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Growing experimental evidence shows that both homeostatic and Hebbian

synaptic plasticity can be expressed presynaptically as well as postsynaptically.

In this review, we start by discussing this evidence and methods used to deter-

mine expression loci. Next, we discuss the functional consequences of this

diversity in pre- and postsynaptic expression of both homeostatic and Hebbian

synaptic plasticity. In particular, we explore the functional consequences of a

biologically tuned model of pre- and postsynaptically expressed spike-

timing-dependent plasticity complemented with postsynaptic homeostatic

control. The pre- and postsynaptic expression in this model predicts (i) more

reliable receptive fields and sensory perception, (ii) rapid recovery of forgotten

information (memory savings), and (iii) reduced response latencies, compared

with a model with postsynaptic expression only. Finally, we discuss open ques-

tions that will require a considerable research effort to better elucidate how

the specific locus of expression of homeostatic and Hebbian plasticity alters

synaptic and network computations.

This article is part of the themed issue ‘Integrating Hebbian and

homeostatic plasticity’.

1. Introduction
Synapses shape the computations of the nervous system. The combination of

thousands of excitatory and inhibitory synaptic inputs determine whether a

neuron fires or not. Furthermore, the synapse is known to be a key site of infor-

mation storage in the brain, although not the only one [1]. Changes in the

synapses are hypothesized to allow neuronal networks to change function

and to adapt through Hebbian and Hebbian-like mechanisms. At the same

time, large perturbations in activity levels such as those occurring during

synaptogenesis or eye-opening require negative feedback, so that the network

can keep its activity level within reasonable bounds and continue performing

its computational tasks properly [2,3]. Such homeostatic control of neuronal

activity can occur through changes in intrinsic neuronal properties such as con-

trol of dendrite excitability [4,5], somatic excitability [1,6] and movement of the

axon hillock relative to the soma [7]. However, in this review, we focus on

homeostatic processes at the synapse such as synaptic scaling, which provides

a form of negative feedback to counter changes in the activity levels, while

providing synaptic normalization and competition among inputs [8,9].

As we explain in detail in this review, irrespective of whether synaptic plas-

ticity is Hebbian or homeostatic, the expression locus of plasticity matters. A

fundamental distinction is whether the change is pre- or postsynaptic. Changes
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in the number of postsynaptic receptors typically only modify

the synaptic gain. However, long-term changes in the presyn-

aptic release probability alter the short-term dynamics of the

synapse [10–16]. Synaptic dynamics such as short-term

depression and facilitation describe how the synaptic efficacy

changes during repeated stimulation of the synapse over a

time course of hundreds of milliseconds [13,17–19]. These

short-term modifications of synaptic efficacy (reviewed in

[19]) have been proposed to underlie computations such as

gain control [20], redundancy reduction [21] and adaptive fil-

tering [22]. In the context of a recurrent neuronal network,

they can affect the activity dynamics and allow the formation

and switching among attractor states [23,24], and have been

proposed as the basis for working memory [25].

Synaptic plasticity can thus affect network dynamics,

but this poses several questions: What are the functional

implications of expressing long-term plasticity pre- or postsyn-

aptically? What are the underlying expression mechanisms?

Why is there such a large diversity in the expression? Why is

there sometimes both pre- and postsynaptic expression?

In this review, we begin by discussing pre- and postsynaptic

components of Hebbian and homeostatic synaptic plasticity

(§2). Then, in §§3 and 4 we examine some of the consequences

of the variability of the expression locus of synaptic plasti-

city, including those that we recently identified using a

biologically tuned computational model of neocortical

spike-timing-dependent plasticity (STDP) [16].
2. The biological underpinnings of pre- and
postsynaptic expression of plasticity

As old as the field of long-term synaptic plasticity itself is the

question of how precisely information is stored in neuronal cir-

cuits. Historically, Donald Hebb and Jerzy Konorski argued for

the strengthening of already existing connections between

neurons as a means for information storage, whereas Santiago

Ramon y Cajal favoured the growth of new connections [26].

