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In cells, ion channels are one of the most important classes of membrane proteins which allow inorganic ions to move across the
membrane. Awide range of biological processes are involved and regulated by the opening and closing of ion channels. Ion channels
can be classified into numerous classes and different types of ion channels exhibit different functions.Thus, the correct identification
of ion channels and their types using computational methods will provide in-depth insights into their function in various biological
processes. In this review, we will briefly introduce and discuss the recent progress in ion channel prediction usingmachine learning
methods.

1. Background

Ion channels are a diverse group of proteins that extend
across the lipid membrane of cells and form channel pores
[1]. They allow ions to move into and out of the cell to
establish and control the voltage gradient across the cell
membrane in response to stimuli, such as ligand, voltage,
and pressure changes. Many biological processes including
muscle contraction, neuronal excitability, epithelial transport
of nutrients and ions, hormone secretion, T-cell activation,
and pancreatic beta-cell insulin release are all controlled and
regulated by ion channels [2].

It has been reported that the normal function of ion chan-
nels can be disrupted by chemicals and genetics, whichwould
result in negative impact on the organism [2]. For example,
channelopathies are caused by mutations in ion channel-
encoding genes [3]. Moreover, various neurotoxins bind to
ion channels to modulate the nervous systems of animals.
Since ion channels have such important biological function in
various biological processes, scientists have developed drugs
to target them for disease therapy. Ion channels have been
demonstrated as valuable targets for the treatment of epilepsy,
chronic pain, and other diseases [4].

Over 300 types of ion channels have been found in
living cells [5]. Most channels are ion-selective and ion-
specific. For example, most of potassium channels have a
permeability ratio for potassium over sodium of 1000 : 1 [6].
Based on their biological properties, ion channels can be
clustered into numerous types. The ion channels activated by
the binding of ligand molecules (such as a neurotransmitter)
are called ligand-gated ion channels (LGIC) that can be
further classified into three superfamilies, namely, Cys-loop
receptors, ionotropic glutamate receptors, and ATP-gated
channels. Voltage-gated ion channels (VGIC) are another
kind of ion channels which open to allow ions to pass through
the membrane in response to the changes in electrical
potential difference. According to ion type permeability, the
VGICs can be further classified into potassium (K), sodium
(Na), calcium (Ca), and anion VGICs. Moreover, some ion
channels can also be opened and closed bymechanical forces,
temperature, and pressure. However, the number of these ion
channels is too few to have statistical significance. Thus, this
review focuses on the prediction of ligand-gated and voltage-
gated ion channels.

Different ion channel types perform different biological
functions and regulate different biological possesses. To
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Table 1: List of databases related with ion channels.

Name URL
PDB http://www.rcsb.org/pdb/home/home.do
Uniprot http://www.uniprot.org
IUPHAR http://www.iuphar-db.org
LGIC http://www.ebi.ac.uk/compneur-srv/LGICdb/LGICdb.php
VKCDB http://vkcdb.biology.ualberta.ca/index.php

Table 2: List of three programs.

Name URL
BLASTClust http://www.ncbi.nlm.nih.gov/Web/Newsltr/Spring04/blastlab.html
CD-HIT http://weizhong-lab.ucsd.edu/cd-hit
PISCES http://dunbrack.fccc.edu/PISCES.php

identify the types of ion channels, traditional biochemi-
cal experimental methods are time-consuming and costly,
whereas computationalmethods are cost-effective.Therefore,
in this paper, we review the development of machine learning
methods in the prediction of ion channel and their types.
To predict ion channels using machine learning method, the
following issues should be considered. (i) How to construct a
valid and objective benchmark data set to train and test the
predictor? (ii) How to formulate the ion channel sequences
using an effective mathematical descriptor which can truly
reflect the properties of samples? (iii) How to develop or use
a machine learning algorithm to perform the prediction? (iv)
What kind of cross-validation tests should be used to evaluate
the anticipated accuracy of the predictor? We will discuss
each issue in turn.

2. Published Databases

The first essential requirement in developing computational
methods for the prediction of ion channels is to obtain a
benchmark database. At present, many public databases are
available online. Some of these original databases, such as
protein data bank (PDB) [7] and universal protein resource
(UniProt) [8], have deposited many ion channel data. Based
on these databases and related publications, some special
databases such as IUPHAR (International Union of Basic
and Clinical Pharmacology) database [9], ligand-gated ion
channel database [10], and VKCDB [11] have been built. The
web addresses of these databases are listed in Table 1.

