were exposed to 50 nM scFv 4D5-dibarnase for 72 h and then stained with acridine orange, analyzed by fluorescence
microscopy, and photographed. A representative case of nuclear pyknosis and fragmentation (karyorrhexis) is shown (inset). Magnification, 4006
(12006, inset).
doi:10.1371/journal.pone.0002434.g008
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induce toxicity in isolated perfused kidney [15]. From our results,

barnase did not display a clear preference towards certain cellular

RNA species. This finding is consistent with the preference of

barnase for purine bases; however, barnase does not recognize

specific nucleotide sequences and its base preference is less

pronounced in polynucleotide substrates [38]. Among the well-

characterized in vivo members of the RNase A superfamily, BS

RNase predominantly cleaves 18S and 28S rRNA [39] and

onconase cleaves primarily tRNA [40]. In fact, the inhibition of

protein synthesis by onconase correlates with the dose which

results in rRNA degradation [41].

Interestingly, barnase in the MTT assay proved to be selectively

cytotoxic for cancer cells. Indeed, 100 mM barnase inhibited the

survival of cancer cells (except HL-60 cells) by more than 70%

while it inhibited the survival of hPBMCs by only 26%. Selectivity

toward cancer cells was also reported for BS RNase [42] and for

binase [43], a ribonuclease from Bacillus intermedius that shares 82%

amino acid identity with barnase [44]. As barnase, these RNases

have high positive net charges [29]. Cancer cells expose more

negatively charged phospholipids [45] as well as more glycolipids

and glycoproteins [46,47] on the outer plasma membrane than do

normal cells. This feature may be one of the reasons for the

observed selectivity of cationic RNases and, in particular, of

barnase toward cancer cells. Another noteworthy fact is that

barnase exhibited the lowest toxicity to HL-60 cells, which

proliferated more slowly than other human cancer cells tested.

Similarly, onconase was shown to preferentially kill actively

proliferating cells [48]. The rapid proliferation of cancer cells

could make them more reliant on the integrity of their RNA.

To endow specificity to barnase action we previously fused it to

single-chain variable fragment of 4D5 antibody recognizing

extracellular domain of HER2 receptor [8]. Here, we evaluated

the effects of anti-HER2 immunoRNase scFv 4D5-dibarnase on

human cells.

ERB-hRNase, an immunoRNase based on RI-sensitive human

pancreatic RNase, has been satisfactory tested on HER2-positive

carcinoma cells. The cytotoxicity displayed by ERB-hRNase could

be presumably explained by the steric hindrance of the interaction

between hRNase and RI caused by the ERB antibody moiety.

Recently, the authors have found out that ERB-hRNase is

inhibited by RI, but the level that this IR reaches in the cytosol

neutralizes RI [49]. Having chosen RI-resistant barnase as a toxin

moiety, we produced the first IR targeted to HER2 and benefiting

in cytotoxicity from its RI-resistance.

Analysis of the functional activity of scFv 4D5-dibarnase

revealed that the antibody moiety kept the ability to bind to

HER2 [8]. We found that each barnase in the fusion protein

retained 75% of activity of barnase alone, similar to results

reported for another IR targeted to HER2 [50]. The ribonuclease

activity of scFv 4D5-dibarnase was inhibited by barstar, suggesting

that barnase in this IR retained its ability to bind barstar.

