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Abstract

Percutaneous absorption is highly variable between chemicals but also within chemicals

depending on exposure conditions and experimental set up. We tested a larger number of

organic solvents with the same experimental set up, using skin from new-born piglets and

static diffusion cells. Thirty-six common organic solvents were studied neat (and 31 of them

also in water dilution): acetone, acetonitrile, n-butanol 2-butanone 2-butoxyethanol, 1-

butoxy-2-propanol, n-butyl acetate, butyl acrylate, cyclohexane, cyclohexanone, 1,2-dichlo-

roethane, dichloromethane, ethanol, 2-ethoxyethanol, ethyl acetate, ethyl acrylate, ethyl-

benzene, furfuryl alcohol, n-hexane, 2-hexanone, 2-isopropoxyethanol, methanol, 1-

methoxy-2-propanol, methyl acrylate, 3-methyl-1-butanol, methyl tertiary butyl ether, 4-

metyl-2-pentanol, methyl methacrylate, 2-propanol, 2-propen-1-ol, 2-propoxyethanol, 1-pro-

poxy-2-propanol, styrene, trichloromethane, toluene and m-xylene. In addition, a mixture of

2-methylbutyl acetate and n-pentyl acetate was tested. For most of the solvents, little or no

percutaneous absorption data have been published. Lag times, steady-state fluxes and

apparent permeability coefficients were obtained from the time courses of solvent appear-

ance in the receptor medium, as measured by gas chromatography. The use of the same

methodology and kind of skin resulted in small variability within experiments, underlining the

need for consistent methodology for useful results for developing predictive models. Fur-

thermore, a comparison of the neat and diluted data shows that water dilution affects all

these variables and that the direction and magnitude of the effects vary between chemicals.

This comparison strongly supports that prediction of percutaneous absorption of neat and

water diluted chemicals requires different models.

Introduction

Understanding percutaneous absorption of organic solvents is important in many areas, such

as prediction of the time-to-effect of topically administered medications, the retention and

behaviours of cosmetics on the skin, or risk assessment of unintended exposures. The demand

for percutaneous absorption data for risk assessment purposes has increased with the
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introduction of the REACH legislation in the European Union, as manufacturers and produc-

ers of chemicals are required to evaluate the safe use of their products considering all relevant

exposure routes, including dermal exposure.

For risk assessment of occupational exposures, solvents are of special importance due to

extensive occupational use. Both inhalation and dermal exposure may contribute to systemic

toxicity, meanwhile, successful reduction of ambient air levels increases the relative impor-

tance of dermal exposure. In the regulation of occupational exposure, the so-called “skin nota-

tion” is commonly used (in conjunction with occupational exposure limits, OELs) to identify

chemicals that are easily taken up through the skin, and/or may cause or contribute to systemic

toxicity. However, the criteria for skin notations, and how they are applied in practice, differ

substantially between standard-setters [1–3]).

Among the difficulties to assign skin notation is the lack of relevant and reliable absorption

data. A review of available studies for 108 different chemicals showed a huge variation in der-

mal permeability between as well as within chemicals [4]. This highlights the need for evaluat-

ing appropriateness of dermal absorption data. The kind of data most relevant for skin

notations and other risk assessments of human skin exposure, i.e. human or in vivo dermal

exposure toxicity, are rare due to ethical, practical and economical restrictions. Therefore,

route-to-route extrapolation will be required for most chemicals. The same restrictions apply

also to human and in vivo toxicokinetic data, underscoring the need for in vitro systems to

evaluate percutaneous absorption and, in a longer perspective, to develop or improve compu-

tational predictive models.

The static diffusion cell, or Franz cell [5], is a commonly used tool to measure percutaneous

absorption in vitro. The most common physical quantities used to describe the absorption pro-

cess of a specific chemical can be derived from Fick’s laws of diffusion. Given a homogenous

medium exposed to a chemical Fick’s first law can be used to calculate the steady-state flux JSS
and the permeability coefficient Kp. These two physical quantities may then be used to develop

predictive models, such as quantitative structure–activity relationship (QSAR) or quantitative

structure-property relationship (QSPR) models [6,7]. Such models for percutaneous absorp-

tion have been the scope of a multitude of publications, e.g. [8–14], as well as evaluations of

their performance [11, 15–18]. These models are mainly based on linear methods, which may

not be sufficient for modelling the dynamics of percutaneous absorption. There are also few

examples of different machine learning techniques [18–21], which show some promise. Deep

learning methods in particular might be useful in future analysis of skin permeation data.

Deep learning has been applied in a few cases of pharmaceutical and toxicological research

[22] and performed well in the 2014 Tox21 challenge on prediction of nuclear receptor signal-

ing and stress pathway assays [23].

A challenge in the development of linear as well as nonlinear approaches to predictive

modelling of skin permeation is the limited availability of experimental data. Thus, the skin

permeation models cited above are based on data for roughly 10 to 250 compounds whereas

the Tox21 challenge participants had access to standardised data for 12 000 compounds [23].

