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ABSTRACT

Phaeodactylum tricornutum is a marine diatom with a growing genetic toolbox available
and is being used in many synthetic biology applications. While most of the genome
has been assembled, the currently available genome assembly is not a completed
telomere-to-telomere assembly. Here, we used Oxford Nanopore long reads to build a
telomere-to-telomere genome for Phaeodactylum tricornutum. We developed a graph-
based approach to extract all unique telomeres, and used this information to manually
correct assembly errors. In total, we found 25 nuclear chromosomes that comprise
all previously assembled fragments, in addition to the chloroplast and mitochondrial
genomes. We found that chromosome 19 has filtered long-read coverage and a quality
estimate that suggests significantly less haplotype sequence variation than the other
chromosomes. This work improves upon the previous genome assembly and provides
new opportunities for genetic engineering of this species, including creating designer
synthetic chromosomes.

Subjects Bioinformatics, Genomics, Marine Biology, Plant Science, Synthetic Biology

Keywords Phaeodactylum tricornutum, Genome assembly, Nanopore sequencing, Telomere-to-
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INTRODUCTION

Phaeodactylum tricornutum is a marine diatom that is described as a “diatom cell
factory” (Butler, Kapoore & Vaidyanathan, 2020) because it can be used to manufacture
valuable commercial products. Recent genetic toolbox expansions, such as delivering
episomes by bacterial conjugation (Karas et al., 2015), CRISPR-editing tools (Russo et
al., 2018b; Moosburner et al., 2020; Sharma et al., 2018; Stukenberg et al., 2018; Slattery et
al., 2018; Serif et al., 2018), the generation of auxotrophic strains (Zaslavskaia et al., 20004
Buck et al., 2018; Slattery et al., 2020), and the identification of highly active endogenous
promoters (Erdene-Ochir et al., 2019) are enabling rapid implementation of new product
designs into commercial-scale production.

The genome of P. tricornutum CCAP 1055/1 was sequenced in 2008, and resulted in a
scaffold-level assembly predicting 33 chromosomes (NCBI assembly ASM15095v2) (Bowler
et al., 2008). Chloroplast and mitochondrial genomes have also been published (Oudot-
Le Secq et al., 2007; Oudot-Le Secq & Green, 2011), and have previously been identified as
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targets for genetic engineering (Cochrane et al., 2020), as well as other chromosomes (Karas
et al., 2013). Although the Bowler et al. assembly contains several telomere-to-telomere
chromosomes, many scaffolds have only zero or one telomere, suggesting they are
either incomplete or fragments of another chromosome. More recent work identifying
centromeric sequences (Diner et al., 2017) in P. tricornutum has suggested that there may
be less than 33 chromosomes.

While the current assembly is an excellent resource, it does not represent a completed
genome assembly. The lack of a completed genome assembly for P. tricornutum means
that synthetic biology researchers are unable to pursue generating artificial chromosomes
with this model diatom. The full sequence of each chromosome is required to rebuild
chromosomes by DNA synthesis. It is also important to know the location and sequence
of mobile genetic elements that could be removed to in order to simplify a potential fully
synthesized chromosome sequence. A more complete understanding of the genome will
be a resource to help researchers answer more fundamental biological questions about
P. tricornutum.

To generate a telomere-to-telomere assembly of P. tricornutum CCAP 1055/1, we used
a hybrid approach with ultra-long reads from the Oxford Nanopore MinION platform
and highly accurate short reads from the Illumina NextSeq platform. We also introduce
a novel graph-based approach to manually resolve telomere-related assembly errors.
This approach identifies all unique telomere sequences and we demonstrate how it can
be applied to manually correct assembly errors adjacent to chromosome ends. The full
structural context of the P. tricornutum genome provides additional information for
potential synthetic biology applications to manipulate the genome of this diatom cell
factory.

METHODS

Growth

Phaeodactylum tricornutum (Culture Collection of Algae and Protozoa CCAP 1055/1) was
grown in L1 medium without silica at 18 °C under cool white fluorescent lights (75 mE
m~2 s7!) and a photoperiod of 16 h light:8 h dark as described previously (Slattery et al.,
2018).