We have shown that scFv 4D5-dibarnase bound to HER2-

positive cells and that this binding was inhibited by scFv 4D5. The

scFv 4D5-dibarnase penetrated HER2-positive SKOV-3 cells

through coated pits and coated vesicles. This internalization was

temperature-dependent. The scFv 4D5-dibarnase did not bind or

penetrate HER2-negative cells. Taken together, these results

suggest that scFv 4D5-dibarnase interacts with HER2 receptor

Figure 9. Barnase and scFv 4D5-dibarnase induced apoptosis accompanied by phosphatidylserine externalization and caspase-3
activation. (A–C) SKOV-3 cells were mock-treated (A) or treated with either 50 mM barnase (B) or 50 nM scFv 4D5-dibarnase (C) for 72 h. Cells were
analyzed for early apoptosis by Annexin-V-FITC/PI staining. The lower left quadrants of each panel show the viable cells, which exclude PI and are
negative for Annexin-V-FITC binding. The upper right quadrants contain the non-viable, necrotic cells, which are positive for both Annexin-V-FITC
binding and PI uptake. The lower right quadrants represent apoptotic cells, Annexin-V-FITC positive and PI negative. One representative experiment
out of three is shown. (D and E) Caspase-3-like enzymatic activities of cells treated with either 50 mM barnase (D, unfilled peak) or 50 nM scFv 4D5-
dibarnase (E, unfilled peak) for 72 h were assessed by the cleavage of the fluorogenic substrate PhiPhiLux-G1D2 and compared with that of untreated
cells (filled peaks). M1 and M2 markers correspond to levels of caspase-3 activation in untreated and treated cells, respectively.
doi:10.1371/journal.pone.0002434.g009
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and penetrates cells via specific receptor-mediated endocytosis.

The majority of internalized scFv 4D5-dibarnase was found in

endosomes, presumably from which the IR was released into the

cytoplasm where it reached the RNA substrate and caused

cytotoxicity.

The cytotoxicity of anti-HER2 targeted barnase to SKOV-3

cells was three orders of magnitude greater than barnase alone. A

comparable increase was observed for RNase A targeted with

transferrin or different antibodies to cells expressing transferrin

receptor [26,51]. The specific barnase inhibitor barstar abrogated

this cytotoxic action while hRI did not. Consequently, the

ribonuclease activity of scFv 4D5-dibarnase is essential for its

cytotoxicity.

While the effects of barnase alone on SKOV-3 and BT-474 cells

differed 25 times, scFv 4D5-dibarnase demonstrated similar

specific cytotoxicity to both HER2-overexpressing cell lines, what

agrees with comparable expression levels of HER2 receptor

demonstrated immunohistochemically for these cell lines [52]. The

cytotoxicity of scFv 4D5-dibarnase corresponded to HER2

expression levels of the cell lines tested. In particular, SKOV-3

cells, which transcribe approximately 60 times more HER2

mRNA than do HEK293 cells [53,54], were 270 times more

susceptible to scFv 4D5-dibarnase. Similar correlations were also

observed for SKOV-3 and K-562 cell lines (Table 1). Having no

effect on cell viability the scFv 4D5 diminished the cytotoxicity of

scFv 4D5-dibarnase to HER2-positive cells in a dose-dependent

manner. These results confirm that the action of scFv 4D5-

dibarnase is receptor-mediated. Furthermore, the scFv 4D5-

dibarnase did not exhibit cytotoxic effects on hPBMCs even at

2600 nM whereas this IR was able to reduce SKOV-3 cell survival

by 50% at 1.8 nM. Thus, scFv 4D5-dibarnase demonstrated a

greater than 1400-fold specificity toward HER2-overexpressing

cancer cells compared with normal cells.

The IC50 values of different RNases targeted to various human

carcinomas ranged from 0.3 nM to 1000 nM [30]. For instance,

in HER2-overexpressing breast carcinoma SK-BR-3 cells, the

IC50s of hERB-hRNase and ERB-HPR, fusion proteins consisting

of human pancreatic RNase and scFv antibodies for specific

targeting to HER2, were 12.5 nM and 50 nM, respectively

[55,50]. Taken together, these data suggest that scFv 4D5-

dibarnase is a highly cytotoxic immunoRNase.

To identify and characterize the mode of cell death triggered by

barnase and scFv 4D5-dibarnase, we determined whether protein-

treated cells display characteristic features of apoptosis. SKOV-3

cells treated with either barnase or scFv 4D5-dibarnase displayed

membrane blebbing, the appearance of phosphatidylserine on the

outer leaflet of the plasma membrane, internucleosomal chromatin

fragmentation, and the activation of caspase-3, suggesting that

both proteins induce apoptosis.