Several relatively recent studies have found evidence that the

formation of new synapses is important for long-term infor-

mation storage in neuronal circuits [27–30]. Indeed, there is

strong evidence both in mammals and in the sea slug Aplysia
that structural plasticity via formation of new afferent inputs

is essential for protein-synthesis-dependent long-term mem-

ories [31]. The creation of new afferents would correspond to

an increase in the number of release sites (box 1: methods),

but it should be noted that the number of release sites might

be different from the number of anatomical contacts [58].

With already existing connections between neurons, there

are essentially two main ways of increasing synaptic strength:

either presynaptic release is increased or postsynaptic recep-

tor channels are upregulated [49,59]. Both can be achieved

in a number of ways. The presynaptic release probability is

controlled by various factors, such as the number and sensi-

tivity of presynaptic calcium channels, as well as other

presynaptic ion channels that can modulate neurotransmitter

release (such as the epithelial sodium channel EnaC in case of

synaptic scaling at the Drosophila neuromuscular junction

(NMJ) [60,61]), the setpoint of presynaptic calcium sensors

involved in eliciting neurotransmitter release, e.g. the synap-

totagmins 1, 2 and 9 [62], and the size of the pool of readily

releasable vesicles as well as its replenishment rate (in case of

homeostasis, see [63,64]) [13,62].
The postsynaptic contribution to the synaptic response is

determined by the number and location of postsynaptic

receptors, as well as their properties (e.g. conformational

state [65] and subunit composition [66,67]). In addition, the

geometry of the extracellular space and the apposition

of the release sites have also been suggested as important

determinants of the response amplitude [68,69].

Experimentally, determination of the expression locus

is far from trivial, and a battery of techniques has been

applied (box 1). In long-term potentiation (LTP) experiments,

evidence for most of the above mechanisms has been found.

The historic pre versus post controversy is now typically

interpreted as a reflection of the diversity of LTP phenom-

ena, which we now know depends on multiple factors such

as age, synapse state, neuromodulation, synapse type and

induction protocol [36,49,70–76] (but see [77]).

A combination of pre- and postsynaptic expression is also

possible [49].

A similar pre- or postsynaptic expression question exists

for synaptic homeostasis. While most studies have focused

on postsynaptic expression, also here a wide variety in

expression, including presynaptic expression [78–80], has

been observed, and for instance whether the expression is

pre- or postsynaptic appears to depend on developmental

stage [81,82]. Sometimes, diversity in mechanisms can even

be observed within one system. For instance, in homeostatic

plasticity experiments in the hippocampus, both pre- and post-

synaptic expression were observed; whereas some CA3–CA3

connections were unexpectedly reduced after activity depri-

vation, other connections strengthened as expected, perhaps

to prevent network instability [83]. Also some forms of

synaptic scaling at the Drosophila and mammalian NMJ are

presynaptic: loss of postsynaptic receptors is compensated by

increased transmitter release, which restores the mean ampli-

tude of evoked excitatory postsynaptic potentials (EPSPs)

[61,84]. A presynaptic locus of expression of homeostatic plas-

ticity at the NMJ is perhaps to be expected, given that the

postsynaptic partner—the muscle myotube—does not integrate

its inputs such as a neuron does, but rather serves to fire in

response to activation at the synaptic input. The pre- and

postsynaptic components of the NMJ are therefore tightly

co-regulated in synaptogenesis and after damage to ensure

proper activation of the muscle [85], so when postsynaptic

NMJ sensitivity is reduced, it is in this context not entirely

surprising that the presynaptic machinery compensates accord-

ingly by upscaling neurotransmitter release. This example

illustrates how the locus of expression must be understood in

the context of function of the synapse type at hand.