DNA extraction

200 mL of culture (approximately 5 x 10% cells) was spun at 3000 xg for 10 min at 4 °C.
The pellet was resuspended in one mL TE (pH 8.0) and added dropwise to a mortar
(pre-cooled at —80 °C) pre-filled with liquid nitrogen. The frozen droplets were ground
into a fine powder with a mortar and pestle, being careful to keep the cells from thawing
by adding more liquid nitrogen as necessary. The frozen powder was transferred to

a 15 mL Falcon tube where two mL of lysis buffer was added (1.4 M NaCl, 200 mM
Tris—HCI pH 8.0, 50 mM EDTA, 2% (w/v) CTAB, RNAse A (250 pg/mL) and proteinase
K (100 pg/mL)). The solution was mixed very slowly by inversion, incubated for 30 min
at 37 °C (mixed very slowly halfway through incubation). Cellular debris was pelleted
at 6000x g for 5 min. Lysate was transferred to a new 15 mL Falcon tube. One volume
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of 25:24:1 phenol:chloroform:isoamyl alcohol was added, mixing slowly by inversion.
The sample was centrifuged at 6000 x g for 5 min. The aqueous phase was transferred as
slow as possible to a new Falcon tube. One volume of 24:1 chloroform:isoamyl alcohol
was added, and mixed slowly with end-over-end inversion. The sample was centrifuged
at 6000x g for 5 min. Approximately 450 uL of the aqueous phase was transferred into
new 1.5 mL Eppendorf tubes. To the Eppendorf tube, 1/10 volume of 3 M NaAc pH 5.2
and two volumes (final volume) of ice-cold 100% ethanol were added, mixing slowly
by end-over-end inversion. The sample was centrifuged at 16,000xg for 5 min, and
washed twice with 500 uL 70% ethanol. Ethanol was decanted, and the pellet was dried
for approximately 10 min by inverting on a paper towel. The pellet was resuspended in
100 uL 10 mM Tris—HCI pH 8.0, 0.1 mM EDTA pH 8.0. After resuspending overnight at
4 °C, DNA fragments less than 20 kbp were then selectively removed using the Short Read
Eliminator (SRE) kit from Circulomics (Baltimore). DNA from the same extraction was
used for sequencing on both the Oxford Nanopore MinION and Illumina NextSeq 550
platform.

Sequencing

An Oxford Nanopore MinION flow cell R9.4.1 was used with the SQK-LSK109 Kit
according to the manufacturer’s protocol version GDE_9063_v109_revK_14Aug2019,
with one alteration: for DNA repair and end-prep, the reaction mixture was incubated for
15 min at 20 °C and 15 min at 65 °C. Basecalling was performed after the run with Guppy
(Version 3.6). NanoPlot (De Coster et al., 2018) was used to generate Q-score versus length
plots and summary statistics. The read N50 of the unfiltered reads was approximately 35
kb (Supplemental Figure S1).

For Illumina sequencing, the Nextera XT kit was used, and a 2X75 paired-end mid-
output NextSeq 550 library was prepared according to the manufacturer’s protocol, and
sequenced at the London Regional Genomics Center (Irgc.ca). Reads were trimmed using
Trimmomatic v0.36 (Bolger, Lohse ¢» Usadel, 2014) in paired-end mode with the following
settings: AVGQUAL:30 CROP:75 SLIDINGWINDOW:4:25 MINLEN:50 TRAILING:15.
SLIDINGWINDOW AND TRAILING were added to remove poor quality base calls.

Assembly
Telomere identification

We first obtained sequences for the end of every linear chromosome. The sequence of the
telomere repeats for P. tricornutum are known from the previous assembly (Bowler ef al.,
2008) to be repeats of AACCCT. All long reads larger than 50 kilobases with three or more
consecutive telomeric repeats (or the reverse complement) were extracted by filtering using
NanokFilt (De Coster et al., 2018) and by string matching using grep. All-versus-all mapping
of the telomeric reads was performed using minimap2 (L7, 2016). Only overlapping reads
with a minimum query coverage of 95% were retained.

To determine the sequence of unique telomeres for each chromosome, a network graph
was generated with iGraph (Csardi ¢ Nepusz, 2006). Each read name was used as a vertex,
and edges were generated between each overlapping read with more than 95% query
coverage. Noise was filtered by removing any group of overlaps with less than 5x coverage.
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There were 93 vertices that had greater than 20 x coverage; that is, there are 93 unique
telomere sequence groups. Most groups had approximately 40x coverage (number of long
reads per group), however, several outliers had more than 60 x coverage. These represent
duplicated regions in the telomeres that are not unique (i.e., more than one haplotype or
chromosome contains this sequence). The longest read of each telomere group, typically
greater than 100 kb in length, was retained as a representative telomere sequence for
correction. Example code for this is available in Supplemental Code S1.