Whichever predictive skin permeation model is chosen, the accuracy will depend on the input

data and, as shown by e.g. Johanson and Rauma [4], these data are highly variable. For exam-

ple, the donor species, location on the body and skin preparation all have a major impact on

the results. Additionally, the experimental protocol, experimental and analytical equipment

will influence study results [24,25]. For instance, experimental permeation data from diffusion

cells using synthetic membranes, reducing the intra- and interspecies variability, may still

comprise both inter- and intra-laboratory variability [26,27]. Comparisons of the static diffu-

sion cells with flow-through diffusion cells, however, have shown that these two in vitro sys-

tems yield similar results [28–30].
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The purpose of the present study was to evaluate the dermal penetration potential of a num-

ber of chemicals relevant for the occupational setting, namely organic solvents. Permeation

studies of 38 common organic solvents were performed with skin from new-born piglets using

the same experimental set up with static diffusion cells. Because the properties of neat chemi-

cals and water dilutions may differ significantly, both these solutions were tested. Estimates of

the lag time tlag, the steady-state flux JSS, and the apparent permeability coefficient Kp are

presented.

Materials and methods

2.1 Chemicals

Acetone (CAS 67-64-1, purity�99.5%), acetonitrile (75-05-8,�99.8%), n-butanol (71-36-3,

99.5%), trichloromethane (67-66-3,�99.0%), dichloromethane (75-09-2,�99.5%), ethyl ace-

tate (141-78-6,�99.5%), 3-methyl-1-butanol (123-51-3,�99.0%), 2-butanone (78-93-3,

�99.5%) and m-xylene (108-38-3,�99.0%) were obtained from Merck (Darmstadt,

Germany).

2-Butoxyethanol (CAS 111-76-2, purity 99%), 2-ethoxyethanol (110-80-5, 98%) and toluene

(108-88-3,�99.5%) were obtained from Kebo Lab (Stockholm, Sweden).

n-Butyl acetate (CAS 123-86-4, purity�99.0%), 1-butoxy-2-propanol (5131-66-8,�99.0%),

butyl acrylate (141-32-2,�99.0%), cyclohexane (110-82-7, 99.9%), cyclohexanone (108-94-1,

99%), Furfuryl alcohol (98-00-0, 99%), 2-hexanone (591-78-6, 98%), 2-isopropoxyethanol

(109-59-1, 99%), methanol (67-56-1, 99%), 1-methoxy-2-propanol (107-98-2, 98%), methyl

acrylate (96-33-3, 99.0%), methyl tertiary butyl ether (1634-04-4, 99.8%), 4-metyl-2-pentanol

(108-11-2, 98%), 2-propanol (67-63-0,�99.5%) and 1-propoxy-2-propanol (1569-01-3, 99%)

were obtained from Sigma Aldrich (Steinheim, Germany). A commercially available mixture

of n-pentyl acetate (628-63-7) and 2-methylbutyl acetate (624-41-9) was obtained from Sigma

Aldrich (Steinheim, Germany) in a 65%/35% mixture having 99% purity, proportions were

60% and 40% according to our analysis by gas chromatography.

Ethanol (CAS 64-17-5, purity 99%) was obtained from Kemetyl (Stockholm, Sweden).

2-Propen-1-ol (CAS 107-18-6, purity�99.5%), 1,2-dichloroethane (107-06-2,�99.5%),

ethyl acrylate (140-88-5,�99.0%), ethylbenzene (100-41-4,�98.0%), n-hexane (110-54-3,

�98.0%), methyl methacrylate (80-62-6,�99.0%), 2-propoxyethanol (2807-30-9,�99.0%)

and styrene (100-42-5,�99.0%) were obtained from Fluka (Buchs, Switzerland).

For the dilution studies, the three solvents with limited miscibility with water, m-xylene,

cyclohexane and ethylbenzene, were diluted in degassed phosphate buffered saline (1000–3,

Sigma–Aldrich, Steinheim, Germany) containing 6% PEG-20 oleyl ether (P5641, Sigma-

Aldrich, Steinheim, Germany). Remaining chemicals were diluted in laboratory grade deion-

ized water. All reported percentages are calculated by volume.

2.2 Skin

Piglets (Duroc) that had died of natural causes (at birth or first week of life) were obtained

from local commercial breeders. As this source of skin is categorised as slaughter waste, it is

exempt from the Swedish Board of Agriculture’s requirements on ethical vetting of research

involving animals.