Further indication that the exact expression locus is func-

tionally important comes from the fact that the expression of

both short-term plasticity [86] and long-term plasticity [76]

can depend on pre- and postsynaptic cell type. In the case of

short-term plasticity, connections from the same presynaptic

neurons onto different cells can short-term depress or facilitate

depending on the target cell type [87,88], whereas multiple con-

nections between two neurons are often highly similar [45].

Similarly, while STDP exists at both horizontal and vertical

excitatory inputs to visual cortex layer 2/3 pyramidal cells,

the mechanistic underpinnings as well as the precise temporal

requirements for induction are different [89]. Such specificity

suggests that the specific locus of expression of long-term plas-

ticity at a given synapse type is meaningful for the proper

functioning of microcircuits in the brain, as otherwise tight



Box 1. Methods to determine the locus of plasticity.

The properties of synaptic release can be used to determine the locus of synaptic plasticity by a variety of methods. Among

these, there are methods for studying vesicle release, such as FM1-43 dye labelling to explore changes in presynaptic release

[32], glutamate uncaging to explore changes in postsynaptic responsiveness or spine size [33,34], measuring N-methyl-D-

aspartate : a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (NMDA: AMPA) ratio to look for insertion of postsyn-

aptic receptors [35,36], employing the use-dependent NMDA receptor blocker MK-801 to look for changes in glutamate

release [37,38], or exploring changes in paired-pulse ratio suggesting a change in probability of release [15,36] (although

see [39]).

It is also common to employ spontaneous release as a metric of the locus of expression, as each spontaneously released

vesicle gives rise to a well-defined single postsynaptic quantal response known as a miniPSC. This approach is often used in

studies of homeostatic plasticity [40], because, here, it is important to measure synaptic changes globally across a majority of

inputs to a cell, but this method has also been used to explore Hebbian plasticity [35,41]. An increase in miniPSC frequency in

the absence of a change in miniPSC amplitude is typically interpreted as indicating higher release probability or an increase

in the number of synaptic contacts, whereas an increased miniPSC amplitude is most often thought to reflect an increase in

postsynaptic responsiveness owing to more efficacious postsynaptic receptors. Alternative interpretations of spontaneous

release experiments are, however, also possible; for example in the case of AMPAfication of silent synapses, which leads

to an apparent change in release probability even though unsilencing is a postsynaptic process [41].

In the scenario where individual synapses are monitored, it is possible to employ methods that rely on the response vari-

ability. One such method is non-stationary noise analysis [42], which has been used to determine the effect of homeostasis

on inhibitory connections [43], although this method can be unreliable for dendritic synapses [44]. In the related CV analysis,

the peak synaptic response is modelled as a binomial process. The process has as parameters the release probability Pr, and

the response to each vesicle, the quantal amplitude q. These parameters are assumed identical across the N release sites, and

indeed, such coordination has been found [45]. The CV—which is experimentally quantified as the response standard deviation

over the mean—is independent of q, namely CV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� PrÞ=PrN

p
, and therefore an increase in the mean without an increase in

CV can be interpreted as a postsynaptic increase of q [46]. Conversely, if plasticity is presynaptically expressed, then a change in

CV is expected, because the CV is a measure of noise, and because the chief source of noise in neurotransmission is the presyn-

aptic stochasticity of vesicle release. The CV analysis method does, however, come with several caveats. In particular, accidental

loss or gain of afferent fibres in extracellular stimulation experiments, or unsilencing or growth of new synapses will confuse the

results [46]. It is also not obvious that release is independent at different sites, in which case the binomial model is not suitable

[46]. By assuming that one of the parameters does not change during the experiment (e.g. fixed N as is reasonable to assume in

some plasticity experiments [47,48]), the variance and mean of postsynaptic responses can be used to estimate Pr ¼mean/Nq
and q ¼ variance/mean þmean/N [16,49,50].