Assembly

Miniasm was chosen to reduce computational power needed over other assemblers like
Canu (Koren et al., 2017) or Flye (Kolmogorov et al., 2019). Nanopore reads longer than 75
kilobases were used for initial assembly with miniasm, (Li, 2016) using the parameters -s
30,000 -m 10,000 -c 5 -d 100,000. From this initial assembly, the output from miniasm
were manually completed with the following approach:

(1) Mapping of telomeric reads against the unitig. If no telomere was present on
the unitig and a high query coverage alignment was found, the unitig was extended to the
telomere sequence of the mapped telomere. (2) After telomere extension (or confirmation),
reads longer than 50 kb were mapped to the unitig to confirm overlapping coverage over
the entire chromosome. Coverage was evaluated using only reads larger than 50 kb and
with higher than 50% query coverage, with an alignment score:length ratio less than two
(similar to previous validation methods) (Giguere et al., 2020). A query coverage of only
50% was chosen to allow for potential haplotype divergence. (3) Telomere-to-telomere
unitigs with overlapping ultra-long read coverage and no gaps were deemed validated and
brought forward to improve base accuracy by read polishing.

The chloroplast and mitochondrial genomes were assembled using a reference based
approach by first extracting all reads that aligned to the reference chloroplast and
mitochondria with high query coverage. Reads were then de-novo assembled using miniasm.

Polishing

Due the repetitive nature of the genome and the diploid nature of P. tricornutum, raw
assemblies were polished using an iterative approach with racon (Vaser et al., 2017),
medaka (Oxford Nanopore) and Pilon (Walker et al., 2014) as described in the Methods
section. Briefly, after each polishing iteration, we corrected errors that were introduced by
the polishing algorithms as described in Supplemental File S1, and modified the medaka
polishing by filtering reads using a minimum of 50% query coverage. The assembly was
first polished by nanopore reads only, followed by Illumina read polishing using Pilon.
For the chloroplast and mitochondria, the subset of reads identified as either chloroplast
or mitochondria were used for polishing. The genome assembly is available on GenBank
under accession GCA_ 914521175.

Methylation

A total of 5mC methylation sites were predicted using Megalodon v2.2.1 (Oxford Nanopore
Technologies) using the model res_dna_r941_min_modbases_5mC_CpG_v001.cfg from
the Rerio repository (Oxford Nanopore Technologies) with Guppy 4.5.2. A default
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threshold of 0.75 was used as a minimum score for modified base aggregation (probability
of modified/canonical base) to produce the final aggregated output. The percentage of
reads methylated at the predicted locations are plotted in Supplemental Figure S2.

RESULTS

Workflow

We developed a sample preparation protocol that provided high-molecular weight DNA.
We observed a read N50 of 35 kilobases, with the longest reads just over 300 kb, following
sequencing with the Oxford Nanopore MinION platform. Of the 7.8 gigabases of raw
sequence data, approximately 2.5 gigabases were from reads longer than 50 kilobases
(Supplemental Figure S1). We found that chromosomes assembled using standard
approaches were often mis-assembled around telomeres, or were fragmented and only
contained 1 telomere. To correct each contig, we used the unique ultra-long telomere reads
as described in the Supplemental File S1 and in Fig. 1. This approach was used to manually
identify a tiling path for each chromosome until each chromosome was contiguous from
telomere to telomere, and validated by a tiling overlapping read path.

Tiling path of overlapping reads verify contiguity

To ensure our genome assembly is contiguous, we generated multiple independent
minimum tiling paths of overlapping long reads (Data 54, Fig. S2). Reads larger than 50
kb were mapped against the assembly using minimap2. To ensure no incorrect alignments
were retained, any reads with less than 90% of the read aligned to the assembly were
removed. From this subset, five independent minimum tiling paths that required at least
10 kb of overlap between each read were generated. All chromosomes have multiple
independent (i.e., no common reads) tiling paths of reads with a minimum overlap of 10
kb in the final assembly (five independent paths shown in PAF format (Li, 2016) format
in Supplemental File S2), indicating that all chromosomes are contiguous. Chromosomes
were manually corrected to meet this standard if necessary.