Pig skin has been shown to be similar to human skin with respect to stratum corneum and

epidermal thickness as well as permeability [4,25,31,32]. Skin specifically from new-born pigs

that died of natural causes has also been shown to be a suitable replacement for human skin by

Cilurzo et al. [33], as their experimentally derived in vitro fluxes for seven benzoxaznones were

within a factor of 2 from previously published data on human epidermis.
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For early experiments we employed dermatomed skin (n = 10, labelled in Table 1), and

then proceeded to use full-thickness skin. In both cases, skin pieces measuring approximately

8 x 5 cm2 were collected from the back and flank of the piglet. Each skin piece was stretched

around the edges of a soft polyethene plate (21 x 3 x 0.7 cm3) and fastened to the sides of the

plate with a staple gun. Another plate, wrapped in polyethene film, served as a lid and was

placed on top of the skin and firmly and evenly fixed to the bottom plate by bolts and nuts.

The mounted skin pieces were stored at -20˚C. In those cases skin was dermatomed, it was

taken out after 12 h and the frozen piece dermatomed (Model C, Padgett Instruments, Inc.,

Kansas City, MO). Dermatomed skin pieces were wrapped in aluminium foil and polyethene

film, and then stored at -20˚C until later use.

Twenty four hours before study the skin pieces were thawed for 15 minutes in room tem-

perature. Thereafter the thickness was measured by using a micrometer (293-661-10, Mitu-

toyo) and integrity was checked by an ohm meter (Fluke 111, Fluke Corporation, Everett, WA,

USA). Pieces with a resistance below 50 kO were discarded. This cut-off was validated against

in house measurements of intact and damaged skin pieces. The skin pieces were stored over-

night in saline at +8˚C prior to permeation measurements.

2.3 Franz cell studies

Six jacketed static Franz cells (orifice diameter 9 mm, corresponding to a skin exposure area of

0.64 cm2, receptor volume 5.0–5.4 mL, model number 4G-01-00-090-05, Permegear, Bethle-

hem, PA, USA) were mounted in a magnetic stirrer (HP 6 Variomag, H+P Labortechnik,

Munich, Germany) and kept at 32˚C [34] by means of circulating water from a thermostatted

water bath (21 AT, Heto, Allreød, Denmark).

Degassed phosphate buffered saline (1000–3, Sigma–Aldrich, Steinheim, Germany) con-

taining 6% PEG-20 oleyl ether (P5641, Sigma-Aldrich, Steinheim, Germany), according to

OECD guidelines [34], was used as receptor fluid. The receptor compartment was kept well

stirred using Teflon coated magnets. Skin pieces were mounted onto the Franz cells one hour

before start of exposure.

At start of experiment, the donor compartment was filled with excess test chemical (approx-

imately 1 ml, neat or diluted in water) and capped with a glass stopper. Experiments ran for 4

to 9 hours.

Aliquots of receptor fluid (50 μl) were sampled at predefined times (every 10 min first hour,

every 20 min second hour, then every 30 min) using a gas-tight syringe (004250, SGE, Victoria,

Australia). Samples were directly transferred to head-space glass vials, which were immediately

capped and stored at +8˚C for later analysis (within two days) by head-space gas

chromatography.

2.4 Gas chromatographic analyses

The analyses were performed with a 6890+ GC (Hewlett Packard, Palo Alto, CA, USA), an

8700 GC (Perkin Elmer, Waltham, MA, USA) or a Clarus 500 (Perkin Elmer, Waltham, MA,

USA) gas chromatograph equipped with a 10-m or 25-m Poraplot Q column and flame-ioniza-

tion detector.

All studied chemicals were readily detected in the gas chromatographic analyses of receptor

medium with limits of detection ranging from 0.1 μg/ml to 9.5 μg/ml (median 0.4 μg/ml)

depending on chemical. To allow for quantitative analyses, standard curves were established

for each test chemical. At least one concentration in each of the standard curves was well

above the highest concentration achieved in the receptor fluid during the experiments. All
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Table 1. Permeability data from static diffusion cell experiments using pig skin.

Compound

CAS

# C MW

(g mol-1)

Log P cdonor (%) Skin N tlag (min) SEtlag
(min)

Jss
(g cm-2 h-1)

SEJss
(g cm-2 h-1)

Kp
(cm h-1)

SEKp
(cm h-1)

CVKp
(%)

Alcohols
Methanol 1 32.0 -0.63 100.0 Full 6 40.1 6.5 1.01E-02 7.55E-04 1.27E-02 9.55E-04 18

67-56-1 10.0 Split 6 23.4 1.6 7.03E-04 2.70E-04 8.89E-03 3.41E-03 94

Ethanol 2 46.1 -0.14 100.0 Split 6 22.4 2.5 5.71E-03 1.59E-03 7.23E-03 2.02E-03 68

64-17-5 10.0 Split 6 21.7 4.4 1.01E-03 4.46E-04 1.28E-02 5.65E-03 108

2-Propen-1-ol 3 58.1 0.21 100.0 Full 6 31.8 4.9 2.25E-03 1.08E-03 2.65E-03 1.27E-03 117

107-18-6 10.0 Full 6 36.3 5.1 3.76E-04 6.99E-05 4.43E-03 8.22E-04 46

2-Propanol 3 60.1 0.28 100.0 Split 5 18.0 2.1 5.96E-04 2.19E-04 7.59E-04 2.79E-04 82

