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h i g h l i g h t s

� We investigated a two-dimensional
Gross-Pitaevskii equation with time-
varying trapping potential in the
Bose-Einstein condensation.

� The Hirota bilinear method is
established to solve the two-
dimensional Gross-Pitaevskii
equation and its parabolic soliton,
line-soliton and dromion-like
structure can be exhibited via some
appropriate parameters chosen. Their
interaction structures are discussed.

� The interaction of two-soliton
solutions is investigated through
asymptotic analysis.
g r a p h i c a l a b s t r a c t

Interaction of two solitons with different structures is exhibited. By adjusting the corresponding param-
eters, distinct solitons and their interaction can be achieved. It can also simulate a process of energy con-
centration of solitons at different times.
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Introduction: The Gross-Pitaevskii equation is a class of the nonlinear Schrödinger equation, whose exact
solution, especially soliton solution, is proposed for understanding and studying Bose-Einstein conden-
sate and some nonlinear phenomena occurring in the intersection field of Bose-Einstein condensate with
some other fields. It is an important subject to investigate their exact solutions.
Objectives: We give multi-soliton of a two-dimensional Gross-Pitaevskii system which contains the time-
varying trapping potential with a few interactions of multi-soliton. Through analytical and graphical
analysis, we obtain one-, two- and three-soliton which are affected by the strength of atomic interaction.
The asymptotic expression of two-soliton embodies the properties of solitons. We can give some
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Exact bright soliton solutions
Multi-soliton interactions
Asymptotic analysis
Bose-Einstein condensation
interactions of solitons of different structures including parabolic soliton, line-soliton and dromion-like
structure.
Methods: By constructing an appropriate Hirota bilinear form, the multi-soliton solution of the system is
obtained. The soliton elastic interaction is analyzed via asymptotic analysis.
Results: The results in this paper theoretically provide the analytical bright soliton solution in the two-
dimensional Bose-Einstein condensation model and their interesting interaction. To our best knowledge,
the discussion and results in this work are new and important in different fields.
Conclusions: The study enriches the existing nonlinear phenomena of the Gross-Pitaevskii model in Bose-
Einstein condensation, and prove that theHirota bilinearmethod and asymptotic analysismethod are pow-
erful and effective techniques in physical sciences and engineering for analyzing nonlinear mathematical-
physical equations and their solutions. Theseprovide avaluable basis and reference for the controllability of
bright soliton phenomenon in experiments for high-dimensional Bose-Einstein condensation.
� 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Some specific nonlinear wave models, e.g. soliton, is a com-
mon localized wave and arises from the balance between nonlin-
ear and dispersive effects [1]. Solitary waves are largely put to use
to understand and describe various phenomena in science and
engineering fields such as Bose-Einstein condensate (BEC)
[2,3,4], plasma physics [5], hydrodynamics [5,6], fluid mechanics
[7] and nonlinear optics [8,9,10,11,12]. In particular, the study
and development of optics including pulsed fiber lasers [8], opti-
cal communications [9,10], all-optical switches [11] and nonlinear
fibers [12] depend on research of novel multi-soliton interaction
phenomena. Nowadays, the search for soliton solutions of nonlin-
ear equations takes a leading contribution in mathematics and
physics. Therefore, some effective and capable methods have
been established for attaining the soliton solutions of nonlinear
equations in the years past, such as, Hirota bilinear method, Dar-
boux transformation, inverse scattering transforms, the extended
tanh-function scheme, expa-function, unified methods, general-

ized exponential rational function method, ðG0
=GÞ-expansion

method, the function ansatz method, trial function method,
improved tan / gð Þ=2ð Þ-expansion method, Lie symmetry method,
generalized Kudryashov method, sine-Gordon expansion
approach, modified auxiliary expansion method, Bernoulli sub-
equation function method and so forth [13–22]. Abundant soli-
tary wave structure can be obtained by the above analytical
methods, and some numerical methods have also proved their
correctness [15,16,23–26].

In different specializations of BEC, the Gross-Pitaevskii equa-
tion (GPE) has been proposed [27–30] and used to describe the
wave dynamics in BEC, or the phenomena occurring in the inter-
section field of BEC with nonlinear optics, wave physics, and non-
linear science. Because the condensate is a good control medium
for some nonlinear wave phenomena including bright-soliton,
dark-soliton, four-wave mixing, and their dynamic [30], these
exact or numerical soliton solutions of GPE is an important non-
linear wave model in BEC and have received extensive attention
and research since the BEC first discovered in dilute atomic gases
in 1995 [30–33]. Indeed, some experimental results show that
stable bright soliton or dark soliton [34–38] can be excited in
BEC For example, Cornish et al. [34] observed stable bright soli-
tons in the ultra-cold 85RB BEC system by using the Feshbach
resonance technique. Strecker et al. [35] and Khaykovich et al.
[36] used the Feshbach resonance technique to adjust the interac-
tion between atoms and for the first time experimentally
observed stable bright solitons in BEC of 7Li. Denschlag et al.
[37] and Burger et al. [38] use the phase imprinting method to
obtain stable bright soliton and dark soliton in BEC, respectively.
Interestingly, even in experiments, theoretical research is insepa-
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rable from the GPE [36–38]. Therefore, the study of GPE provides
an important reference value for predicting and describing non-
linear phenomena related to experiments, which constitutes the
subject of this article.

In this article, we will study some analytical bright soliton solu-
tions and their interaction phenomena in a high-dimensional BEC
trapped in an external potential. Considering the following high-
dimensional GPE [30,39,40],

i�h
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where �h is the Planck constant,W ¼ Wðr; TÞ is the macroscopic wave
function, m is mass of an atom, and external potential Vext ¼ VextðrÞ,
r ¼ ðX;Y ; ZÞ, i2 ¼ �1. The coefficient g of nonlinearity strength in the
GPE is given by g ¼ 4p�ha=m, which may be negative or positive, and
this is because the scattering length is different, in the other word,
one can be a < 0 (e.g., for Li BEC) or a > 0 (e.g., for Rb or Na BEC). In
addition, it has two other terms to explain it, which correspond to
focusing and defocusing nonlinearities in nonlinear optics, or to
attractive and repulsive interactions between atoms, respectively