We examined alterations in the cell cycle distribution of SKOV-

3 cells in asynchronous culture and found that cells in G1 phase

were more susceptible to treatment with barnase and scFv 4D5-

dibarnase compared with cells in other phases. Cells in G1 phase

actively synthesize RNA for their further transition to S phase. For

this reason, the hydrolysis of cellular RNA by barnase inhibited

the G1 to S phase transition (antiproliferative effect), which was

accompanied by a decrease in the amount of cells in S phase.

However, this effect did not lead to the accumulation of G1 phase

cells since these cells underwent apoptosis (cytotoxic effect of

barnase). While one should not exclude the induction of apoptosis

in S phase cells since the amount of G2/M phase cells were

unaltered compared with untreated cells, barnase did not likely

inhibit the S- to G2/M- and to G0/G1- phase transitions. Since

the effect of barnase depends on the particular cell cycle stage,

apoptosis is prolonged in asynchronous culture. The presence of

the hallmarks of both early and late apoptosis in treated cells

supports the latter statement.

Cell death through apoptosis was shown for a number of other

proteins with RNase activity, such as onconase [56], binase [43],

and the immunoRNase hERB-hRNase [49]. The most interesting

property of RNases is their potential use as non-mutagenic

alternatives to the harmful DNA-damaging cancer chemo- and

radiotherapies.

Based on the effectiveness and selectivity of the cytotoxic effects

of scFv 4D5-dibarnase on target cancer cells, we present a

potentially valuable tool for cancer immunotherapy. Thus, here

we demonstrated that the scFv 4D5-dibarnase fusion protein is

successful example of the specific targeting of barnase to cancer

cells. The efficacy of scFv 4D5-dibarnase should be further

evaluated against human tumor xenografts in mice. The fusing of

barnase with scFvs recognizing various cancer markers will enable

the generation of new promising anticancer immunoRNases.

Materials and Methods

Materials
The following materials were used: torula yeast RNA

(Boehringer Mannheim, Germany); human ribonuclease inhibitor

(hRI; Promega); chromatographic media and columns (Amersham

Biosciences); Ni-NTA Agarose (QIAGEN AG, Switzerland);

lysozyme (Biolar, Russia); RPMI-1640 medium (PanEco, Russia);

X-VIVO 15 medium (Cambrex); fetal calf serum (FCS; HyClone,

Belgium); L-glutamine (Flow Laboratories, UK); recombinant

interleukin-2 (IL-2; Biotech, Russia); phosphate buffered saline

(PBS; PanEco, Russia); goat serum (DakoCytomation); phycoer-

ythrin-conjugated goat anti-rabbit IgG (GAR-PE) (Santa Cruz

Biotechnology); RNA molecular weight standard 0.16–1.77 kb

(GibcoBRL); DNA molecular weight marker HyperLadder I

(Bioline); RNase A (Fermentas, Lithuania); fluorescein isothiocy-

anate (FITC)-labbelled Annexin V and propidium iodide

(Molecular Probes); PhiPhiLux-G1D2 (OncoImmunin, Inc., Gai-

thersburg, MD). Isopropylthio-b-D-galactoside (IPTG), 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT),

Texas Red-conjugated goat anti-rabbit polyclonal antibodies

(GAR-TR), acridine orange, bovine serum albumin (BSA),

saponin, and other chemicals were obtained from Sigma. Rabbit

anti-barnase antiserum was kindly provided by Dr. R. W. Hartley

from the National Institutes of Health, Bethesda, Maryland, USA.