67-63-0 10.0 Full 6 60.8 2.0 1.98E-04 2.22E-05 2.50E-03 2.81E-04 27

n-Butanol 4 74.1 0.84 100.0 Full 6 32.5 4.7 2.11E-04 3.23E-05 2.60E-04 3.99E-05 37

71-36-3 10.0 Full 6 68.5 8.5 4.43E-04 1.59E-04 5.46E-03 1.97E-03 88

3-Methyl-1-butanol 5 88.2 1.26 100.0 Full 6 28.7 5.5 2.57E-04 4.46E-05 3.16E-04 5.48E-05 43

123-51-3 1.0 Full 6 39.1 4.6 9.53E-05 3.81E-05 1.17E-02 4.69E-03 98

Furfuryl alcohol 5 98.1 0.45 100.0 Full 6 40.5 3.6 5.44E-04 9.46E-05 4.82E-04 8.37E-05 43

98-00-0 10.0 Full 6 64.2 9.4 5.09E-04 1.09E-04 4.50E-03 9.66E-04 52

4-Metyl-2-pentanol 6 102.2 1.68 100.0 Full 6 40.9 5.3 1.30E-04 2.89E-05 1.61E-04 3.58E-05 54

108-11-2 1.0 Full 6 68.5 8.4 3.29E-05 5.70E-06 4.08E-03 7.06E-04 42

Chlorinated
Dichloromethane 1 84.9 1.34 100.0 Full 6 13.7 1.9 1.15E-02 8.51E-04 8.66E-03 6.42E-04 18

75-09-2 1.0 Full 6 22.4 3.5 4.18E-04 2.04E-04 3.15E-02 1.54E-02 120

Trichloromethane 1 119.4 1.52 100.0 Full 6 38.7 5.9 7.67E-03 7.66E-04 5.18E-03 5.18E-04 24

67-66-3 0.5 Full 6 28.4 5.7 4.96E-04 7.50E-05 6.70E-02 1.01E-02 37

1,2-Dichloroethane 2 99.0 1.83 100.0 Full 6 30.7 2.7 1.36E-03 1.79E-04 1.09E-03 1.43E-04 32

107-06-2 0.8 Full 6 22.0 5.4 5.96E-04 5.95E-05 5.94E-02 5.94E-03 24

Aromatic
Toluene 7 92.1 2.54 100.0 Split 6 27.4 1.8 3.80E-04 2.78E-05 4.36E-04 3.20E-05 18

108-88-3 0

Styrene 8 104.2 2.89 100.0 Full 6 90.3 14.6 7.11E-05 1.33E-05 7.86E-05 1.47E-05 46

100-42-5 0

Ethylbenzene 8 106.2 3.03 100.0 Full 6 148.5 8.2 1.24E-04 1.39E-05 1.43E-04 1.60E-05 27

100-41-4 0

m-Xylene 8 106.2 3.09 100.0 Split 6 69.0 1.8 6.27E-05 4.90E-06 7.29E-05 5.69E-06 19

108-38-3 1.0 Split 5 73.3 6.1 1.84E-05 3.10E-06 2.13E-03 3.60E-04 38

Esters
Methyl acrylate 4 86.1 0.73 100.0 Full 6 11.9 2.3 1.01E-03 4.49E-05 1.06E-03 4.70E-05 11

96-33-3 1.0 Full 6 16.2 3.6 2.83E-04 2.74E-05 2.97E-02 2.86E-03 24

Ethyl acetate 4 88.1 0.86 100.0 Full 5 22.6 4.8 2.70E-03 6.48E-04 3.02E-03 7.25E-04 54

141-78-6 1.0 Full 6 19.1 4.4 8.84E-04 8.16E-05 9.88E-02 9.12E-03 23

Ethyl acrylate 5 100.1 1.22 100.0 Full 6 26.6 3.2 9.58E-04 2.35E-04 1.04E-03 2.54E-04 60

140-88-5 1.0 Full 6 23.1 2.1 3.97E-04 5.04E-05 4.29E-02 5.46E-03 31

Methyl methacrylate 5 100.1 1.28 100.0 Full 6 20.7 3.8 8.00E-04 8.90E-05 8.52E-04 9.47E-05 27

80-62-6 1.0 Full 6 19.1 3.5 2.89E-04 2.00E-05 3.07E-02 2.13E-03 17

n-Butyl acetate 6 116.2 1.85 100.0 Split 6 24.3 4.1 4.75E-04 4.49E-05 5.39E-04 5.10E-05 23

123-86-4 0.1 Full 6 34.1 7.7 3.33E-05 2.43E-06 3.79E-02 2.76E-03 18

Butyl acrylate 7 128.2 2.20 100.0 Full 6 56.6 5.0 1.78E-04 1.57E-05 1.98E-04 1.74E-05 22

141-32-2 0.1 Full 6 39.8 5.5 1.26E-05 1.35E-06 1.40E-02 1.50E-03 26

(Continued)
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standard curves were linear, showing that the maximum solubility of the receptor fluid was

not exceeded for any of the tested chemicals.