An alternative way to determine whether synaptic changes correspond to alterations of release probability or of quantal

response amplitude is to examine the postsynaptic response to a pair or a train of presynaptic stimuli. The idea is that when

the release probability is high, the vesicle pool will be depleted more quickly, leading to a more strongly depressing train of

postsynaptic responses. When combined with CV analysis, this method can be used to measure all three parameters—

English Pr, N and q—of the binomial release model [51]. By fitting these phenomenological models before and after plasticity

induction, one can determine which combination of parameters was changed owing to plasticity. It should be noted that

experimental results from paired-pulse experiments should also be treated with caution. For example, unsilencing or specific

postsynaptic upregulation of release sites with quite different release probability may lead to changes in short-term dynamics

that could erroneously be interpreted as presynaptic in origin, even though the actual site of expression is postsynaptic [39].

There are also postsynaptic contributions to synaptic short-term dynamics [52–54] that can complicate the interpretation of

experiments. It is therefore better to employ several methods in parallel in the same study—such as CV analysis, paired-pulse

ratio, NMDA : AMPA ratio and spontaneous release [15,36]—to independently verify the locus of expression.

Recently, inference methods of short-term plasticity and quantal parameters have been introduced [55–57]. The sampling

method of Costa et al. [55] is particularly well suited to dealing with the strong correlation and uncertainty in the synapse par-

ameters. Based on this method, we revealed interesting variations between different neuronal connections and proposed more

informative experimental protocols based on irregular spike trains, which would be promising to apply in plasticity experiments.
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regulation of expression locus would not have arisen during the

evolution of the brain.
3. Pre- and postsynaptic expression of spike-
timing-dependent plasticity

While the diverse pathways of plasticity induction and

expression are increasingly unravelled, their functional roles

are still largely an open question. Recently, we have started

exploring some of these consequences, using computational
models of STDP. In STDP experiments, where spikes from the

presynaptic neuron are paired with millisecond precision with

postsynaptic ones, the question of pre- versus postsynaptic

expression has also been extensively examined. Depending on

factors such as synapse type, brain area and experimental con-

ditions, there is evidence for both pre- and postsynaptic

changes [15,36,89–92]. Because of the synapse-type specificity

of STDP [76], we used STDP data of connections between

visual cortex layer-5 pyramidal cells only [15,36,93]. At this

synapse, it has been observed that using STDP induction proto-

cols potentiation has both pre- and postsynaptic components
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Figure 1. A schematic of our biologically tuned STDP model with pre- and postsynaptic expression. (a) The synaptic weight is the product of the release probability
Pr and the quantal amplitude q. Changes in these parameters owing to STDP are modelled as functions of presynaptic activity trace xþ and postsynaptic activity
traces yþ and y2. (b) The fitted model captures the estimated changes in release probability (left) and quantal amplitude (right) for both positive timing ( pre-
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[36], whereas long-term depression (LTD) is expressed presyn-

aptically only [15]. Presynaptic-only time-dependent LTD has

also been found in other synapse types and brain areas [90,92].

Our model of STDP allows for distinct pre- and postsyn-

aptic expression (figure 1a). This phenomenological model

relies on three dynamic variables, one which tracks past pre-

synaptic activity xþ(t), and two that track postsynaptic

activity, yþ(t) and y2(t). These traces increase with every

spike and decay exponentially between spikes. The plasticity

is expressed as a function of the traces, but in contrast to trad-

itional STDP models where just the synaptic weight changes

as a function of them [94], here both the release probability

and the quantal amplitude are independently modified. In

our model, we assume that the number of release sites N is

fixed and that it does not change on the timescale of the

experiments, consistent with experimental observations

[47,48]. However, the model could be straightforwardly

generalized to also include changes in N.

Even though we model the observed phenomenology

rather than the observed biophysical or mechanistic details,

with caution the components of the model can be interpreted

to correspond to specific physiological components. The pre-

synaptic trace (xþ), for example, could represent glutamate

binding to postsynaptic NMDA receptors, which when

depolarized by postsynaptic spikes unblocks NMDA receptors,

leading to classical postsynaptic LTP [59]. Similarly, the post-

synaptic trace yþ can be interpreted as retrograde nitric oxide

(NO) signalling, which is read out by presynaptic spikes and

leads to presynaptically expressed LTP [36]. Finally, the post-

synaptic trace y2 can be linked to endocannabinoid (eCB)

retrograde release, which triggers presynaptically expressed

LTD when coincident with presynaptic spikes [15,90,92].