However, the databases listed above are not suitable for
ion channel prediction using machine learning methods,
because the data deposited are redundant and are of low
quality. A reliable and objective benchmark dataset should
be constructed by the following strategies: (i) if the protein
sequence of an ion channel contains ambiguous residues
(such as “B,” “X,” and “Z”), the ion channel must be
excluded; (ii) if sequences are fragments of other proteins,
the sequences must be excluded; (iii) if an ion channel is
inferred from homology or prediction, the ion channel must
also be excluded; and (iv) the highly similar sequences must

be excluded for objectivity, because the high similarity data
will lead to overestimating the performance of the proposed
predictors.

In order to exclude highly similar sequences from these
datasets, BLASTClust, CD-HIT [12], and PISCES [13] have
been developed and could be freely obtained at the addresses
listed in Table 2. BLASTClust is a program that can be used
to cluster either protein or nucleotide sequences. However,
since it requires all against all comparisons of sequences for
optimal results [14], the efficiency of this program is relatively
low. Owing to the clustering efficiency and capability to
handle extremely large databases, CD-HIT has been widely
employed to remove redundant sequences. However, CD-
HIT cannot deal with sequenceswith sequence identity below
40%.To overcome this shortcoming, PISCESwas proposed in
2003, which can exclude proteins with the sequence identity
of 25% [13].

According to the above mentioned public databases and
sequence culling programs, four benchmark datasets of ion
channels have been proposed in previous studies [15–19].

The first benchmark dataset S1 [19] contains 1574 nonion
channels and 473 ion channels, of which 164 are potassium,
27 sodium, 27 calcium, and 18 chloride VGICs.The sequence
identity between any two sequences in S1 is less than 90%.
These data are derived from the Swiss-Prot database.

The second nonredundant benchmark dataset S2 [17]
contains 37 Kv1, 16 Kv2, 18 Kv3, 15 Kv4, and 14Kv7 subfamilies
of voltage-gatedK+ channels.These data are derived from the
VKCDB database.

The third benchmark dataset S3 [16] contains 300 nonion
channel membrane proteins and 298 ion channel proteins.
The ion channel dataset contains 148 VGICs (81 potassium,
29 calcium, 12 sodium, and 26 anion VGICs) and 150 LGICs.
The sequence identity of this dataset is less than 40%. These
data are derived from the Uniprot and LGIC databases.

The fourth benchmark dataset S4 [15] contains 217
voltage-gated K+ channels, composed of 82Kv1, 16 Kv2,
37 Kv3, 32 Kv4, 10 Kv6, and 40Kv7 families, respectively. The
sequence identity of this dataset is less than 60%. These data
are derived from the VKCDB database.
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3. Methods

3.1. Protein Description. Use of informative parameters to
represent the ion channel samples is the second essential
requirement for bioinformatics prediction. Here, three kinds
of features, amino acid compositions, dipeptide composi-
tions, and tripeptide compositions, were used to represent ion
channels and expressed as follows:
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(𝑘) are the occurrence number
of residues 𝑖, the number of occurrences of dipeptide 𝑗, and
the number of occurrences of tripeptide 𝑘 in the protein
sequence of an ion channel, respectively. 20, 400, and 8000
are the number of the standard amino acids, the number of
combination of dipeptides, and the number of combination
of tripeptides, respectively.

3.2. Feature Selection. Theoretically, high dimension features
will lead to three serious issues, that is, overfitting, infor-
mation redundancy, or noise and dimension disaster [20].
These issues would result in low generalization ability of
the predictor, poor prediction accuracy, and time-consuming
computations. Thus, it is necessary to use feature selection
techniques to optimize feature set for economizing the time
for computation and building robust prediction models. In
the following section, we will discuss how to use three feature
selection techniques, that is, analysis of variance, correlation-
based feature selection, and binomial distribution, to select
optimal features.

3.2.1. Analysis of Variance (ANOVA). To evaluate the contri-
bution of features to the classification, the 𝐹 value (𝐹(𝜆)) of
the 𝜆th feature can be defined as
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is called mean square within (MSW) and denotes sample
variance within classes. They can be calculated by [16]
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where 𝐾 and 𝑁 represent the number of classes and total
number of samples, respectively. 𝑓

𝑖𝑗
(𝜆) represents the fre-

quency of the 𝜆th feature of the 𝑗th sample in the 𝑖th class.
𝑛
𝑖
is the number of samples in the 𝑖th class. 𝑑𝑓

𝐵
= 𝐾−1 is the

degrees of freedom for MSB and 𝑑𝑓
𝑊

= 𝑁−𝐾 the degrees of
freedom for MSW.