Protein expression and purification
Wild-type barnase was produced in E. coli strain TG1

transformed with the pPBa (provided by Dr. A. A. Schulga)

plasmid that was developed for high-yield thermoinducible

expression of barnase. Barnase was extracted and purified from

culture media following the method of Hartley [27] with slight

modifications. The protocol was scaled down to a 10-l culture in

shaking flasks. Also, acetic acid was used instead of sulfuric acid

during the acidification step. The mutant barstar C40/82A (here

referred to as barstar) was expressed in E. coli strain HB101

carrying the plasmid pMT643 (a gift of Dr. R. W. Hartley). The

protein was isolated from the supernatant of sonicated bacteria.

The supernatant was fractionated with ammonium sulfate. The

fraction of 35–70% saturation of ammonium sulfate was purified

by gel-filtration on a Sephacryl S-200 HP (XK-16/100) column.

Next, an anion exchange chromatography was performed on a Q-

Sepharose FF column.

The plasmid encoding scFv 4D5 with a His5 tag (provided by

Prof. A. Plückthun) was used to produce scFv 4D5 as described in
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[57]. The scFv 4D5-dibarnase with a C-terminal His5 tag was

produced in E. coli strain SB536 (provided by Prof. A. Plückthun)

transformed with plasmid pSD-4D5 scFv-dibarnase-His5 [8]. The

bacteria were grown on selective agar with 1% glucose and were

transferred to YTPS media (1% triptone, 1% yeast extract,

45 mM K2HPO4, 5 mM KH2PO4, 0.1 M NaCl, and 100 mg/ml

ampicillin) supplemented with 1% glucose and cultivated for 12 h

at 28uC. This culture, which typically reached 6 absorbance units

(AU) at 550 nm, was diluted to an A550 = 0.17 AU in YTPS media

with 2 mM MgCl2 and cultivated further to an A550 = 1.2 AU.

Then, scFv 4D5-dibarnase expression was induced with the

addition of 1 mM IPTG. The bacteria were then grown at 26uC
for 12 h. Periplasmic proteins from harvested bacteria were

extracted with 0.5 mg/ml lysozyme in TBS (30 mM Tris, 20 mM

KH2PO4, 0.15 M NaCl, pH 7.8) by gentle mixing on ice for

40 min. The extract was clarified by centrifugation and supple-

mented with 0.05% Tween 20, 10% glycerol, 0.25 M NaCl, and

20 mM imidazole. The pH was adjusted to 7.8 at 4uC. The extract

was applied to a column containing Ni-NTA Agarose and the

column was washed first with high salt buffer (25 mM Tris,

20 mM KH2PO4, 0.5 M NaCl, 20 mM imidazole, 0.1% Tween

20, 10% glycerin, pH 7.8) and then with LSW buffer (25 mM

Tris, 20 mM KH2PO4, 0.1 M NaCl, 10% glycerin, pH 7.8).

Barstar that had bound scFv 4D5-dibarnase was removed via

washing with 6 M guanidinium hydrochloride in LSW, and the

protein bound to the column was refolded with a ten column

volume (CV) linear gradient of guanidinium hydrochloride (6–

0 M) in LSW at 3 cm/h. Then, the scFv 4D5-dibarnase was

eluted with a 10 CV linear gradient of imidazole (0–0.2 M) in

LSW at 3 cm/h. The peak corresponding to 0.1 M imidazole was

pooled, ultrafiltered, and equilibrated on a PD10 column in

storage buffer (25 mM K2HPO4, 23 mM MOPS, 0.1 M NaCl,

10 mM EDTA, 40% glycerin, pH 7.4).

The purity of all prepared recombinant proteins was verified by

SDS-PAGE. Protein concentrations were determined by absor-

bance at 280 nm using the following extinction coefficients:

101407 for scFv 4D5-dibarnase (54 kDa), 49410 for scFv 4D5

(28 kDa), 26030 for barnase (12.4 kDa), and 20910 for barstar

C40/82A (10.2 kDa).