As mentioned above, we fitted our model to experimental

data of one synapse type only (layer-5 pyramidal cells onto

layer-5 pyramidal cells in the visual cortex) [15,36,93],

across different frequencies and timings. To ensure the bio-

logical realism of the model, we further constrained the

model fitting by using data from NO and eCB pharmaco-

logical blockade experiments in which either presynaptic

LTD or LTP expression alone was abolished [36]. Further-

more, we verified that our model captured the expected

interaction of short- and long-term plasticity correctly

(figure 1c), which permits the exploration of the functional
implications of changes in short dynamics owing to the

induction of long-term plasticity.

In the current model, neither LTD nor LTP depends on the

state of the synapse—the values of q and Pr. As a result, the cur-

rent model does not have a (non-trivial) fixed point, and as the

fitting to the data only considered the relative changes in these

parameters, the initial conditions were arbitrarily set to q ¼ 1

and Pr ¼ 0.5. An improved model could include state depen-

dence in the plasticity to (i) create a fixed point and a realistic

weight distribution and (ii) allow fitting to data that takes

into account that plasticity might depend on the state (see

also §6). Such extensions would, however, require more data.

Similarly, it might be possible to model plasticity at the level

of voltage [95] or even calcium [96] to capture finer details

observed experimentally.
4. Functional consequences of pre- and
postsynaptic spike-timing-dependent
plasticity expression

The model reveals several functional implications of expressing

synaptic plasticity pre- as well as postsynaptically. First, the

locus of expression of plasticity will change the trial-to-trial

variability of the synaptic response and overall reliability of

neurotransmission. Specifically, by increasing the release prob-

ability, trial-to-trial reliability from synaptic transmission can

be increased. Thus, joint pre- and postsynaptic plasticity can

lead to a larger increase in the signal-to-noise ratio (SNR)

than postsynaptic modification alone (figure 2a). The func-

tional impact on SNR of this joint modification is consistent

with improved sensory perception and its electrophysiological

correlates observed in auditory cortex [97].

Second, the pre- and postsynaptic components can differ in

stability properties: some changes might be quick to induce, but

hard to stabilize and vice versa. This, in turn, can provide

neuronal networks with the necessary flexibility to quickly

adapt to environmental changes. Using a simple receptive

field development simulation, we propose that this might

enable a form of memory savings. Memory savings is a concept

introduced by Ebbinghaus [98] and means that repeated

learning of information is easier, even if the initially learned
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information appears to have been forgotten. When mem-

ories were overwritten, the presynaptic component of the old

memory was erased quickly, but the postsynaptic component

stayed largely intact. As a result, information that was initially

learned but subsequently overwritten could rapidly be

recovered upon relearning, provided that the postsynaptic com-

ponent had not yet decayed completely (figure 2b). This

mechanism could thus enable the brain to adapt quickly to differ-

ent environments or to different tasks without fully forgetting

previous learned information. The savings effect mirrors

monocular deprivation experiments showing lasting postsyn-

aptic structural effects on spine density that enable more rapid

plasticity on repeated monocular deprivation [99,100].