Based on the theory of statistics, the 𝐹(𝜆) in (4) obeys
𝐹 sampling distribution with degrees of freedom 𝑑𝑓

𝐵
and

𝑑𝑓
𝑊
. The 𝐹(𝜆) measures the contribution of the 𝜆th feature

related to the class variables. In the absence of differences
between groups, the 𝐹(𝜆) will be close to 1. In other words,
the feature with a larger 𝐹(𝜆) indicates that it is a more highly
relevant one for the target to be predicted. Thus, features can
be initially ranked according to 𝐹 value.

3.2.2. Correlation-Based Feature Selection (CFS). The heart
of the correlation-based feature selection algorithm is to
evaluate the merit of a feature subset and exclude the
redundant features which are highly correlated with one or
more of the other features. The merit of a feature subset 𝑆
containing 𝑘 features is defined by the following equation [15]:
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in the following equation and 𝑟
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the average feature-feature
intercorrelation, which can be defined as
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where 𝑐 is the class.The numerator in (8) indicates predictive
ability of subset 𝜃 and the denominator stands for redundancy
among the features. In fact, (7) is the Pearson’s correlation
where all variables have been normalized. The numerator
gives an indication of how predictive a group of features are,
whereas the denominator describes how much redundancy
there is among them.

3.2.3. Binomial Distribution (BD). For a stochastic event, two
possible cases, namely, occurrence and nonoccurrence, will
happen when one observes the 𝑖th feature occurring in the
𝑘th type set [18]. Each outcome has a fixed probability when
benchmark dataset has been fixed. This probability is called
prior probability 𝑝

𝑘
.
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where 𝐶𝐿
𝑖𝑘
is the confidence level (𝐶𝐿) of the 𝑖th feature in

the 𝑘th dataset. Based on small probability event principle, if
𝑃
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is a small value, it means the feature 𝑖 appearing in dataset

𝑘 is not random. The feature with a small 𝑃
𝑖𝑘
indicates that it

is a more highly relevant one for the target to be predicted.
Thus, features can be initially ranked according to 𝑃

𝑖𝑘
value.

The incremental feature selection (IFS) can be used to
determine the optimal number of features.The IFS procedure
includes the following steps: starting with one feature with
the first score in the feature set, adding the second feature
with the second score, adding the third feature with the third
score, and repeating this process until all candidate features
are added. Finally, the proposed machine learning methods
are used to investigate the performance of each feature subset.
The feature subset which can yield the maximum accuracy is
the optimal feature subset.

3.3. Support Vector Machine (SVM). The third essential key
for bioinformatics is to select an efficient and accurate
machine learning method to make a predictive decision.
SVM is a kind of machine learning method which has been
successfully used in wide fields of ion channel prediction.
Many researchers have developed free and convenient soft-
ware packages for the implementation of SVM, such as
LibSVM [21] and SVM Light [22].

The basic idea of the SVM is described as follows. For a
two-class classification problem, a series of training vectors
�⃗�
𝑖
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{+1, −1} (𝑖 = 1, 2, . . . , 𝑁) can be generated. Here, +1 and −1,
respectively, indicate the two classes. SVM maps the input
vectors �⃗�

𝑖
∈ 𝑅𝑑 into a high dimensional feature space in

order to construct an optimal separating hyperplane with
the largest distance between the two classes. The decision
function implemented by SVM is written as
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where 𝐾(�⃗�, �⃗�
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) is a kernel function which defines an inner

product in a high dimensional feature space. There are three
kinds of kernel functions for the nonlinear classification
problems defined as follows.
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Sigmoid function
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quadratic programming (QP) problem:
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parameter 𝐶 can control the trade-off between margin and
misclassification error.

For multiclass problems, several strategies such as one-
versus-rest (OVR), one-versus-one (OVO), and DAGSVM
are applied to extend the traditional SVM. Because the
RBF usually outperforms polynomial function and sigmoid
function, the RBF is widely used in bioinformatics. The
regularization parameter 𝐶 and kernel parameter 𝛾 were
tuned to optimize the classification performance using grid
search with cross-validation.