Ribonuclease activity assay
A ribonuclease activity of barnase and scFv 4D5-dibarnase was

tested by the acid-insoluble RNA precipitation assay described in

[58] on yeast RNA, but all volumes were scaled down five-fold. To

determine whether hRI was able to inhibit barnase, serial two-fold

dilutions of hRI (starting at 80 units) were preincubated with

90.5 ng (7.3 pmol) barnase and were then used in the Rushizky

assay. The manufacturer (Promega) defined one unit of hRI as the

amount that inhibits the activity of 5 ng (0.365 pmol) RNase A by

50%. To determine whether scFv 4D5-dibarnase was inhibited by

barstar, scFv 4D5-dibarnase at a constant concentration of

12.5 nM was incubated with serial two-fold dilutions of barstar

(maximum dose 315 nM). These mixtures were then used in the

Rushizky assay. One unit of barstar is defined as an equimolar

barnase amount [59].

Cells and incubation conditions
Human peripheral blood mononuclear cells (hPBMCs) were

isolated from blood of healthy donors by centrifugation through

Ficoll-Paque PLUS (GE Healthcare, UK) and immediately used to

examine the cytotoxicity of proteins. The cell lines listed in Table 1

(except hPBMCs) were maintained in RPMI-1640 medium

supplemented with 10% FCS and 2 mM L-glutamine. Medium

for CTLL-2 contained 100 units/ml IL-2. Cells were incubated in

a 5% CO2 atmosphere at 37uC. The myeloid leukemia cell lines

listed in Table 1 were termed according to [60].

Determination of the binding by fluorescence
microscopy

Cells were incubated in PBA (PBS with 1% BSA) with either

barnase (20 nM or 20 mM), or 20 nM scFv 4D5-dibarnase, or a

mixture of scFv 4D5-dibarnase and scFv 4D5 at a final

concentration of 20 nM each for 1 h at 4uC. Next, these cells

were incubated with secondary rabbit anti-barnase antiserum

(1:500) and then with GAR-TR (1:1000) for 1 h at 4uC. After each

incubation, the cells were washed twice with ice-cold PBS. For

controls, either recombinant proteins, or rabbit anti-barnase

antiserum, or both were omitted. To study barnase interaction

with cells, SKOV-3 cells were incubated in PBA with 20 mM

barnase for 1 h at 4uC. These cells were then washed with PBS

three times and fixed with 2% paraformaldehyde in PBS for

30 min at room temperature (RT). The cell membranes were

permeabilized in PBS containing 0.2% saponin and 5% goat

serum for 20 min at RT. Cells were then stained at RT in the

same solution with the antibodies as specified above. Cells were

analyzed using an inverted fluorescence microscope Axiovert 200

(Zeiss, Germany). Images were captured using a CCD camera

(AxioCam HRc, Zeiss, Germany) and AxioVision software (Zeiss,

Germany). Images were further processed using Adobe Photoshop

software (Adobe Systems, Mountain View, CA).

Determination of the binding and internalization of scFv
4D5-dibarnase in cells by confocal microscopy

Cells were grown to 60% confluency in the Lab-Tek II chamber

slide system (Nalge Nunc International), incubated with 20 nM

scFv 4D5-dibarnase at 4uC for 1 h, washed, and incubated for

30 min at either 4uC or 37uC. Cells then were washed, fixed, and

permeabilized as described in [61]. The scFv 4D5-dibarnase was

detected with rabbit anti-barnase antiserum (1:500) followed by

GAR-PE (1:400). After incubation with the antibodies at 4uC, 1 h

each, the cells were washed twice with ice-cold PBS. For controls,

either recombinant proteins, rabbit anti-barnase antiserum, or

both were omitted. The slides were analyzed with a Nikon Eclipse

TE2000 confocal microscope.

Electron microscopy
Colloidal gold particles (10 nm) were prepared as described

[62], complexed with scFv 4D5-dibarnase molecules, and purified

in accordance with the recommendation of Slot and Geuze [63].