[4]. The total number of atoms of GPE conserves N ¼ R jWj2dr.
Assuming the external potential Vext ¼ mðx2

r r
2 þx2

ZZ
2Þ=2, where

r2 ¼ X2 þ Y2, the confinement frequencies in the axial and radial
directions are, respectively, xZ and xr . By separating the macro-

scopic wave function W ¼ W
�
ðX;Y; TÞf ðZÞ, where ½f ðZÞ� is ground

state of the axial harmonic trapping potential. The system can be
described by a two-dimensional GPE [39,40],
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where g ¼
R

jf ðZÞj4dZR
jf ðZÞj2dZ. Introducing wave function transformation and

coordinate transformation,

X ¼
ffiffiffiffiffiffiffiffiffiffi
�h

mxz

s
x;Y ¼

ffiffiffiffiffiffiffiffiffiffi
�h

mxz

s
y; T ¼ t

xZ
;w ¼ W

� ffiffiffiffiffiffiffiffiffiffi
mxz

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�hpl0g

p ð3Þ

here, we can choose a constant lengthl0, which is used to measure
the scattering length of s-wave with time-dependent, then, Eq. (2)
can be reduced to the following variable coefficient system [39,40],

i
@w
@t

þ 1
2

@2w
@x2

þ @2w
@y2

 !
� 1
2
X2ðtÞðx2 þ y2Þw� aðtÞ wj j2w ¼ 0 ð4Þ

where XðtÞ ¼ xr=xZ is an arbitrary function that only depends on t,
w is the function of the time variable x, y and t,aðtÞ ¼ aðtÞ=l0.
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The study of GPE mainly lies in the difference of external poten-
tial fields. Guo et al. investigate ring dark solitons for the GPE with
a harmonically trapped inhomogeneous system with time-
dependent nonlinearity [41]. The soliton-like solutions in the
nonlocal GPE with parity-time-symmetric external potentials are
constructed by Yu [42]. Su et al. found nonautonomous solitons
in the GPE with harmonic and linear external potential [43], after
this, Xu and Chen studied coupled GPE with the same external
potentials and their soliton solutions [44]. The couple GPE with a
harmonic potential and its dark-bright soliton solutions are inves-
tigated by Alotaibi and Carr [45]. Stable light-bullet solutions and
the localized spatial solitons are obtained in the harmonic and
parity-time-symmetric potentials by Dai et al [46]. Dark solitons
in three-component GPE by an optical dipole trap with the repul-
sive interactions are given by Yuan et al [47].

For a large number of nonlinear systems, including not only GPE
but also Korteweg-de Vries (KdV) equation, ZK-BBM equation,
Hirota-Maccari (HM) equation, etc., some interesting soliton struc-
tures are discovered via methods mentioned above, such as bell
shape bright-dark soliton, rational soliton, periodic soliton, kink
soliton, W-shaped soliton, V-shaped soliton, ring soliton,
nonautonomous soliton and so on [18–21,39]. Moreover, in Refs.
[13,14], the Hirota bilinear method is used to extract
ump-periodic solitons, breather solitons in (2 + 1)-dimensional
generalized fifth-order KdV equation and multi-waves
solutions, exponential function solutions in (2 + 1)-dimensional
Kadomtsev-Petviashvili equation, respectively. These solitons
exhibit a bell-shaped soliton structures and it can understand
some wave behavior in shallow water and fluid dynamics. And
some approximate soliton solutions and methods for the KdV hier-
archy equation [23], KdV and related problem [24] are studied by
some approximate method. Some complex, hyperbolic and dark
soliton solutions have been extracted for generalized Calogero-
Bogoyavlenskii-Schiff equation in Ref. [22]. Refs. [25,26,48] use
Abel-Riemann, Riesz-Feller, Caputo-Fabrizio fractional derivative
operator to investigate soliton solutions for some different
systems, respectively.

Unlike the works mentioned above, GPE (4) is a two-
dimensional nonlinear equation under the BEC system, and has dif-
ferent external potential from GPE in Refs. [41–47]. However, most
of these solitons are found in one-dimensional GPE models. In BEC,
solitons in one-dimensional systems are generally considered to be
stable. However, it is difficult to stabilize solitons in two-
dimensional or above systems [41]. Hence, it is necessary to study
the theory of high-dimensional GPE. The bell-shaped bright soliton
of Eq. (4) can be stabilized via Feshbach resonance [49]. In Ref. [39],
via the numerical simulation, the ring dark solitons of Eq. (4) have
been studied. Ref. [40] investigates high-dimensional line rogue
wave solutions for Eq. (4). However, the dynamics of detected
soliton have been studied extensively, hence, discovering and
investigating novel soliton structures has become one of the neces-
sary conditions to stimulate the development of physics. Recently,
new parabolic solitons and dromion-like structures solitons are
discovered in the optical system [11]. To our best knowledge,
soliton structures of such a kind have not been reported for two-
dimensional GPE system (4). The aim and motivation of this work
are to rich the exact soliton interaction structures and phenomena
for high-dimensional GPE in BEC via using Hirota bilinear method.
As a result, parabolic solitons, dromion-like structures, line-
solitons with energy dissipation and their interaction phenomena
are proposed and studied for two-dimensional GPE (4). The differ-
ence with Ref. [11] is the dynamics of interaction between two
kinds soliton is investigated. These results are new in high-
dimensional BEC system and may provide theoretical basis and ref-
erence for finding more stable and interesting high-dimensional
soliton phenomena in BEC.
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In this paper, we will construct multi-soliton solutions by the
Hirota bilinear method which is introduced to deal with integrable
nonlinear evolution equations in 1971 [50]. The idea was to make a
transformation into new variables so that in these new variables
multi-soliton solutions appear in a particularly simple form [51].
The method has undergone great development in recent years
[8,9,11–14]. We’ll describe detailed this approach in the next sec-
tion. Therefore, in the next section, the bilinear form is given which
can be used to givemulti-soliton solution of the Eq. (4). In Section 3,
by the Hirota bilinear method, bright multi-soliton solutions of Eq.
(4) are gained. Moreover, abundant soliton interaction phenomena
and their energy and amplitude changes of ones at different times
are analyzed. The soliton elastic interaction is investigated via
asymptotic analysis. Conclusions and future works are addressed
in Section 4.
Bilinear forms and multi-soliton solutions for Eq. (4)

We will provide the exact solutions of Eq. (4) here. To this, we
need to give a transformation as following [40],

w ¼ u er tð Þx; er tð Þy; t
� �

e�
i
2
dr tð Þ
dt x2þy2ð Þþr tð Þ;X tð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2r tð Þ
dt2

� dr tð Þ
dt

� �2
s

;a tð Þ ¼ �a0; ð5Þ

then, a variable coefficient two-dimensional equation can be
obtained [40], namely,
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where u is a continuous function that depends on time variables x,y
and t, rðtÞ is a real function that only depends on t. Accordingly,
solving the exact-solution of Eq. (6) via the Hirota bilinear method
and inserting it into transformation (5) can obtain the exact-
solution of Eq. (4).

Bilinear forms for Eq. (6)

Firstly, we need to choose an appropriate transformation for the
Hirota bilinear method. In general, the nonlinear equation in the
complex domain, such as Eq. (6), consider the following transfor-
mation [51],

u x; y; tð Þ ¼ G
F
; ð7Þ

F ¼ Fðx; y; tÞ and G ¼ Gðx; y; tÞare, respectively, real function and
complex function. Introduce the bilinear derivative operator D,
namely,
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where the parameters m, n and p are non-negative integers. Then,
for the terms in Eq. (6), we have
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Substituting Eqs. (7) and (9a)–(9c) into Eq.(6) yields

i
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Then, splitting Eq. (10) into two parts, provides the following
form
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2 e
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� 	h i
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which is the so-called Hirota bilinear representation of Eq. (6).
Expand G and F in Eq. (7) by the following formal parameter power
series

G ¼ eg1 x; y; tð Þ þ e3g3 x; y; tð Þ þ e5g5 x; y; tð Þ þ � � � ;
F ¼ 1þ e2f 2 x; y; tð Þ þ e4f 4 x; y; tð Þ þ e6f 6 x; y; tð Þ þ � � � ; ð12Þ

where e is an arbitrary constant. Plugging (12) into the bilinear Eq.
(11) provides a polynomial for e, and then setting whose coeffi-
cients to zero yields a recursive relation between G and F. The appli-
cation for above bilinear form will be discussed in later parts.