In addition to overlapping reads, Supplemental Figure 52 also shows the GC content for
each chromosome. A previous study has proposed that centromeres could be identified by
low GC content calculated in 100 bp windows (Diner et al., 2017). The 100 base windowf(s)
with the minimum GC content are shown in Supplemental File 52, highlighted in red.
These windows represent putative centromere sequences as previously described (Diner et
al., 2017).

Telomere-to-telomere assembly comprises previous scaffolds

We ultimately obtained 25 telomere-to-telomere chromosome assemblies that recruit 98%
of long reads, and these chromosomes comprise all previously proposed chromosomes
from Bowler et al. (2008), as well as circularized chloroplast and mitochondrial genomes.
The median coverage for unfiltered long reads across the nuclear genome was 202X, while
median coverage for the chloroplast and mitochondrion were approximately 6201X and
528X, respectively. This was calculated in 1000 base windows using mosdepth (Pedersen &
Quinlan, 2018).
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- bl Network graph for
miniasm assembly All-vs-all mapping alignments > 95%
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l Anchor ultra-long telomere —

] reads against broken assembly
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Final telomere-to-telomere assembly

Figure 1 Workflow for telomere-to-telomere genome assembly. Telomere-containing nanopore reads
larger than 50 kb are extracted and mapped in all-vs-all mode using minimap2. The resulting alignments
are filtered by 95% query coverage, and a network graph is created using iGraph using read names as ver-
tices, and alignments between reads as edges. Each resulting cluster represents one end of a chromosome.
On a chromosome-by-chromosome basis, ultra-long read coverage is plotted. If an assembled chromo-
some is missing a telomere or has an assembly error revealed by a lack of overlapping read coverage, the
longest read from each telomere cluster is mapped against the chromosome, and the resulting telomere is
used to manually correct the assembly and extend to the telomere using an overlap-layout consensus ap-
proach.
Full-size & DOI: 10.7717/peerj.13607/fig-1

A key feature of this updated assembly is the consistency with previous sequencing
efforts (Bowler et al., 2008). Previously, 25 centromere sequences were identified (Diner et
al., 2017), suggesting that there were fewer than the proposed 33 chromosomes. This agrees
with our conclusion of 25 nuclear chromosomes. We independently resolved the location
of all the previously proposed partial chromosomes without internal inconsistencies in
Fig. 2 (i.e., scaffolds with only one telomere were resolved into a telomere-to-telomere

chromosome).

Estimating the number of chromosomes using ultra-long reads
Previous studies have suggested that P. tricornutum has a minimum of 33 chromosomes
using pulsed-field gel electrophoresis (Filloramo et al., 2021). Our orthogonal, reference-
free method using network graphs of telomere-containing overlapping ultra-long reads
revealed 25 chromosomes.

We used two properties of telomeres for this: first, telomeres on linear chromosomes
can be identified by unique subtelomeric sequences, and second, that telomere-containing
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Figure 2 (A) Filtered long-read coverage and comparison to previous assembly. Reads longer than
20 kb were mapped against the assembly, filtered (minimum 20,000 base alignment and 50% query
coverage), and genome coverage was calculated in 50 kb windows using mosdepth. The colours and
ranges bottom-right) describe the coverage depth calculate for each 50 kb window. Newly proposed

chromosomes names are indicated on the left (by length). Scaffolds from the previous genome assem-
bly (ASM15095v2) are overlayed as grey bars, aligned using minimap2 in asm5 mode and filtered to re-
tain minimum 10 kb alignments. Numbers on top of gray bars indicate which previous scaffold num-

ber, with S representing small “bottom drawer” scaffolds. Horizontal “T” bars on each end indicate
telomere-repeat presence. (B) Visualization of proposed chromosome 3 with alignments to previous
chromosomes. Dark gray regions indicate overlap. Coloured arrows on the right indicate minimum

overlapping read path (orange = negative strand, blue = positive strand), black arrows on left show ultra-

long reads that completely span regions where previous assembly could not assemble through.

Full-size & DOI: 10.7717/peerj.13607/fig-2

DNA fragments will begin or end with a telomere, representing the start or end of a

chromosome. After aligning all telomere-containing reads and retaining only alignments

with greater than 95% query coverage, we used iGraph to create network graphs, which
resulted in two classes of independent graphs. The first class had 85 independent graphs,
each with approximately 50 nodes (i.e., 50 ultra-long reads in each graph), and the second
class had eight graphs with approximately 100 nodes (Supplemental Figure S3). In a diploid
organism we expect four telomeres per chromosome if we assume that each chromosome

has two haplotypes; i.e., (maternal + paternal) xhaplotypes. Under this assumption,

85 independent graphs with approximately 50 nodes represents 21.25 telomeres. Some

chromosomes will not have diverged sufficiently, meaning there will be only two telomeres
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with twice the sequencing coverage per chromosome (maternal + paternal). The remaining
eight graphs with 100 nodes each therefore gives a further four chromosomes.