Cells were incubated in PBA with 20 nM scFv 4D5-dibarnase-

gold complex (scFv 4D5-dibarnase-Au) for 1 h at either 4uC or

37uC. Then, the cells were washed twice with PBS, collected by

centrifugation, fixed with 2% glutaraldehyde in PBS for 2 h, and

post-fixed in 1% osmium tetroxide for 1 h. After dehydration in a

series of increasing concentrations of ethanol, cells were embedded

in Epon-Araldite according to a standard procedure. Ultrathin

sections were stained using aqueous uranyl acetate and lead citrate

and then were examined using a JEOL 100 CX electron

microscope (JEOL, Japan) at 80 kV. Images were processed using

Adobe Photoshop software (Adobe Systems, Mountain View, CA).

Cell viability assay
The cytotoxicity of the proteins was estimated by MTT assay as

previously described [64]. The proteins in RPMI-1640 or X-

VIVO 15 medium were added to the cell lines or hPBMCs,

respectively. The media were supplemented with 10% FCS and

2 mM L-glutamine. Media for CTLL-2 and hPBMCs contained
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100 units/ml IL-2. The incubation time for both CTLL-2 cells

and hPBMCs with MTT was 2.5 h while other cell lines were

incubated with MTT for 1 h. The A540 was measured with a

Multiscan MCC/340 plate reader (Titertek, UK). The experi-

ments were carried out in triplicate. Data (means6SD of

triplicates) are expressed as the percentage of untreated controls.

Preparation of SKOV-3 cells for the determination of
mechanisms of cytotoxicity

Exponentially growing SKOV-3 cells were seeded at 30–40%

confluence in 6-well plates. After an overnight incubation, the

medium was changed and cells were cultured in the presence of

either 50 mM barnase or 50 nM scFv 4D5-dibarnase for 24, 48, or

72 h (the time periods indicated in the figure legend). Both

adherent and floating cells were harvested in PBS containing

5 mM EDTA, washed twice with cold PBS, and used for isolation

of RNA, DNA, or for flow cytometry assays. SKOV-3 cells that

were collected after 7 days of serum deprivation were used as

positive controls for DNA fragmentation.

RNA degradation assay
Aliquots of 26105 treated or mock-treated cells were processed

for isolation of total RNA as described previously [65]. RNA

pellets were dissolved in formamide buffer (95% formamide,

5 mM EDTA, 0.025% SDS, and 0.01% bromophenol blue) at

65uC for 10 min and the samples were loaded onto a 9%

polyacrylamide gel containing 7.5 M urea. Gel images were

analyzed by ImageJ software (Wayne Rasband National Institutes

of Health). The percentage of degradation was calculated with

respect to mock-treated controls. The alterations in the integral

brightness of the corresponding RNA bands were analyzed.

Measurement of DNA fragmentation by flow cytometry
After harvesting, cells were fixed in cold 70% ethanol and stored

at 220uC. Prior to analysis, cells were washed with PBS and

treated with 50 mg/ml RNase A in PBA for 30 min at 37uC. Cells

were then stained with 10 mg/ml propidium iodide for 5 min and

analyzed immediately with a FACScan flow cytometer (Becton

Dickinson). For each determination, 104 cells were counted. Cell

cycle distribution percentages were calculated using Cell Quest

software (Becton Dickinson). To calculate the alterations in the cell

cycle distribution, the respective untreated controls were subtract-

ed from the samples.

Detection of apoptosis
Cell morphologies of treated and untreated cells were analyzed

by phase contrast light microscopy using an inverted Axiovert 200

microscope. The DNA laddering assay and the incorporation of

acridine orange into nuclear DNA were performed as described

[56]. Apoptosis was quantified using the Vybrant Apoptosis Assay

Kit #3 (Molecular Probes) according to the manufacturer’s

instructions. Caspase-3-like enzymatic activities were assessed by

the cleavage of the fluorogenic substrate PhiPhiLux-G1D2

(OncoImmunin, Inc.) according to the manufacturer’s instruc-

tions. Labeled cells were analyzed by flow cytometry as described

above.
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