Table 1. (Continued)

Compound

CAS

# C MW

(g mol-1)

Log P cdonor (%) Skin N tlag (min) SEtlag
(min)

Jss
(g cm-2 h-1)

SEJss
(g cm-2 h-1)

Kp
(cm h-1)

SEKp
(cm h-1)

CVKp
(%)

2-Methylbutyl acetatea 7 130.2 2.26 40.0 Full 6 59.0 3.9 2.23E-04 3.61E-05 6.37E-04 1.03E-04 40

624-41-9 0

n-Pentyl acetatea 7 130.2 2.34 60.0 Full 6 54.7 5.4 6.26E-04 8.21E-05 1.19E-03 1.56E-04 32

628-63-7 0

Glycol ethers
2-Ethoxyethanol 4 90.1 -0.42 100.0 Full 6 58.5 2.5 9.19E-04 1.74E-04 9.88E-04 1.87E-04 46

110-80-5 10.0 Full 5 47.0 7.3 1.22E-04 1.76E-05 1.31E-03 1.90E-04 32

1-Methoxy-2-propanol 4 90.1 -0.49 100.0 Full 6 45.6 5.5 7.48E-04 1.33E-04 8.15E-04 1.45E-04 44

107-98-2 10.0 Full 6 63.0 6.1 9.60E-05 1.64E-05 1.05E-03 1.78E-04 42

2-Isopropoxyethanol 5 104.1 0.00 100.0 Full 6 16.7 2.8 1.23E-04 1.92E-05 1.36E-04 2.12E-05 38

109-59-1 10.0 Full 6 51.3 3.5 7.69E-05 1.38E-05 8.51E-04 1.53E-04 44

2-Propoxyethanol 5 104.1 0.08 100.0 Full 6 46.1 5.8 1.89E-04 1.89E-05 2.08E-04 2.07E-05 24

2807-30-9 10.0 Full 6 60.7 6.4 1.77E-04 2.89E-05 1.95E-03 3.17E-04 40

2-Butoxyethanol 6 118.2 0.57 100.0 Full 6 66.0 9.2 7.78E-05 1.50E-05 8.64E-05 1.67E-05 47

111-76-2 10.0 Full 6 66.3 5.9 7.93E-04 1.52E-04 8.81E-03 1.69E-03 47

1-Propoxy-2-propanol 6 118.2 0.49 100.0 Full 4 23.3 10.8 2.03E-04 4.34E-05 2.30E-04 4.90E-05 43

1569-01-3 10.0 Full 6 50.4 4.0 3.30E-04 6.21E-05 3.73E-03 7.02E-04 46

1-Butoxy-2-propanol 7 132.2 0.98 100.0 Full 6 33.6 5.1 1.44E-04 3.37E-05 1.64E-04 3.83E-05 57

5131-66-8 7.0 Full 6 40.6 2.8 5.22E-04 4.66E-05 8.48E-03 7.57E-04 22

Ketones
Acetone 3 58.1 -0.24 100.0 Full 6 13.1 3.2 1.96E-03 4.47E-04 2.49E-03 5.69E-04 56

67-64-1 10.0 Full 6 37.9 7.5 1.01E-03 2.13E-04 1.29E-02 2.71E-03 52

2-Butanone 4 72.1 0.26 100.0 Full 6 23.6 3.1 1.41E-03 1.65E-04 1.75E-03 2.05E-04 29

78-93-3 10.0 Full 6 36.3 4.7 8.67E-04 1.43E-04 1.08E-02 1.77E-03 40

Cyclohexanone 6 98.1 1.13 100.0 Split 6 15.4 3.2 1.81E-03 5.43E-04 1.91E-03 5.72E-04 73

108-94-1 0

2-Hexanone 6 100.2 1.24 100.0 Full 6 26.2 3.6 5.95E-04 1.16E-04 7.33E-04 1.43E-04 48

591-78-6 1.0 Full 6 28.8 4.1 3.13E-04 3.50E-05 3.85E-02 4.31E-03 27

Miscellaneous
Acetonitrile 2 41.1 -0.15 100.0 Full 6 17.9 2.6 5.85E-04 1.68E-04 7.45E-04 2.13E-04 70

75-05-8 10.0 Full 6 35.5 3.2 8.47E-04 2.05E-04 1.08E-02 2.61E-03 59

Methyl tertiary butyl ether 5 88.2 1.34 100.0 Full 6 22.2 3.4 1.94E-03 4.33E-04 2.63E-03 5.85E-04 55

1634-04-4 1.0 Full 6 31.2 5.7 8.93E-05 1.36E-05 1.21E-02 1.83E-03 37

Cyclohexane 6 84.2 3.18 100.0 Full 6 165.4 14.7 6.09E-05 1.29E-05 7.91E-05 1.67E-05 52