One-soliton solution for Eq. (4)

To secure the one-soliton solution of Eq. (4), we set
g1ðx; y; tÞ ¼ C1eg1 , where C1 is any complex number. Then, consider
the following expansion form to (7) given by

G ¼ eg1 x; y; tð Þ; F ¼ 1þ e2f 2 x; y; tð Þ; ð13Þ

where g1 ¼ l1xþ m1yþ c1ðtÞ þ j1, l1, m1, j1are complex constants
and c1ðtÞ is complex function. From the knowledge of Hirota bilin-
ear method, let all coefficients of e and e2 be equal to zero, then
we get the following set of algebraic equations
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Solving Eq. (14) has

f 2 x; y; tð Þ ¼ n1eg1þg
�
1 ;n1 ¼ jC1 j2a0
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Þ2þðm1þm�1Þ
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1þm21ð Þ
2

R
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ð15Þ
Setting e ¼ 1, solution (7) of Eq. (6) may be expressed as

u x; y; tð Þ ¼ C1eg1

1þ n1eg1þg
�
1
: ð16Þ

Thus, from (5), the one-soliton solution of Eq. (4) may be writ-
ten as

w ¼ uðerðtÞx; erðtÞy; tÞe� i
2
drðtÞ
dt ðx2þy2ÞþrðtÞ: ð17Þ

In the next section, we will give the explicit expression of one-
soliton solution (17) and discuss their structures.

Two-soliton solution for Eq. (4)

To secure two-soliton solution of Eq. (4), we assume that
g1ðx; y; tÞ ¼ C1eg1 þ C2eg2 and make the coefficient of e, e2, e3

and e4 be equal to zero, where C1 and C2 are any complex
numbers. Hence, we can get the following set of algebraic
equations,
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Then, g3, f 2 and f 4 can be solved with the aid of Maple, and they

are listed in Appendix A. Setting e ¼ 1, two-soliton solution (7) of
Eq. (6) takes the following form,

u x; y; tð Þ ¼ g1 þ g3

1þ f 2 þ f 4
; ð19Þ

where the exponent (R) and (I) in the parameter denote its real part
and imaginary part, respectively. Thus, the two-soliton solution of
Eq. (4) is rewritten as

w ¼ uðerðtÞx; erðtÞy; tÞe� i
2
drðtÞ
dt ðx2þy2ÞþrðtÞ; ð20Þ

where
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We will discuss the interaction of two-soliton solution (21) in

the next section.

Three-soliton solution for Eq. (4)

Assume that g1 x; y; tð Þ ¼ C1eg1 þ C2eg2 þ C3eg3 , C1, C2 and C3 are
any complex numbers. Then, collecting the coefficients of e, e2, e3,
e4,e5 and e6 and setting them to zero can yield a set of algebraic
equations, here we omit it due to its complexity. The three-
soliton solution can be obtained as

u x; y; tð Þ ¼ g1 þ g3 þ g5

1þ f 2 þ f 4 þ f 6
; ð22Þ

where the expressions of g3, g5, f 2, f 4 and f 6 are listed in Appendix
B. Therefore, the three-soliton solution of Eq. (4) may be obtained as

w ¼ uðerðtÞx; erðtÞy; tÞe� i
2
drðtÞ
dt ðx2þy2ÞþrðtÞ: ð23Þ

We will discuss the structures of three-soliton solution in the
next section.

Discussion on soliton structures and interactions

One-soliton solution and parameter analysis

As previously stated, one-, two- and three-soliton solutions of
Eq. (4) have already constructed. In order to understand their
dynamics, their graphical representations under different parame-
ters will be exhibited in this section.

Rewrite one-soliton solution (17) of Eq. (6) as

u x; y; tð Þ ¼ C1ei l
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2
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ð24Þ
By transformation (5), the one-soliton solution of two-

dimensional GPE (4) can be written as

w ¼ u er tð Þx; er tð Þy; t
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where hðx; y; tÞ ¼ lðIÞ

1 erðtÞxþ mðIÞ1 erðtÞyþ cðIÞ1 ðtÞ þ jðIÞ
1 � 1

2
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a real function. Note that the motion of the soliton (25) depends
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on both x and t, y and t, x and y according to variables l1, m1,c1ðtÞ,j1

and rðtÞ, and it elucidates the soliton amplitude is C1er tð Þ
2
ffiffiffiffi
n1

p
��� ���. The one-

soliton structure can be divided into the two categories:

(1) When rðtÞ does not depend on t, in other words, rðtÞ ¼ v is a
constant function, one-soliton solution shows common bell-
shaped soliton structures without amplitude variation;

(2) When r tð Þ depents on t, the one-soliton solution has abun-
dant structures and its amplitude is variational, we will dis-
cuss it here.

In the analytic one-soliton solution of Eq. (25), there are five
parameters l1, m1, j1, C1, a0 and one variable coefficient function
erðtÞ. Before analyzing soliton interactions, we assign
erðtÞ ¼ cosðarctantÞ, the structures of the distinct wave functions
w wheny ¼ 1 with respect to radial coordinate x and time t are
demonstrated in Fig. 1. The effects of other parameters on the
structure of one-soliton is as follow:

� Fig. 1a exhibits one bright parabolic soliton structure which
represents the dynamic process of matter waves condensing
from a position in the field and then annihilating to the same
position when l1 ¼ �2, m1 ¼ �1, j1 ¼ �1þ 5i, a0 ¼ 2, C1 ¼ 1
Fig. 1. One-soliton solution (25) for y ¼ 1 with same parameters m1 ¼ �1, C1 ¼ 1 and dif
a0 ¼ 2; (c) l1 ¼ �2, j1 ¼ 1þ 5i, a0 ¼ 2; (d) l1 ¼ �2, j1 ¼ �1þ 5i, a0 ¼ 1

2.
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and y ¼ 1 are chosen. With the evolution of time, the energy
of the matter wave function in the field will gradually concen-
trate at the vertex of the parabolic soliton and then disappear
into the field. It shows distinct dynamical feature from the para-
bolic wave soliton in Refs. [18,21].

� Fig. 1b exhibits a line-soliton when we change l1 from �2 to
�1þ 5i on the basis of Fig. 1a, while others are retained as
before. The radian of the parabolic soliton in Fig. 1a will gradu-
ally decrease and become almost line-soliton. In comparison to
the general bell-shapes line-solitons in Refs. [18,20,21], which
can achieve the purpose of long-distance transmission in the
physical environment according to their dynamics, the ampli-
tude and energy of the line-solitons found here decay from
the center to the sides. It shows that the energy of the matter
wave soliton starts to gather from one side of the field to the
origin, and then annihilates to the other side. It described
vividly the energy accumulation of waves is from the field
and then dissipated into infinity.