3.4. Criteria for Performance Evaluation. In developing a
useful statistical predictor, it is very important to objectively
evaluate its performance or anticipated success rate. Here,
a set of more intuitive and easier-to-understand metrics
is introduced. Those are sensitivity (Sn), specificity (Sp),
accuracy (Acc), andMatthew’s correlation coefficient (MCC)
defined as [23]
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where𝑁+ is the total number of the positives while𝑁+
−
is the

number of the positives incorrectly predicted as the negatives;
𝑁− is the total number of the negatives while 𝑁−

+
is the

number of the negatives incorrectly predicted as positives.
These four metrics are generally used in statistical prediction
for quantitatively measuring the performance of a predictor
from four different angles.

Three cross-validation tests, that is, independent dataset
test, subsampling (or 𝐾-fold cross-validation) test, and jack-
knife test, are often used to evaluate the anticipated success
rate of a predictor [24]. The 𝐾-fold cross-validation is a kind
of rigorous and objectivemethod for evaluating the predictive
performance of predictors. For 𝐾-fold cross-validation, the
dataset is divided into𝐾 equal parts. Of these 𝐾 parts, 𝐾 − 1
parts are used for training and the𝐾th part is used for testing.
This process is repeated𝐾 times for all𝐾parts and the success
rate is the average of the 𝐾 times tests. The jackknife test is
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deemed the least arbitrary one and hence has been widely
used in the realm of bioinformatics. In the jackknife test,
each sequence in the training dataset is in turn singled out as
an independent test sample and all the rule-parameters (Sn,
Sp, Acc, and MCC) are calculated without including the one
being identified.

4. Published Results

Although many works have investigated the dynamics of ion
channel, only few pattern recognition methods focused on
the prediction of ion channels. The pioneering works for the
prediction of ion channels were carried out independently by
two groups in 2006.

Based on the benchmark dataset S1, a SVM-basedmethod
(SVM light package) was proposed to discriminate ion chan-
nels from nonion channels [19]. In five-fold cross-validation,
the Accs of 82.89% and 85.56% were achieved by using
amino acid composition (1) and dipeptide composition (2),
respectively. Authors also investigated the performance of
position-specific scoring matrix (PSSM) generated from PSI-
BLAST (Position-Specific Iterative Basic Local Alignment
Search Tool) which can provide the distant relationships
between proteins.Three iterations of PSI-BLASTwere carried
out at a cut-off 𝐸-value of 0.01. Then the accuracy of 84.22%
was obtained by using the five-fold cross-validation. By com-
bining dipeptide composition with position-specific scoring
matrix, the five-fold cross-validated accuracy increased to
89.11%. Subsequently, these methods were used to predict
potassium, sodium, calcium, and chlorideVGICs. For further
improving the accuracy, the Hidden Markov model (HMM)
profiles of the four types of VGICs were constructed using
the HMMER software package. Each protein sequence was
aligned in a multiple sequence alignment using ClustalW.
The 𝐸-value threshold (𝐸-value) was set to 0.01. As a result,
the five-fold cross-validated Acc reached 97.78% by using
the hybrid method that combines dipeptide-based SVM
and hidden Markov model methods. The Sns (MCC) of
potassium, sodium, calcium, and chloride VGIC predictions
are 99.38% (0.96), 96.00% (0.93), 96.00% (0.98), and 86.67%
(0.92). Based on these approaches, a web server VGIchan
(http://www.imtech.res.in/raghava/vgichan/) was developed
for predicting and classifying voltage-gated ion channels.This
is the first online server for ion channel prediction using a
machine learning method.

Based on the benchmark dataset S2, Liu et al. [17] pre-
dicted the five subfamilies of potassiumVGICs by using SVM
combined with dipeptide composition (2). In the jackknife
cross-validation, the average Acc of 98.0% was achieved with
the average Sn of 89.9%, Sp of 100%, and MCC of 0.94.

Although these two studies have achieved good results,
the high sequence similarity of the two datasets might
result in overestimating the performance and reducing the
generalization ability of the proposed predictive models.