With this logic we estimate 25.25 chromosomes exist in P. tricornutum, which agrees
very closely with our final assembly of 25 chromosomes. The additional 0.25 chromosome
may be explained by mitotic recombination (Bulankova et al., 2021). Using the features
of ultra-long reads at the ends of linear DNA elements (i.e., eukaryotic chromosomes)
thus enables an orthogonal method for estimating the number of chromosomes in a

reference-free manner.

Assembly quality

To assess the quality of the assembly, we used Merqury (Rhie ef al., 2020) to estimate the
base-level accuracy and completeness by k-mer frequency, shown in Supplemental File S3.
We found that the estimated quality value (estimated log-scaled probability of error for
the consensus base calls by Merqury) ranged from 27-53, depending on the chromosome.
The mean quality value (QV) for nuclear chromosomes was 28.86, with chromosome 19 as
an outlier at 43. The QV for all nuclear genomes except for 19 are likely lower because the
chromosomes were polished using heterozygous reads. The chloroplast and mitochondrial
genomes have a QV of 53 and 42, respectively. Importantly, the k-mer completeness
estimate of 80% suggests that many k-mers in the Illumina reads are not represented in this
genome assembly, implying significant haplotype variation. This was also the case when
using the Bowler assembly as input for Merqury.

We also estimated the genome completion using BUSCO (Manni et al., 2021). Using
the stramenopiles_odb10 model, we found our assembly was 95% complete, with only 3%
of expected BUSCOs missing. When evaluating the chromosome scaffolds of the Bowler
assembly, we found it was 96% complete with 3% of expected BUSCOs missing.

After removing Lambda spike-in reads with NanoLyse, we found that 98.12% of long
reads are recruited by the assembly. When reads are filtered by removing any read that
does not align over more than 90% of it’s length (i.e., query coverage is higher than 90%),
the number of reads recruited drops to 74%.

Filtered long-read coverage for Chromosome 19 is inconsistent with
diploid state

We observed that chromosome 19 has remarkably consistent (i.e., no drops in coverage)
filtered long-read coverage relative to the other chromosomes (Fig. 2, Supplemental
Figure S2). While we initially predicted P. tricornutum would have two haplotypes since
it is diploid, recent work has demonstrated that while each cell has two haplotypes, many
haplotypes within a population arise due to mitotic recombination (Bulankova et al., 2021).
The consistency of filtered long read coverage for chromosome 19 indicates that there is
only a single haplotype, whereas the other chromosomes have two or more haplotypes
present, which can be inferred from inconsistent read depth at regions where haplotype
divergences occur in Fig. 2 and Supplemental Figure S2. This indicates that there are not two
haplotypes for chromosome 19, suggesting a different recent history for this chromosome.
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5mC methylation and transposable elements

The Extensive de-novo TE Annotator (EDTA) pipeline (Ou et al., 2019) was used to predict
transposable elements in the genome. We found that the majority of transposable elements
are long terminal repeat (LTR) retrotransposons (3.43% of the genome was found to be
Copia-type, 5.86% were unknown, while terminal inverted repeats were only 1.17% of the
genome, and helitrons were 0.54% of the genome). Each LTR region is represented as a
shaded blue region in Supplemental Figure S2 in blue, and density plots of the end locations
are shown in the top quadrant. Chromosome 19 contained the fewest transposable elements
at 50. The locations and density of LTR-retrotransposons are plotted in Fig. 3 for proposed
Chromosome 3 and Supplemental Figure S2 for all other chromosomes.

Previous studies have found that some tranposable elements were hypermethylated
(Veluchamy et al., 2013). Using chromosome scale nanopore methylation basecalling, we
found a strong signal between many predicted LTR retrotransposons and methylation
status (Fig. 3, Supplemental Figure S2). To test this, we enumerated all chromosome
positions with methylated sites and transposons, and performed a Fisher’s Exact Test,
resulting in a p-value of 2.2e—16.