� Fig. 1c shows a dromion-like structure when we replace the
j1 ¼ �1þ 5i with j1 ¼ 1þ 5i on the basis of Fig. 1a, whose
structure describes the concentrated energy in the center of
the field. This represents the dynamics of matter wave soliton
with concentration of energy, which can simulate the con-

densed structure of N atoms ðN ¼ R jwj2dxÞ. The energy of the
ferent parameters (a) l1 ¼ �2, j1 ¼ �1þ 5i, a0 ¼ 2; (b) l1 ¼ �1þ 5i, j1 ¼ �1þ 5i,
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atoms at different time t0 is E ¼ R jwðx; t0Þj2dx. Interestingly, this
soliton structure is very similar to the structure of atomic con-
densed matter observed in experiments [31].

� Fig. 1d shows different amplitude one parabolic soliton from
Fig. 1a when we adjust the parameter a0 ¼ 2 to a0 ¼ 1

2 on
the basis of Fig. 1a. Due to the different parameter a0, the
amplitude of matter wave soliton decreases. The shape of
the soliton shows the same dynamic process as Fig. 1a. The
structures of these solutions in Fig. 1 exhibit a smooth profile
at any time, it has different dynamics with nonsmooth solitons
at their peak [19,21]. In other words, the left and right deriva-
tives of soliton in Fig. 1 are equal at its peak, whereas the non-
smooth soliton is not equal [52]. Smooth solitons are more
easily excited and stable in experiments, and have good phys-
ical properties.

The energy of above one-soliton is E ¼ R jwj2dx for y ¼ 1, which
is just the total number of atoms of GPE and their energy will con-
centrate at the peak gradually. Without loss of generality, the
effects of parameters on the soliton structure are exhibited in
Fig. 2. Fig. 2a, b and c exposes the direction of rotation or transla-
tion of the parabolic soliton with the parameters change. As we can
see in Fig. 2a, b and c, the solid arrows point to the rotation direc-
tion of the two sides of the parabolic soliton, which have different
linear velocities, and the dashed arrows point to its translation
direction. Small arrows ‘"’ and ‘#’ after parameters indicate increas-
ing and decreasing them, respectively. As an example, when we

increase the imaginary part of l1 (i.e. l Ið Þ
1 ) in Fig. 1a, parabolic soli-

ton becomes line-soliton (see Fig. 1a and b). Meanwhile, the larger
Fig. 2. Phase diagram for the direction of rotation or translation of parabolic soliton w
increasing and decreasing the corresponding parameters, respectively. The solid arrows
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the value of the l Rð Þ
1 and m Ið Þ

1 the bigger the amplitude. On the con-
trary, the larger the value of a0, the smaller the amplitude. The cor-
responding cross sections in 1a and 1d using different a0 are shown

in Fig. 2d. The imaginary part of j1(i.e. j Ið Þ
1 ) cannot affect any struc-

ture of the one-soliton. Different processes of energy concentration
of one-soliton can be obtained by adjusting the relevant
parameters.

Remark 1. The feature of these solutions is that the energy is
gathered from the field and then dissipated into the field.
Therefore, the structure and shape of these bright solitons can
vividly describe the dynamic process of cold atom condensation in
single BEC system. By analyzing the wave function expression and
Fig. 2, different atomic condensation states can be obtained. It can
be seen from expression (25) that the energy condensation time in
the experiment is controllable theoretically by correction of
relevant parameters.
Two-soliton solution interaction analysis

Based on the above analysis, we can also give some interaction
phenomena of two- and three-soliton. In order to find whether the
elastic interaction between the two solitons is preserved in the
presence of variable coefficient, we perform an asymptotic analysis
of solution, which is a necessary step to investigate the dynamics
of two-soliton. Modelled on the method in Refs. [53,54], computing
four limit can lead to the following four types of asymptotic
patterns:
ith parameters change. The small arrows ‘"’ and ‘#’ after the parameters represent
and dashed arrows express the direction of rotation and translation, respectively.
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(i) Before the interactions

As g1 þ g�
1 � 0, g2 þ g�

2 ! �1, then

w1� ¼ C1erðtÞeih1ðx;y;tÞ

2
ffiffiffiffiffi
n1

p sech l Rð Þ
1 er tð Þxþ m Rð Þ

1 er tð Þyþ c Rð Þ
1 tð Þ þ j Rð Þ

1 þ 1
2
lnn1

� 

;

As g1 þ g�
1 � þ1, g2 þ g�

2 ! 0, then

w2� ¼ m1erðtÞeih2ðx;y;tÞ

2n5

ffiffiffiffi
n1
n5

q sech l Rð Þ
2 er tð Þxþ m Rð Þ

2 er tð Þyþ c Rð Þ
2 tð Þ þ j Rð Þ

2 � 1
2
ln

n1

n5

� 

;

(ii) After the interactions

As g1 þ g�
1 � 0, g2 þ g�

2 ! þ1, then

w1þ ¼ m2erðtÞeih1ðx;y;tÞ

2n5

ffiffiffiffi
n2
n5

q sech l Rð Þ
1 er tð Þxþ m Rð Þ

1 er tð Þyþ c Rð Þ
1 tð Þ þ j Rð Þ

1 � 1
2
ln

n2

n5

� 

;

As g1 þ g�
1 � �1, g2 þ g�

2 ! 0, then

w2þ ¼ C2erðtÞeih2ðx;y;tÞ

2
ffiffiffiffiffi
n2

p sech l Rð Þ
2 er tð Þxþ m Rð Þ

2 er tð Þyþ c Rð Þ
2 tð Þ þ j Rð Þ

2 þ 1
2
lnn2

� 

;

where hj x; y; tð Þ ¼ l Ið Þ
j er tð Þxþ m Ið Þ

j er tð Þyþ c Ið Þ
j tð Þ þ j Ið Þ

j � 1
2

dr tð Þ
dt x2 þ y2
� �

,

herej ¼ 1;2. From their asymptotic forms, it is found that the ampli-
tudes, velocities and structures of each soliton remain unchange-
able even upon mutual interaction, except for the initial phase.
Hence, we can easily see that the interactions of two-soliton solu-
tions are elastic. In obedience to similarity between the asymptotic
expressions and one-soliton (25), we may still choose the appropri-
ate parameters to give different two-soliton structures according to
the previous analysis.

Table 1 summarizes the amplitude and initial phase of four
asymptotic patterns w1� and w2� of two-soliton (21) when the y
is fixed. Amplitude has a great influence on the energy spectrum
of solitons. Thus, according to the results of Fig. 2 and Table 1,
we can choose some appropriate parameters to make multiple soli-
tons with different amplitude, energy, shape, and phase interact
with others elastically. So as to provide theoretical results and ref-
erences for the multi-soliton phenomenon in the experiment.