110-82-7 0.1 Full 4 205.1 36.2 6.72E-06 1.38E-06 8.72E-03 1.79E-03 41

n-Hexane 6 86.2 3.29 100.0 Split 6 63.1 5.0 9.15E-04 2.10E-04 1.41E-03 3.23E-04 56

110-54-3 0

CAS, Chemical Abstracts Service Registry Number; # C, number of carbon atoms; CV, Coefficient of Variation (same for JSS and Kp); MW, molecular weight; cdonor,
volume concentration of chemical in donor compartment; N, number of experiments; tlag, lag time; JSS, flux at steady-state; Kp, permeability coefficient; Log P, logarithm

of the octanol:water partition coefficient (estimated using US EPA[73]); SE, standard error of the mean. Split, split-thickness skin; Full, full-thickness skin.
a2-Methylbutyl acetate (40%) and n-pentyl acetate (60%) were tested as a mixture.

https://doi.org/10.1371/journal.pone.0205458.t001
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2.5 Calculations

The steady-state flux, JSS (g/cm2/h), was calculated from the exposed area of the skin (i.e. 0.64

cm2) and the slope of the steady-state region of the amount in the receptor medium versus

time curve. From the steady-state flux the apparent permeability coefficient Kp was obtained

as:

Kp ¼
JSS
cdonor

ð1Þ

where cdonor is the concentration (g/cm3) of the chemical in the donor compartment exposing

the skin. The lag time, tlag (min), is defined as the time-point where the extrapolated steady-

state region intersects with the x-axis.

Data management and calculations were performed in Microsoft Excel (2010). To avoid

data points from the pre-steady state part of the curve, data points with sampling times below

the estimated value of tlag were excluded. Furthermore, for some chemical the time-concentra-

tion curve appeared to flatten out and these “post-steady state” values were also omitted.

Correlations between experimentally derived permeability measures and physicochemical

characteristics were investigated using regression analyses in the software R (version 3.3.2). As

pentyl acetate and 2-methylbutyl acetate were tested as a mixture, they were not included in

these analyses.

Results and discussion

The experimentally derived mean values of tlag, JSS, and Kp for each chemical and concentra-

tion are presented in Table 1. As expected, the tested solvents showed skin permeabilities (Kp)

ranging from “moderate” (10−4 cm/h) to “very high” (10−2 cm/h) according to previously pro-

posed classification schemes [35,36].

Comparable percutaneous absorption data using infinite dose of, or occluded exposure to,

neat chemical have been published previously for 20 of the 38 chemicals investigated herein.

One aim of in vitro permeation experiments is to predict percutaneous permeation for

humans. Human in vivo data in the neat was available for nine substances [37–49]. We also

wished to compare our data to other studies using similar experimental conditions, i.e. in vitro
using human or animal skin [50–72]. The ratio between Kp values of the present study and Kp

values from previous studies are plotted against log octanol:water partition coefficient (log P)

in Fig 1. Values of log P were estimated using the EPI Suite software [73].

For nine of the 13 available human in vivo studies the Kp values were similar to those

obtained in the present study (Fig 1, circles). Dutkiewicz and Tyras [37–39] reported very high

and seemingly unrealistic fluxes and Kp values for toluene, styrene and ethyl (note 1 in Fig 1).

As discussed above for ethylbenzene, the calculations were based on amount left on the skin

after exposure. This method may easily overestimate the absorption. Mraz and colleagues [46]

estimated the percutaneous absorption of cyclohexanone by quantification of its metabolite

1,2-cyclohexanediol in urine collected up to 72 h after exposure (note 2). The remaining

human in vivo studies, covering six chemicals, are in reasonable agreement (within one order

of magnitude) with our present study.

Estimates of Kp from previous in vitro studies on neat chemicals are available for 18 chemi-

cals and are in most cases (37 out of 47 comparisons covering 15 chemicals) within one order

of magnitude of the Kp for neat chemicals derived in the present study (Fig 1). These studies

cover skin from several species (human, hairless rat/rat, guinea pig, pig/minipig), varying

thickness and both static and flow-through diffusion cells. There are no discernible trends con-

cerning species and agreement with our data. Although rat skin is expected to yield higher
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permeability coefficients than human skin or pig skin, this seems not to be the case in most

studies. The deviating results for ethanol and methanol (note 3) may be due to evaporation at

the sampling stage [55] or during the exposures as Pendlington and colleagues [62] only recov-

ered 40% of applied ethanol, although care was taken to avoid evaporation. The largest devia-

tions were seen for the more hydrophobic chemicals (note 4; ethylbenzene, n-hexane,

toluene). For n-hexane the ratios reached as high as 1400 [54] and 15000 [52]. The latter study

employed physiological saline as receptor medium, which would reduce diffusion as compare

Fig 1. Ratios between apparent permeability coefficients (Kp) for neat solvent obtained in the present study and

those previously reported plotted over the log octanol:Water partition coefficient (log P estimated using US EPA

[73]). Data were available for 20 chemicals, of which 9 had been tested on humans in vivo (13 ratios) and 18 on animal

or human skin in vitro (47 ratios). Notes: 1: toluene, styrene and ethylbenzene [37–39]; 2: cyclohexanone [46]; 3:

ethanol and methanol [55,62]; 4: ethylbenzene, n-hexane, toluene [52, 54].

https://doi.org/10.1371/journal.pone.0205458.g001

Fig 2. Lag time (min) plotted over molecular weight (g/mol).

https://doi.org/10.1371/journal.pone.0205458.g002
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to our receptor solution, however, it is unclear whether these factors would reduce diffusion

this much.