We examined the association between LTR transposon dense regions and regions where
the previous assembly failed to generate overlapping regions. We observed that scaffolds
with overlapping regions (Supplemental Figure S2) generally were not assembled into
full chromosomes because of ambiguity in the placement of the LTR-rich regions at the
ends of the scaffolds. These are now resolved by the long-read assembly identified here.
Additionally, many of the low-coverage regions of our assembly overlap with the locations
of the LTR-dense regions, consistent with chromosomal rearrangements being more likely
in these regions. Further investigation at these regions is required.

DISCUSSION

Here, we developed a graph-based approach to locate the unique telomere ends of all
P. tricornutum chromosomes, and applied this information to generate an telomere-to-
telomere assembly. The new assembly incorporates all the previous chromosome fragments
from Bowler et al. (2008).

The chromosomes show marked variations in sequencing coverage that can be explained
by haplotype variation. Where haplotype variation occurs, filtered long reads will not align
against the assembly. This suggests that there are large regions of the chromosomes that have
substantial haplotype differences. Strikingly, only chromosome 19 has completely consistent
coverage between the telomeres. While this needs to be further investigated, we speculate
that this chromosome in this strain may have undergone a recent sequence homogenization
event. Previous work has also found that the same chromosome appears homozygous in
the wild type strain (Russo ef al., 2018b; Bulankova et al., 2021). It has previously been
speculated that Phaeodactylum tricornutum may be capable of sexual reproduction (Mao et
al., 20205 Patil et al., 2015), but there has yet to be conclusive evidence of this occuring.

Chromosome 19 has a high quality value of 43, while the other nuclear chromosomes
have lower quality values around 28. For all chromosomes except 19, this drop in per-base
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Figure 3 Summary of genomic features for chromosome 3. (A) The density of LTR-retrotransposons
as predicted by the EDTA pipeline. (B) The proportion of reads that were called as methylated at each po-
sition along the chromosome. (C) Scaffolds from the previous assembly are overlayed in gray bars, with
dark grey representing overlapping regions. (D) Filtered long-read coverage (minimum 20 kb length and
70% query coverage). (E) GC content calculated and plotted in 100 base windows. An overlapping read
tiling path, with a minimum overlap of 30 kb, is shown with orange indicating reads mapping to the neg-
ative strand and blue indicating reads mapping to the positive strand. The region highlighted in red is the
window with the lowest GC content.

Full-size &l DOI: 10.7717/peerj.13607/fig-3

quality is due to polishing the nanopore assembly with a heterozygous read set. However,
the high quality value and consistent filtered-long read coverage suggest that there are not
highly divergent haplotypes for chromosome 19. Recently published data has demonstrated
that mitotic recombination occurs frequently in P. tricornutum (Bulankova et al., 2021).
They independently showed that there is a significantly lower SNP density on chromosome
19, agreeing with this finding, in addition to Russo et al. (2018b). Interestingly, the high
rate of mitotic recombination suggests that it is unlikely that a static haplotype-resolved
diploid genome may be fully resolved for this species with currently available technology.
In this context, the k-mer completeness estimate we obtained from Merqury suggests that
up to 20% of the Illumina k-mers result from SNPs arising from mitotic recombination
events within the population, suggesting a high degree of haplotype divergence.

We demonstrate that nanopore sequencing can identify methylated regions, and the
entire methylome of P. tricornutum is strongly associated with transposable elements
(Supplemental Figure 52). This agrees with previous work (Veluchamy et al., 2013) that
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found a significant enrichment of DNA methylation at LTR retrotransposons, and we
provide an updated map by predicting methylation sites directly from sequenced native
DNA.

We have deposited all short and raw long-read data publicly for use by the community
as Project PRJEB42700 on the European Nucleotide Archive. This telomere-to-telomere
genome assembly will be a resource for designing and creating synthetic chromosomes in
Phaeodactylum tricornutum, as well as answering fundamental biological questions for this
species.

CONCLUSIONS

Here, we report a collapsed telomere-to-telomere genome assembly for Phaeodactylum
tricornutum CCAP 1055/1. A combination of ultra-long nanopore sequencing reads
(greater than 100 kb), a novel approach to correcting assembly errors near telomeres,
and manual curation enabled the completion of a telomere-to-telomere genome. We
also describe a method to estimate the number of chromosomes using the properties of
ultra-long telomere-containing reads in a reference-free manner. We provide the signal
level nanopore data as a resource to enable the community to further investigate 5mC
methylation for this species. This work improves our upon our current understanding of
the model diatom Phaeodactylum tricornutum to enable further developments in synthetic
biology.
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