Fig. 3 illustrates that two-soliton interaction phenomena among
parabolic solitons, line-solitons and dromion-like structures. Set
erðtÞ ¼ cosðarctantÞ and C1 ¼ C2 ¼ 1, a0 ¼ 2, y ¼ 1, and discuss the
effect of other parameters on the structure as follow:

� Fig. 3a depicts the interactional shape of two parabolic solitons
with the same opening for the free parameters l1 ¼ �1, m1 ¼ 1,
j1 ¼ �1, l2 ¼ �2, j2 ¼ �1, a0 ¼ 2. It represents the collision
dynamics of two bright solitons with parabolic shapes. Now,
as a function of the initial phase w1� and w2�, they start to con-
dense energy from the same spaces and different times.
Table 1
Amplitude and initial phase of the four asymptotic patterns of two-soliton (21) for
fixed y and rðtÞ.

Soliton Amplitude Initial phase

Before interaction w1� C1er tð Þ
2
ffiffiffiffi
n1

p
��� ��� cðRÞ1 ð0Þ þ mðRÞ1 erð0Þyþ jðRÞ

1 þ 1
2 lnn1

w2�
m1er tð Þ

2n5
ffiffiffiffiffiffiffiffiffiffi
n1=n5

p
����

���� cðRÞ2 ð0Þ þ mðRÞ2 erð0Þyþ jðRÞ
2 � 1

2 ln
n1
n5

Afterinteraction w1þ
m2er tð Þ

2n5
ffiffiffiffiffiffiffiffiffiffi
n2=n5

p
����

���� cðRÞ1 ð0Þ þ mðRÞ1 erð0Þyþ jðRÞ
1 � 1

2 ln
n2
n5

w2þ C2er tð Þ
2
ffiffiffiffi
n2

p
��� ��� cðRÞ2 ð0Þ þ mðRÞ2 erð0Þyþ jðRÞ

2 þ 1
2 lnn2
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� Fig. 3b depicts the interactional shape of two parabolic solitons
with the different opening when l2 is changed from �2 to 2 on
the basis of parameters of Fig. 3a, while others remain
unchanged. The opening of one soliton turns to the opposite.
It represents the collision dynamics of two bright solitons with
parabolic shapes. they start to condense energy from the same
times and different spaces.

� Fig. 3c exhibits the two-soliton interactional shape between one
parabolic soliton and one dromion-like structure when we
adjust j1 from �1 to 1 on the basis of Fig. 3b. This structure
can simulate the energy accumulation process of a parabolic
soliton into another condensed matter wave. When the para-
bolic soliton energy is dissipated, the structure of the original
matter wave at the center of the field is not affected.

� Fig. 3d exhibits the interaction of one line-soliton and one para-
bolic soliton when we change the l2 from 2 to � 1

2 þ 6i, j2 from
�1 to �2 on the basis of Fig. 3b. The amplitude of near the ver-
tex of parabolic soliton is periodic oscillation when the line-
soliton passes through it near the center of the field. This can
simulate the process in which parabolic soliton and linear soli-
ton gather energy at the same field.

� Fig. 3e shows the interactional shape of one line-soliton and one
dromion-like structure for the parameters l1 ¼ m1 ¼ 1þ 2i,
j1 ¼ 0:56, l2 ¼ �1:3,j2 ¼ 0:56. Interacting between them at
the center of field makes the energy of the dromion-like struc-
ture transfer to the line-soliton, and present a new peak and
two depressions. After the interaction, the line-soliton returns
to original structure (see Fig. 3e). This can simulate the process
of an energy beam (one line-solitons) passing through the con-
densate and allow the condensate amplification and
compression.

� Fig. 3f shows interaction of two line-solitons when we change
the j1 ¼ j2 ¼ 0:56 to j1 ¼ j2 ¼ 0, l2 ¼ �1:3 to l2 ¼ �1:9þ i
on the basis of parameters of Fig. 3e. Interacting between them
makes the energy and amplitude reach a new height. After their
interaction, they return to their original structure and continue
to propagate.

According to the results of asymptotic analysis and graph anal-
ysis, the two solitons here are all shown to be the most classical
soliton characteristic----elastic interaction. Although the ampli-
tude and energy of the soliton is affected by the random function
rðtÞ, the interaction does not affect the original physical character-
istics of each soliton. As shown in the above two soliton interac-
tions, different soliton interactions show more abundant and
interesting dynamics and structures. The elastic soliton interac-
tions play an important role in practical applications and experi-
ments. The solitons show same waveforms and propagation
directions after their interaction. To better understand the dynam-
ics of their propagation and elastic interaction, we plot energy evo-
lution of soliton and interaction process in Figs. 4 and 5,
respectively.

Fig. 4 shows the energy change of one- and two-soliton wj j2.
Here, E ¼ R1

�1 wðx; t0Þj j2dx denotes the energy of wj j2. Apparently,
from Fig. 4, the soliton reach its maximum value of the energy is
at t ¼ 0, which is in good agreement with the maximum amplitude
of the soliton at t ¼ 0 in the three-dimensional structures of soli-
tons (see Figs. 1 and 3). After they gather (t > 0), their energy
diminishes and spreads out into the field. Therefore, in Fig. 5, we
plot the evolution process of soliton interaction at t ¼ 0 and
t > 0. As can be seen from Fig. 5, the blue solid-lines represent
the shape of the two-solitons when the energy concentration is
completed. The two solitons interaction can reach a new ampli-
tudes that are not directly related to w1� or w2�. This is a specific
moment which the two-soliton reaches its maximum amplitude



Fig. 3. Two-soliton solution (21) for y ¼ 1 with same parameters C1 ¼ C2 ¼ 1, a0 ¼ 2 and different parameters (a) l1 ¼ �1, m1 ¼ 1,j1 ¼ �1,l2 ¼ �2,j2 ¼ �1; (b) l1 ¼ �1,
m1 ¼ 1,j1 ¼ �1,l2 ¼ 2,j2 ¼ �1; (c) l1 ¼ �1, m1 ¼ 1,j1 ¼ 1,l2 ¼ 2,j2 ¼ �1; (d) l1 ¼ �1, m1 ¼ 1,j1 ¼ �1,l2 ¼ � 1

2 þ 6i,j2 ¼ �2; (e) l1 ¼ 1þ 2i,
m1 ¼ 1þ 2i,j1 ¼ 0:56,l2 ¼ �1:3,j2 ¼ 0:56; (f) l1 ¼ 1þ 2i, m1 ¼ 1þ 2i,j1 ¼ 0,l2 ¼ �1:9þ i,j2 ¼ 0.

Fig. 4. The energy evolution of (a) three types (Fig. 1d, Fig. 1b and Fig. 1c) of one-soliton wj j2 and (b) four types (Fig. 3a, Fig. 3d, Fig. 3e and Fig. 3f) of two-soliton wj j2 with the
different time t0 (defining energy E ¼ R1

�1 wðx; t0Þj j2dx).
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and energy, and the wave function at this time can simulate the
condensed state of cold atoms. The red dotted-lines represent the
states of the two-solitons after their interaction. We can also plot
the motion of solitons at other times, and observe the process of
their energy annihilation in this regime. This makes it possible to
control the energy and accumulation rate of matter waves in
experiments.