The experimental variability is comparably low across our performed experiments. For 71

cases listed in Table 1, the coefficient of variation ranged from 11% to 120%. This maximal fac-

tor of two is substantially slower than the many orders of magnitude seen in between studies

for many substances [4]. Furthermore, the coefficient of variation was in most cases below

50% (49 out of 71) and only above 75% in 7 cases. The higher coefficients of variation were pri-

marily found among alcohols (n = 6). Although we cannot offer any explanation for this pat-

tern, we note that the cases cover both water dilutions and neat solvents as well as both full-

and split-thickness skin.

In Fig 2, two substances attract attention due to long lag times, namely cyclohexane

(165.5 min in neat and 205.1 min in 0.1% water dilution) and ethylbenzene (148.5 min, only

tested neat). For cyclohexane experiments ran for 540 min (9h) and for ethylbenzene 360

min (6h). The long lag times decreases the confidence in the calculations of JSS and Kp as

steady state may not have been reached, in particular for ethyl benzene. For cyclohexane we

have not found any other dermal permeation data. We found three studies presenting JSS
values for neat ethylbenzene. Dutkiewicz and Tyras [37] performed 10–15 min occluded

exposures of volunteers to ethylbenzene in vivo and obtained a JSS of 2.8�10−2 g/cm2/h, i.e.

200 times higher than our value. In their study, the absorbed amount was defined as the dif-

ference between applied amount and amount remaining on the skin after exposure. This

approach assumes that all chemical absorbed into skin is systemically absorbed, even

though some may have evaporated after the occluded exposure ended. Tsuruta [52] used rat

skin in vitro and physiological saline as the receptor medium. The resulting JSS was 6.3�10−6

g/cm2/h, i.e. 20 times lower than our value. As ethylbenzene is hydrophobic, the use of phys-

iological saline as receptor medium may have led to an underestimation of JSS. Furthermore,

the experiments ran for 3–6 hours and the tlag was 2 hours, hence as in our experiments,

steady state may not have been reached. The third and most recent study with ethylbenzene

is that of Susten et al. [74] who exposed hairless mice in vivo to ethylbenzene. We consider

this study to be the most reliable of the three, and it reported a JSS of 2.2�10−3 g/cm2/h,

which is six-fold lower than our value.

Previous research indicates that molecular size is related to tlag, for instance Nielsen et al. [16]

found a general trend of increasing tlag with increased molecular weight in permeation experi-

ments with 9 chemicals in aqueous solutions (MW 122 to 376.7 g/mol. Such a trend is obvious

for the esters, where the lag time clearly increases with increasing MW (neat: intercept = -54.1,

slope = 0.79, r2 = 0.71 p = 0.04; dilute: intercept = -32.9, slope = 0.56, r2 = 0.94, p = 0.001). How-

ever, for the overall material there was no strong correlation between molecular weight (neat:

intercept = 14.5, slope = 0.29, r2 = 0.04 p = 0.2; dilute: intercept = 37.2, slope = 0.1, r2 = 0.005,

p = 0.7). For number of carbons the correlations were statistically significant, but relatively small

(neat: intercept = 3.4, slope = 7.9, r2 = 0.22 p = 0.004; dilute: intercept = 16.5, slope = 6.8, r2 =

0.14, p = 0.04). Thus, although some of the variability in lag time can be attributed to molecular

size, other factors, among them polarity and dilution, seem to have a significant influence. For

chemicals where both neat and diluted solutions were tested (n = 31) the neat solutions had

shorter time lags than the corresponding diluted mixtures in two thirds of the cases. Methanol

stands out as the only alcohol with a clearly longer time lag for the neat chemical (Table 1).

Although we assume stratum corneum to constitute the main barrier, we cannot exclude that the

difference in skin thickness between experiments for neat and diluted methanol played a role.

The average steady-state fluxes (JSS) for each chemical and concentration are presented in

Table 1. For neat substances, decreased flux with increasing number of carbon atoms is evident

for most solvents (Fig 3). This relationship was statistically significant for both neat and diluted
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substances (neat: intercept = -2.0, slope = -0.25, r2 = 0.63, p<0.0001; dilute: intercept = -2.8;

slope = -0.19; r2 = 0.35 p = 0.0004; log JSS). Diluted mixtures have in general a lower flux than

neat chemicals, often only one tenth of the flux for the neat compound. As reported previously

[49,69,75], 2-butoxyethanol is a striking exception with an opposite effect of dilution (Table 1).