In the STDP data we saw no evidence for any decrease in

the postsynaptic component q, perhaps because its decrease

may be very slow. Under other protocols, LTD in q has been

observed [33]. As it appears unbiological to have no decrease

in q, we assumed that a slow homeostatic-like process can

decrease q, and so over very long times q decays and the

hidden memory trace decays with it. Without this homeostatic

process, the hidden trace in q would not decay and memory

savings would occur for memories of any age. Our model

also suggests that presynaptic boutons should be more

dynamic during learning. Recently, Yang et al. [101] imaged

layer-5 pyramidal cell synapses and found that boutons

tend to grow more often than spines after an auditory fear

conditioning task.
Finally, while the effects reported in [16] considered feed-

forward networks, the changes in release probability under

STDP also have consequences for recurrent networks. Exci-

tation-dominated recurrent networks, connected through

strong short-term depressing synapses, can have long response

latencies that are governed by the synaptic dynamics. We used

the model presented in [22] to examine the effect of different

expression loci in a recurrent network. Figure 2c illustrates

the response of a firing-rate model when the release probability

Pr is increased, versus a case in which the quantal amplitude q
is increased. The pre- and postsynaptic modifications were set

such that the peak responses were identical. In both cases, the

response latency was shortened, but when release probability

was allowed to increase owing to LTP, response latency short-

ened about twice as much compared with the case where only

postsynaptic plasticity was enabled.
5. Possible other consequences of diversity in
locus of plasticity

The ‘embarrassment of riches’ in the possible expression sites

of plasticity [72] is paralleled in many other biological systems.

We mention the work of Marder & Goaillard [102] on ion-chan-

nel expression, and Turrigiano has emphasized that the

multiple ways to achieve homeostasis is puzzling (e.g. review

[103]). Considering Hebbian and homeostatic plasticity
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together (see Chen et al. [104]) complicates this matter even

further. It might have a number of consequences beyond the

ones discussed above in the STDP model (§4). First, the mul-

tiple expression site provide robustness to the system and

multiple ways to maintain the capacity for plasticity, despite

internal or external disruption and compensate for genetic

defects. Such redundancy can also be advantageous when an

abundance of synapses is subject to somewhat diverse learning

rules, as it increases the chance that one or some of the synapses

correctly adapts to the task at hand. This diversity argument

also occurs on the evolutionary level [105], namely a popu-

lation can be functionally similar but diverse in mechanism,

allowing for better adaptation of the population as a whole

to novel circumstances. Yet, the publication of yet another path-

way often makes one want to exclaim ‘Who ordered that?’, as

Rabi did when the subatomic muon particle was discovered.

Second, the multiple expression sites provide flexibility to

local circuits, so that, via synapse-type-specific plasticity,

different microcircuit components can be independently regu-

lated [76]. For example, LTD at layer 4 to layer 2/3 connections,

but not at layer 2/3 to 2/3 synapses, is more readily induced

during the critical period [106,107], whereas thalamocortical

LTP is already strongly diminished before the critical period

has begun [108]. The locus of expression of long-term plasticity

at these different synapse types also differs.

Similarly, different plasticity protocols are affected by dis-

tinct forms of neuromodulation. The neuromodulators can

specifically control forms of STDP that express, for example,

postsynaptically [109–111], providing a potential link between

behaviourally relevant behaviours and expression loci.

Finally, LTD is not necessarily the opposite of LTP; this

becomes even more pressing when considering the diversity

of expression mechanisms. In virtually all computational

models, LTP induction followed by LTD induction returns

the synapse to its original state. Instead, in the abovementioned

STDP model, such a protocol might leave the synapse in a

different state, even if the apparent synaptic weight is the

same, as happens in the case of memory savings. A more

direct experimental research of these issues, for instance

using learning and subsequent unlearning, would be worth-

while. These considerations also indicate that both the pre-

and postsynaptic component need mechanisms to prevent

them from saturating and thereby losing the capacity for

change. This might be possible by introducing soft bounds

for both the pre- and postsynaptic components, or introducing

both pre- and postsynaptic normalization [112].
6. Discussion
To model the impact of synaptic plasticity on circuit compu-

tations, it is important to know how synapses change during

Hebbian and homoeostatic plasticity. Here, we have discussed

several possible expression sites of synaptic plasticity. We have

demonstrated three candidate effects in an STDP model where

both pre- and postsynaptic components are modified: (i) a

change in the release probability can improve the SNR in the

circuit; (ii) the difference in the timescales of modification can

lead to the formation of hidden memory traces; and (iii) as a

result of changes in synaptic dynamics, the response latency

in recurrent networks can be shortened with plasticity. The

possible functional impact of combining pre- and postsynaptic

plasticity is certainly not restricted to the three findings we
illustrate here. We have rather just scratched the surface of

what is likely an emerging field of study.