Remark 2. These nonlinear interactions show the different energy
concentration processes of multiple solitons. Two solitons w1� and
w2� condense their energy from the initial phases in space to the
186
center of field, and then they annihilate from their interaction
points to the initial phases of two solitons w1þ and w2þ. The energy

of two solitons at time t0 are E1� ¼ R jw1�ðx; t0Þj2dx and

E2� ¼ R jw2�ðx; t0Þj2dx before their interaction, and

E1þ ¼ R jw1þðx; t0Þj2dx and E2þ ¼ R jw2þðx; t0Þj2dx after their inter-
action. The elastic interaction phenomenon of solitons with
distinct shapes in Fig. 3 may simulate the complex nonlinear
phenomenon of condensed matter waves in some real experi-
ments. This makes it theoretically possible to control the position
of the multiple matter waves, the condensate and annihilation
process in the experiment.



Fig. 5. The interaction process of two-soliton wj j2 during interaction (t ¼ 0) and after interaction (t > 0). (a), (b), (c), (d), (e) and (f) correspond to Fig. 3a-3f respectively.

Fig. 6. Three-soliton solution (23) for y ¼ 1 with same parameters C1 ¼ C2 ¼ C3 ¼ 1 and different parameters (a) l1 ¼ �1, m1 ¼ 1,j1 ¼ �1,l2 ¼ �2,j2 ¼ �1, l3 ¼ �3,
j3 ¼ �1, a0 ¼ 2; (b) l1 ¼ �1:1, m1 ¼ 1,j1 ¼ �1,l2 ¼ 2,j2 ¼ �1, l3 ¼ � 11

5 , j3 ¼ 0, a0 ¼ 2; (c) l1 ¼ �1:6, m1 ¼ 1,j1 ¼ 0,l2 ¼ � 11
5 ,j2 ¼ 0, l3 ¼ �2þ 4i, j3 ¼ 0, a0 ¼ 2; (d)

l1 ¼ �3, m1 ¼ 1,j1 ¼ 0,l2 ¼ 11
5 ,j2 ¼ 0, l3 ¼ 8

5 þ 4i, j3 ¼ 0, a0 ¼ 2; (e) l1 ¼ �3, m1 ¼ 2,j1 ¼ 0,l2 ¼ � 11
5 þ 5i,j2 ¼ 0, l3 ¼ �2þ 4i, j3 ¼ 0, a0 ¼ 2; (f) l1 ¼ �3,

m1 ¼ 1,j1 ¼ 0,l2 ¼ � 11
5 � 5i,j2 ¼ 0, l3 ¼ 9

5 þ 4i, j3 ¼ 0, a0 ¼ 2; (g) l1 ¼ 1:8� i, m1 ¼ 1
2 þ i

3,j1 ¼ 0,l2 ¼ �1:5þ 1:8i,j2 ¼ 0, l3 ¼ 2� 3i
4 , j3 ¼ 0, a0 ¼ 1; (h) l1 ¼ 1þ 2i,

m1 ¼ 1þ 2i,j1 ¼ 0,l2 ¼ �1:7þ i,j2 ¼ 0, l3 ¼ 0:89� 2:7i, j3 ¼ 0, a0 ¼ 2.
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Three-soliton solution interaction analysis

Fig. 6 shows distinct three-soliton structures. By choosing
appropriate parameters, we can also obtain the interaction of
multi-soliton, including the following cases:
187
� Fig. 6a displays the collision dynamics of three parabolic soli-
tons with same openings. It describes the condensation of
three different groups of cold atoms in the field from the
same position towards the center of the field at different
times.
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� Fig. 6b displays the collision dynamics of three parabolic soli-
tons with different openings. Structurally, they may achieve a
process of energy concentration that does not affect each other.

� Fig. 6c displays the dynamics of the interaction of two parabolic
solitons with same openings and one line-soliton.

� Fig. 6d displays the dynamics of the interaction of two parabolic
solitons with opposite openings and one line-soliton. Fig. 6c and
6d describes the process of an energy beam (one line-solitons)
passing through the center when condensate occurs.

� Fig. 6e shows the dynamics of the interaction of two uncrossed
line-solitons and one parabolic soliton when we choose the
l1 ¼ �3, m1 ¼ 2, j1 ¼ 0, l2 ¼ � 11

5 þ 5i, j2 ¼ 0, l3 ¼ �2þ 4i,
j3 ¼ 0.

� Fig. 6f shows the dynamics of the interaction of two crossed
line-solitons and one parabolic soliton we change m1 ¼ 2 to
m1 ¼ 1, l2 ¼ � 11

5 þ 5i to l2 ¼ � 11
5 � 5i, l3 ¼ �2þ 4i to

l3 ¼ 9
5 þ 4i on the basic of parameters of Fig. 6e. Fig. 6e and f

describes the process of two energy beams (two line-solitons)
passing through the center when condensate occurs.

� Fig. 6g shows the dynamics of the weak interaction of two
crossed line-solitons and one parabolic soliton when we choose
the l1 ¼ 1:8� i,m1 ¼ 1

2 þ i
3, j1 ¼ 0, l2 ¼ �1:5þ 1:8i, j2 ¼ 0,

l3 ¼ 2� 3i
4 , j3 ¼ 0 and a0 ¼ 1. This shows that the linear-

soliton and the parabolic soliton can also achieve independent
condensation.

� Fig. 6h shows interaction of three line-solitons. The interaction
of three line-solitons occurs at the center of field. After their
interaction, they remain in their original state and continue to
propagate until they disappear.
Remark 3. The dynamics of the interaction of three-soliton is sim-
ilar to that of two-soliton, and new energy and amplitude can be
obtained when they condense in the center of field. From results,
we can obtain the condensate and annihilation process of the infi-
nite soliton energy beam, theoretically.

In fact, we can also give the asymptotic forms of three-soliton,
whose asymptotic expression is similar to that of two solitons,
which is omitted here. Thus, we can give the abundant interaction
phenomena of the three-soliton structure as a function of the anal-
ysis of one- and two-soliton. At this time, we can choose appropri-
ate parameters to present rich soliton interaction phenomena. The
multi-soliton represents the process of energy concentration from
the edge into the center of the field. It also provides a reliable the-
oretical basis for soliton transmission, generation and interaction
in experiments.

Conclusions

We have studied a two-dimensional GPE (4) in BEC in this
paper. The Hirota bilinear Eq. (11) of Eq. (6) has been constructed,
and by the transformation (5), the exact bright-multi-soliton solu-
tions of Eq. (4) can be gained. Some one-, two- and three-soliton
structures including parabolic soliton, dromion-like structure,
and line-soliton have been exhibited in Figs. 1, 3 and 6. Fig. 2 has
displayed the phase diagram for the direction of rotation or trans-
lation of parabolic-soliton with relevant parameters change. Elastic
interactions of two-soliton have been analyzed through asymptotic
analysis method. Figs. 4 and 5 have investigated energy changes
and interaction processes of soliton. This vividly has described
the process of energy gathering and annihilating in a field.