Recently, based on the benchmark dataset S3 and by
using dipeptide composition (2) as parameters, Lin and
Ding [16] successfully predicted ion channels and their
types using Libsvm package. In jackknife cross-validation,

the Accs of 85.0%, 89.9%, and 82.4% are obtained for
the classification of ion channels and nonion channels,
VGICs and LGICs, and the subclasses of VGICs, respec-
tively. For further improving predictive performance of SVM
model, the ANOVA (3)–(5) was firstly proposed to select
the optimal dipeptide compositions (2). Then, the Accs
increase from 85.0%, 89.9%, and 82.4% to 86.6%, 92.6%,
and 87.8%, respectively, when using the 140, 159, and 232
optimal dipeptides according to the 𝐹 values, respectively.
These results demonstrate that the ANOVA is a powerful
and efficient feature selection technique which can improve
the predictive accuracy by excluding noise and redundant
parameters. Based on this proposed method, an effective tool
for predicting ion channels and their types, called Ionchan-
Pred, was constructed and can be freely downloaded from
http://cobi.uestc.edu.cn/people/hlin/tools/IonchanPred/. By
using the IonchanPred, the KCMA1 can be correctly identi-
fied, which is a potassium channel activated by either mem-
brane depolarization or increase in cytosolic Ca2+ and plays a
key role in controlling excitability in a number of systems. For
comparison, this feature selection technique was also used
to investigate the performance of SVM on the benchmark
dataset S1. In five-fold cross-validation, the Acc and average
accuracy are 97.97% and 95.55%, respectively. Comparison
demonstrates again that the ANOVA is a powerful technique
for feature selection.

Based on the benchmark dataset S4, Chen and Lin
presented a SVM-based method (LibSVM package) to
predict six subfamilies of potassium VGICs using amino
acid composition and dipeptide composition [15]. The
Acc of 87.39% was achieved in jackknife cross-validation.
Furthermore, the CFS was proposed to find the best
feature set. As a result, the maximum Acc of 93.09% was
obtained in jackknife cross-validation when 118 features
were used. For the convenience of the vast majority of
experimental scientists, a predictive tool, called VKCPred,
was constructed and can be freely downloaded from
http://cobi.uestc.edu.cn/people/hlin/tools/VKCPred/. For
further improving the accuracy, Liu et al. [18] proposed
BD-based feature selection technique to pick out optimal
tripeptides. The LibSVM was used to execute the SVM
algorithm. The overall accuracy improved to 96.77% in
jackknife cross-validation when 648 tripeptides were
selected as optimal features. A user-friendly web-server
called iVKC-OTC was established and can be freely
accessible at http://lin.uestc.edu.cn/server/iVKC-OTC.

The four tools, VGIchan, IonchanPred, VKCPred, and
iVKC-OTC, are listed in Table 3 for use by experimental
researches.

5. Prospect

Ion channels are important drug targets. Using computa-
tional methods can provide valuable information for nar-
rowing the scope of drug targets discovery. However, few
methods have been applied in this realm and the accuracy
is still far from that required for successful application.

Many machine learning methods such as neural network
(NN) [25], K nearest neighbor (KNN) [26], extreme learning
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Table 3: Summary of the ion channel prediction tools.

Name URL
VGIchan http://www.imtech.res.in/raghava/vgichan/
IonchanPred http://cobi.uestc.edu.cn/people/hlin/tools/IonchanPred/
VKCPred http://cobi.uestc.edu.cn/people/hlin/tools/VKCPred/
iVKC-OTC http://lin.uestc.edu.cn/server/iVKC-OTC/

machine (ELM) [27], and deep learning (DL) [28] have been
widely applied in computational proteomics. Some feature
selection techniques such as minimum redundancy max-
imum relevance feature selection (mRMR) [29], manifold
learning (ML) [30], principal component analysis (PCA) [31],
and regularized trees [32] have also been developed and were
gradually used to obtain optimal features that produce the
highest predictive accuracy.

Developing a set of informative parameters to formulate
the ion channel samples is also necessary for ion channel
prediction. In this paper, only the amino acid, the dipep-
tide, and tripeptide composition were used to represent ion
channels.The physiochemical characteristics [33], overrepre-
sented motifs [34], and functional domains [35] can also be
utilized in the field.

Of course, to construct better benchmark dataset which
not only contains more sequences but also obeys more
objective and strict standards can benefit the study ion
channels. Now, with the avalanche of genome and proteome
sequences generated in the postgenomic age, many ion
channels are available in various sequence, structure, and
reference database. Collecting and building these data is the
key role in ion channel study.

In the future, we hope that researchers can focus on the
three aspects discussed above for developing powerful and
efficient predictors of ion channels.

6. Summary

This review focused on the development of prediction meth-
ods for ion channels in terms of the following issues:

(i) datasets of ion channel proteins,
(ii) machine learning methods to predict ion channels,
(iii) feature selection techniques to obtain optimal features

for ion channel predictions,
(iv) prospect of ion channel predictions by using bioinfor-

matics methods.
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