There is a large range of open issues. For instance, it has

long been argued that the stability of memory in spite of con-

tinuous molecular turnover is a quite remarkable problem for

nature to solve [113,114]. How synapses maintain stable infor-

mation storage while staying plastic still remains unclear. The

diversity of plasticity expression mechanisms could allow for

a staged process by which initial changes are presynaptic,

but later changes are consolidated structurally [58]. It is, how-

ever, not unlikely that multiple expression mechanisms are

active in tandem. How these pre- and postsynaptic alterations

are coordinated to ensure the long-term fidelity of information

storage will require extensive further research. State-based

models with a large range of transition rates between states

have been explored to resolve this issue [115–118]; see also

[119]. As these models are agnostic about expression, the current

model could be seen as a biological implementation of such a

multistate model. It would, for instance, be of interest to know

if the fast resetting of synaptic weights known to occur with

exposure to enriched environments [120] is pre- or postsynaptic.

It would also be of interest to research if the storage capacity

advantages observed in those more theoretical models will

also occur in the current phenomenological model. There is

also similarity to a recent study in which homeostasis acted as

an independent multiplicative mechanism [121].

Another important issue is the weight dependence of

long-term plasticity—LTP is hard to induce at synapses that

are already strong [93,122–124]—which has important

implications for the synaptic weight distribution, memory stab-

ility [125] and information capacity [126]. It has been shown

that presynaptic modifications strongly depend on the initial

release probability [49], which is expected as release prob-

ability is bounded between zero and unity. This

demonstrates that the weight dependence can stem from pre-

synaptic considerations. However, postsynaptic mechanisms

such as compartmentalization of calcium signals may also

explain this weight dependence, as it leads to large spines

with long necks being ‘write protected’ [127–130]. This finding

together with the fact that spine volume is proportional to the

expression of AMPA receptors [131] implies that small spines

should be more prone to LTP, which is consistent with

experimental observations [34]. Such pre- and postsynaptic

mechanisms are of course not mutually exclusive and both

may contribute to the weight dependence of plasticity [123].

Including these effects would be an obvious next target for

the STDP model. Experimentally, it would be of interest to

apply protocols [55] that can accurately probe the short-term

plasticity parameters before and after STDP induction.

Long-term synaptic plasticity and homeostatic plasticity

have been fruitful modelling topics that have clarified the

role of plasticity in biological neuronal networks as well as

inspired artificial neuronal networks. Yet, despite experimental

evidence for presynaptic components in both Hebbian plas-

ticity and synaptic homeostasis, in the overwhelming

majority of computational models presynaptic contributions

have been ignored (for an exception, see [132,133]), or the

models are agnostic about the expression and only adjust the

synaptic weight. However, as we have seen, this is not a neutral

assumption, and may affect the outcome of the plasticity on

network function.

Interestingly, in recurrent networks, short-term plasticity

will have an effect on the pre/post activity patterns, and



rstb.royalsocietypublishing.org
Phil.Tran

7
thereby change STDP induction [134–136]. Theoretically, such

mutually interacting systems are extremely challenging [137].

Our discussion has been restricted to the plasticity of

excitatory synapses. Inhibitory neurons, in all their diversity

[138–140], bring yet another level of complexity as differential

short-term dynamics of excitatory and inhibitory synapses

yield considerably richer dynamics [55,86,141,142]. We suspect

that only a small fraction of the richness and variety of the

experimentally observed plasticity phenomena are understood

and currently only a few computational models include them.

A continued dialogue between theory and experiment should

hopefully advance our understanding.
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