Based on the obtained soliton solutions of system (4), this paper
has explored the changes in the transmission direction and energy
of solitons with different bright solitons. Bright solitons have richer
interactions than dark solitons. In the experiments, bright solitons
188
have been easier to implement and have more extensive applica-
tions, and it is important to investigate the properties of bright
solitons. The GPE is a very important model in physics, hence, its
exact soliton solutions have also more significance. Based on the
important nonlinear model in BEC, results in this paper have theo-
retically predicted some new nonlinear phenomena in BEC, which
are helpful for us to understand some physical phenomena and
physical experiments in BEC or related fields. The acquired exact
solutions in this paper are new structures in this model, and it is
likely that these results will be useful for the study of novel nonlin-
ear waves that will appear in related fields in the future. For exam-
ple, the results are used for simulating or understanding some
nonlinear phenomena that occur during atomic condensation in
BEC. The Hirota bilinear method and the asymptotic analysis of
soliton are also important methods for solving soliton and analyz-
ing them. These methods used can be applied to other important
nonlinear models. These soliton solutions are also important for
the study of optical signals, plasma physics, oceanophysics and
biophysics. In next work, we will try to consider more complex
and interesting wave function solutions when the coefficient is
not constant. Moreover, the dynamical behavior of these solutions
will be discussed via numerical simulation in the furture.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal
subjects.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgments

This work has been supported by the National Natural Science
Foundation of China (11875008,12075034,11975172,11975001);
Fundamental Research Funds for the Central Universities
(2019XD-A09-3).

Appendix A. The expressions of g3, f 2 and f 4 in two-soliton
solution (15)

The parameters in two-soliton solution (15) are
g3 ¼ m1eg1þg2þg

�
1 þm2eg1þg2þg

�
2 , f 2 ¼ n1eg1þg

�
1 þ n2eg2þg

�
2 þ n3eg1þg

�
2þ

n4eg2þg
�
1 and f 4 ¼ n5eg1þg

�
1þg2þg�2 , where

g1 ¼ l1xþ m1yþ c1 tð Þ þ j1;

g2 ¼ l2xþ m2yþ c2 tð Þ þ j2; cj tð Þ ¼ i
2

l2
j þ m2j

� 	Z
e2r tð Þdt j ¼ 1;2ð Þ;

m1 ¼ jC1j2C2a0½ðl1 � l2Þ2 þ ðm1 � m2Þ2�
½ðl1 þ l�

1Þ2 þ ðm1 þ m�1Þ2�½ðl2 þ l�
1Þ2 þ ðm2 þ m�1Þ2�

;

m2 ¼ jC2j2C1a0½ðl1 � l2Þ2 þ ðm1 � m2Þ2�
½ðl2 þ l�

2Þ2 þ ðm2 þ m�2Þ2�½ðl1 þ l�
2Þ2 þ ðm1 þ m�2Þ2�

;

n1 ¼ jC1j2a0

ðl1 þ l�
1Þ2 þ ðm1 þ m�1Þ2

;n2 ¼ jC2j2a0

ðl2 þ l�
2Þ2 þ ðm2 þ m�2Þ2

;

n3 ¼ C1C
�
2a0

ðl1 þ l�
2Þ2 þ ðm1 þ m�2Þ2

;
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n4 ¼ C2C
�
1a0

ðl2 þ l�
1Þ2 þ ðm2 þ m�1Þ2

;

m2 ¼ lðRÞ
2 mðRÞ1

lðRÞ
1

þ i
lðRÞ

1 mðIÞ1 � mðRÞ1 lðIÞ
1 þ mðRÞ1 lðIÞ

2

lðRÞ
1

;

n5 ¼ jC1C2 j2a2
0 ½ðl1 � l2Þ2 þ ðm1 � m2Þ2 �½ðl�

1 � l�
2Þ2 þ ðm�1 � m�2Þ2 �

½ðl1 þ l�
1Þ2 þ ðm1 þ m�1Þ2 �½ðl2 þ l�

2Þ2 þ ðm2 þ m�2Þ2 �½ðl1 þ l�
2Þ2 þ ðm1 þ m�2Þ2 �½ðl2 þ l�

1Þ2 þ ðm2 þ m�1Þ2 �
;

the parameters u1, u2, m1, j1 and j2 are any complex constants.

Appendix B. The expressions of g3, g5, f 2, f 4 and f 6 in two-soliton
solution (18)

The parameters in three-soliton solution (18) are

g3 ¼
X3
j¼1

mje
g1þg2þg�j þ

X3
j¼1

mjþ3e
g1þg3þg�j þ

X3
j¼1

mjþ6e
g2þg3þg�j ;

g5 ¼ p1e
g1þg2þg3þg�1þg�2 þ p2e

g1þg2þg3þg�1þg�3 þ p3e
g1þg2þg3þg�2þg�3 ;

f 2 ¼
X3
j¼1

nje
g1þg�j þ

X3
j¼1

njþ3e
g2þg�j þ

X3
j¼1

njþ6e
g3þg�j ;

f 4 ¼ q1e
g1þg2þg�1þg�2 þ q2e

g1þg2þg�1þg�3 þ q3e
g1þg2þg�2þg�3

þ q4e
g1þg3þg�1þg�2 þ q5e

g1þg3þg�1þg�3 þ q6e
g1þg3þg�2þg�3

þ q7e
g2þg3þg�1þg�2 þ q8e

g2þg3þg�1þg�3 þ q9e
g2þg3þg�2þg�3 ;

f 6 ¼ l1eg1þg2þg3þg
�
1þg�2þg�3 ;

gj ¼ ljxþ mjyþ cj tð Þ þ jj; cj ¼ i
2

l2
j þ m2j

� 	Z
e2r tð Þdt;

mj ¼ njnjþ3½ðl1 � l2Þ2 þ ðm1 � m2Þ2�
C�
j a0

;

mjþ3 ¼ njnjþ6½ðl1 � l3Þ2 þ ðm1 � m3Þ2�
C�
j a0

;

mjþ6 ¼ njþ3njþ6½ðl2 � l3Þ2 þ ðm2 � m3Þ2�
C�
j a0

;

nj ¼
C1C

�
j a0

ðl1 þ l�
j Þ2 þ ðm1 þ m�j Þ2

;

njþ3 ¼ C2C
�
j a0

ðl2 þ l�
j Þ2 þ ðm2 þ m�j Þ2

;

njþ6 ¼ C3C
�
j a0

ðl3 þ l�
j Þ2 þ ðm3 þ m�j Þ2

; j ¼ 1;2;3;

p1 ¼ jC1C2j2C3a2
0q½ðl�

1 � l�
2Þ2 þ ðm�1 � m�2Þ2�Q

s ¼ 1;2
k ¼ 1;2;3

½ðlk þ l�
s Þ2 þ ðmk þ m�s Þ2�

;

p2 ¼ jC1C3j2C2a2
0q½ðl�

1 � l�
3Þ2 þ ðm�1 � m�3Þ2�Q

s ¼ 1;3
k ¼ 1;2;3

½ðlk þ l�
s Þ2 þ ðmk þ m�s Þ2�

;

p3 ¼ jC2C3j2C1a2
0q½ðl�

2 � l�
3Þ2 þ ðm�2 � m�3Þ2�Q

s ¼ 2;3
k ¼ 1;2;3

½ðlk þ l�
s Þ2 þ ðmk þ m�s Þ2�

;

m2 ¼ lðRÞ
2 mðRÞ1

lðRÞ
1

þ i
lðRÞ

1 mðIÞ1 � mðRÞ1 lðIÞ
1 þ mðRÞ1 lðIÞ

2

lðRÞ
1

;