Bunge et al. identified that JSS of 2-butoxyethanol was proportional to thermodynamic activity

up to a concentration of 80% (by weight), at higher concentrations the decreased flux is likely

due to dehydration of the skin [71].

Of the neat chemicals, methanol had the highest apparent permeability coefficient (Kp) of

1.3�10−2 cm/h, while m-xylene had the lowest of 7.3�10−5 cm/h (Table 1). The Kp values pre-

sented here are considered “apparent” as they are calculated using nominal concentrations

Fig 3. Steady state flux (mg cm-2 h-1) plotted in log scale over number of carbon atoms in the molecule.

https://doi.org/10.1371/journal.pone.0205458.g003

Fig 4. Ratio of apparent permeability coefficient (dilute / neat, log scale) plotted over the log octanol: Water

partition coefficient (log P, estimated using US EPA[73]).

https://doi.org/10.1371/journal.pone.0205458.g004
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and not thermodynamic activity. Because concentration and not activity was used in the

denominator, we expect these apparent Kp values to be higher for diluted than for neat solvent,

which also was the case for all but methanol (Table 1, Fig 4). However, as seen in Fig 4, the log-

arithm of the Kp ratio (dilute/neat) seems to increase with an increasing log P up to a log P of

about 1.5. In particular for the amphiphilic solvents in our selection, the water dilution vs neat

discrepancies in Kp may be partly explained by the substance altering the skin barrier function.

This has been proposed for 2-buthoxyethanol by Bunge and colleagues [71] as well as for

2-hydroxypropyl acrylate by Frasch and colleagues [76]. For improved understanding of how

water affects the Kp, experimental data are needed on thermodynamic activity vs concentration

for the test substances.

The discrepancies in Kp between neat and diluted solvent also hold implications for predic-

tive models. The present study allows comparison between predictions and experimental data

for both neat and water dilution for 31 substances, studied using the same experimental set up.

In Fig 5 we plot the EPISuite (US EPA [73]; similar to Potts and Guy[9]) predictions for the

chemicals tested in neat and in water dilution over the experimentally derived values from the

present study, log scale on both axes. The fit is poor (on a linear scale) for both neat (inter-

cept = 0.02, slope = -1.9, r2 = 0.018, p = 0.4) and water diluted solvents (intercept = 0.009,

slope = -0.08, r2 = 0.009, p = 0.6). Furthermore, the correlation has a negative slope, i.e. the

lower the predicted Kp, the higher the experimental Kp (see also S1 Fig). A previous study com-

pared experimental permeation data for eleven substances in neat with outcomes for three dif-

ferent predictive models, finding that the model outcomes correlated well with each other but

less so with experimental data [17]. Fig 5, and the differences in regression lines, furthermore

illustrates that prediction of percutaneous absorption of neat and water diluted chemical

requires markedly different models.

Conclusions

We have measured lag times, steady-state fluxes, and apparent permeability coefficients for 38

organic solvents. For a number of them, this study contributes with the first, or one of few,

experimental data sets on skin permeability. The present study adds to the body of evidence

showing that Kp is concentration dependent, and that the influence of water dilution varies sig-

nificantly between chemicals. Hence, dilution is a factor that needs to be considered in risk

assessment of dermal exposures as well as incorporated in QSAR and other modelling efforts.

The variability between experiments was minimized as we used the same kind of skin and

methodology, with minor variations, throughout. This is an important aspect, as the perme-

ability for the same chemical has been found to vary by up to six orders of magnitude between

different studies [4]. In the present study the coefficient of variation for our experiments ran-

ged from 11% to 120% with a median of 45%. Only seven experiments yielded a coefficient of

variation above 75%. Hence, overall, our experiments display low variability compared to that

seen between studies [4]. The lower variability underlines the importance of a standardized

and consistent methodology to achieve useful results e.g. for QSAR analyses. This aspect is

probably far more important than the choice of human over pig skin. These two species are

rather similar regarding stratum corneum and epidermal thickness as well as permeability

[4,31].

Furthermore, human skin is in itself a source of inter- and intra-individual variability [25,

77]. Human skin may be difficult to obtain and, when obtained, it may be not be possible to

control how it was sampled, from whom (donor age) and from where (body site). This is even

more problematic if a large number of chemicals are to be covered. In conclusion, although

human skin may seem preferable because of the intended application domain (i.e.
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percutaneous absorption and subsequent health risks to humans), well performed in vitro
experiments with pig skin appear to be a better alternative.

Supporting information

S1 Fig. Predicted (EPISuite, US EPA [73]) versus experimental (present study) permeabil-

ity coefficients (Kp, cm/h) plotted on a linear scale.

(PDF)
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