189
m3 ¼ lðRÞ
3 mðRÞ2

lðRÞ
2

þ i
lðRÞ

2 mðIÞ2 � mðRÞ2 lðIÞ
2 þ mðRÞ2 lðIÞ

3

lðRÞ
2

;

q ¼ ½ðl1 � l2Þ2 þ ðm1 � m2Þ2� þ ½ðl2 � l3Þ2 þ ðm2 � m3Þ2�
þ ½ðl1 � l3Þ2 þ ðm1 � m3Þ2�;

q1 ¼ jC1C2 j2a2
0 ½ðl1 � l2Þ2 þ ðm1 � m2Þ2 �½ðl�

1 � l�
2Þ2 þ ðm�1 � m�2Þ2 �

½ðl1 þ l�
1Þ2 þ ðm1 þ m�1Þ2 �½ðl2 þ l�

2Þ2 þ ðm1 þ m�2Þ2 �½ðl2 þ l�
1Þ2 þ ðm2 þ m�1Þ2 �½ðl1 þ l�

2Þ2 þ ðm1 þ m�2Þ2 �
;

q2 ¼ jC1 j2C2C
�
3a2

0 ½ðl1 � l2Þ2 þ ðm1 � m2Þ2 �½ðl�
1 � l�

3Þ2 þ ðm�1 � m�3Þ2 �
½ðl1 þ l�

1Þ2 þ ðm1 þ m�1Þ2 �½ðl2 þ l�
1Þ2 þ ðm2 þ m�1Þ2 �½ðl2 þ l�

3Þ2 þ ðm2 þ m�3Þ2 �½ðl1 þ l�
3Þ2 þ ðm1 þ m�3Þ2 �

;

q3 ¼ jC2 j2C1C
�
3a2

0 ½ðl1 � l2Þ2 þ ðm1 � m2Þ2 �½ðl�
2 � l�

3Þ2 þ ðm�2 � m�3Þ2 �
½ðl1 þ l�

2Þ2 þ ðm1 þ m�2Þ2 �½ðl1 þ l�
3Þ2 þ ðm1 þ m�3Þ2 �½ðl2 þ l�

3Þ2 þ ðm2 þ m�3Þ2 �½ðl2 þ l�
2Þ2 þ ðm2 þ m�2Þ2 �

;

q4 ¼ jC1 j2C3C
�
2a2

0 ½ðl1 � l3Þ2 þ ðm1 � m3Þ2 �½ðl�
1 � l�

2Þ2 þ ðm�1 � m�2Þ2 �
½ðl1 þ l�

1Þ2 þ ðm1 þ m�1Þ2 �½ðl1 þ l�
2Þ2 þ ðm1 þ m�2Þ2 �½ðl3 þ l�

2Þ2 þ ðm3 þ m�2Þ2 �½ðl3 þ l�
1Þ2 þ ðm3 þ m�1Þ2 �

;

q5 ¼ jC1C3 j2a2
0 ½ðl1 � l3Þ2 þ ðm1 � m3Þ2 �½ðl�

1 � l�
3Þ2 þ ðm�1 � m�3Þ2 �

½ðl1 þ l�
1Þ2 þ ðm1 þ m�1Þ2 �½ðl1 þ l�

3Þ2 þ ðm1 þ m�3Þ2 �½ðl3 þ l�
3Þ2 þ ðm3 þ m�3Þ2 �½ðl3 þ l�

1Þ2 þ ðm3 þ m�1Þ2 �
;

q6 ¼ jC3 j2C1C
�
2a2

0 ½ðl1 � l3Þ2 þ ðm1 � m3Þ2 �½ðl�
2 � l�

3Þ2 þ ðm�2 � m�3Þ2 �
½ðl1 þ l�

2Þ2 þ ðm1 þ m�2Þ2 �½ðl3 þ l�
3Þ2 þ ðm3 þ m�3Þ2 �½ðl1 þ l�

3Þ2 þ ðm1 þ m�3Þ2 �½ðl3 þ l�
2Þ2 þ ðm3 þ m�2Þ2 �

;

q7 ¼ jC2 j2C3C
�
1a2

0 ½ðl2 � l3Þ2 þ ðm2 � m3Þ2 �½ðl�
1 � l�

2Þ2 þ ðm�1 � m�2Þ2 �
½ðl2 þ l�

1Þ2 þ ðm2 þ m�1Þ2 �½ðl3 þ l�
2Þ2 þ ðm3 þ m�2Þ2 �½ðl2 þ l�

2Þ2 þ ðm2 þ m�2Þ2 �½ðl3 þ l�
1Þ2 þ ðm3 þ m�1Þ2 �

;

q8 ¼ jC3 j2C2C
�
1a2

0 ½ðl�
1 � l�

3Þ2 þ ðm�1 � m�3Þ2 �½ðl2 � l3Þ2 þ ðm2 � m3Þ2 �
½ðl2 þ l�

1Þ2 þ ðm2 þ m�1Þ2 �½ðl2 þ l�
3Þ2 þ ðm2 þ m�3Þ2 �½ðl3 þ l�

3Þ2 þ ðm3 þ m�3Þ2 �½ðl3 þ l�
1Þ2 þ ðm3 þ m�1Þ2 �

;

q9 ¼ jC2C3 j2a2
0 ½ðl�

2 � l�
3Þ2 þ ðm�2 � m�3Þ2 �½ðl2 � l3Þ2 þ ðm2 � m3Þ2 �

½ðl2 þ l�
2Þ2 þ ðm2 þ m�2Þ2 �½ðl2 þ l�

3Þ2 þ ðm2 þ m�3Þ2 �½ðl3 þ l�
3Þ2 þ ðm3 þ m�3Þ2 �½ðl3 þ l�

2Þ2 þ ðm3 þ m�2Þ2 �
;

l1 ¼ a3
0 jC1C2C3 ½ðl1 � l2Þ2 þ ðm1 � m2Þ2 �½ðl1 � l3Þ2 þ ðm1 � m3Þ2 �½ðl2 � l3Þ2 þ ðm2 � m3Þ2 �j

2

j½ðl1 þ l�
2Þ2 þ ðm1 þ m�2Þ2 �½ðl3 þ l�

1Þ2 þ ðm3 þ m�1Þ2 �½ðl2 þ l�
3Þ2 þ ðm2 þ m�3Þ2 �j

2
r

;

r ¼ ½ðl1 þ l�
1Þ2 þ ðm1 þ m�1Þ2�½ðl2 þ l�

2Þ2 þ ðm2 þ m�2Þ2�½ðl3 þ l�
3Þ2

þ ðm3 þ m�3Þ2�;
the parameters uj, mj, jj, j ¼ 1;2;3 are any complex constants.
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