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Introduction
Transposons are major structural elements of essentially all  
eukaryotic genomes, and mobilization of these elements can 
lead to genetic instability and cause deleterious mutations  
(McClintock, 1953). Mobile genetic elements also carry tran-
scriptional enhancers and insulators, thus transposition can alter 
expression of nearby genes and potentially large chromatin do-
mains, triggering coordinated changes in gene transcription that 
could disrupt development or drive evolution (Feschotte, 2008). 
Transposon silencing is particularly important in the germline, 
which maintains the genetic information that will be inherited 
by future generations. Recent studies indicate that transposon 
silencing during germline development is imposed by Piwi- 
interacting RNAs (piRNAs), which guide a small RNA-based 
immune response related to RNA interference (RNAi; Malone 
and Hannon, 2009). Here we review piRNA biogenesis and 
function during Drosophila female germline development, 
where recent molecular and biochemical observations have pro-
vided significant insight into the mechanism of piRNA produc-
tion and transposon silencing, and where the developmental 

defects associated with piRNA mutations can be evaluated 
within a well-established genetic, cellular, and developmental 
framework (Spradling, 1993).

Gene silencing by microRNAs (miRNAs) and small inter-
fering RNAs (siRNAs) is well established (Filipowicz et al., 
2005; Ghildiyal and Zamore, 2009), and studies on these small 
regulatory RNAs have guided work on the more recently identi-
fied piRNAs. The 21- and 22-nucleotide siRNAs and miRNAs 
are generated from double-stranded precursors by the RNase III 
enzyme Dicer and bind to Argonaute proteins (Ghildiyal and 
Zamore, 2009). The Argonaute–miRNA complexes direct  
sequence-specific translational silencing or target destruc-
tion. siRNAs in animals, in contrast, appear to primarily induce 
target destruction. However, endogenous siRNAs (endo-siRNAs) 
direct chromatin assembly and transcriptional silencing in the 
fission yeast Schizosaccharomyces pombe, and endo-siRNAs 
have been implicated in repressing transposons and other repet-
itive sequences during somatic development in flies (Volpe et al., 
2002; Verdel et al., 2004; Czech et al., 2008; Ghildiyal et al., 2008; 
Kawamura et al., 2008; Okamura et al., 2008; Hartig et al., 2009). 
miRNAs and siRNAs, in complexes with Argonautes, can there-
fore silence transcription, trigger target destruction, or inhibit 
translation. The piRNAs are less well understood, but may be 
equally versatile.

piRNA identification and genomic origins
piRNAs were first identified through studies on the Drosophila 
Stellate locus, which is composed of repeated copies of a gene 
encoding a casein kinase II -subunit homologue (Livak, 1990). 
The Drosophila Stellate protein has no known biological func-
tion, but mutations in the suppressor of stellate [su(ste)] locus 
lead to Stellate protein overexpression during spermatogenesis, 
which leads to Stellate crystal formation and reduced fertility 
(Livak, 1990). It is now clear that su(ste) encodes piRNAs that 
are homologous to ste and silence this locus in trans (Aravin  
et al., 2001). Small RNA cloning and sequencing studies sub
sequently showed that related 22–30-nucleotide-long RNAs, 
derived largely from retrotransposons and other repetitive se-
quence elements, are abundant in the male and female germline 
(Aravin et al., 2003). These novel small RNAs were therefore  
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binds to methylated lysine 9 on histone H3 (Bannister et al., 
2001; Lachner et al., 2001; Nakayama et al., 2001). HP1 then 
recruits histone methyltransferase, which methylates neighbor-
ing H3 to extend an epigenetic structure that is generally associ-
ated with transcriptional silencing (Nakayama et al., 2001). Rhi 
binding may therefore promote histone modifications that dif-
ferentiate piRNA clusters from surrounding chromatin.

Transposons and other repetitive elements are among the 
most divergent components in the genome. This calls for a se-
lection for advantageous changes in host genes involved in 
transposon targeting. Thus, the host and parasite are in a con-
stant genetic conflict inside the cell and coevolve with each 
other. Intriguingly, rhi is rapidly evolving and appears to be  
under strong positive selection, which is a hallmark of genes in-
volved in host–pathogen interactions. This led Vermaak et al. 
(2005) to speculate that rhi evolution is driven by a germline-
specific genomic conflict. The role for Rhino in piRNA biogen-
esis strongly suggests that the conflict between transposons and 
the host genome drives rhi evolution (Klattenhoff et al., 2009). 
Brennecke et al. (2007) speculated that piRNA clusters actively 
attract transposons, which would presumably lead to production 
of homologous piRNAs capable of trans-silencing active ele-
ments throughout the genome. Within this appealing model, 
Rhino protein could interact directly with transposon-encoded 
integration proteins, and thus drive adaptive silencing by pro-
moting transposition into clusters.

piRNA biogenesis
Deep sequencing and genetic studies suggest that two spatially 
and mechanistically distinct processes drive piRNA biogenesis 
(for review see Siomi et al., 2010). As noted above, the major-
ity of unique piRNAs are derived from transposon-rich hetero-
chromatic clusters (Brennecke et al., 2007; Yin and Lin, 2007). 
The most abundant piRNAs are antisense to mRNAs from  
active transposons, and these antisense RNAs preferentially 
associate with Piwi and Aubergine (Aub), two PIWI clade Ar-
gonautes (Brennecke et al., 2007; Gunawardane et al., 2007; 
Yin and Lin, 2007). Sense-strand piRNAs, in contrast, prefer-
entially associate with Argonaute 3 (Ago3; Brennecke et al., 
2007; Gunawardane et al., 2007). In vitro, all three Drosophila 
PIWI proteins, when programmed with piRNAs, cleave target 
RNAs between positions 10 and 11 of the guide strand (Saito  
et al., 2006; Gunawardane et al., 2007; Nishida et al., 2007). 
Significantly, Drosophila piRNAs from opposite strands tend to 
have a 10-nt 5-end overlap, and antisense piRNAs bound to 
Piwi and Aub show a strong bias toward a Uracil (U) at the  
5 end, whereas sense-strand piRNAs bound to Ago3 tend to 
have an Adenine (A) at position 10 (Brennecke et al., 2007;  
Gunawardane et al., 2007). These findings suggest that anti-
sense piRNAs derived from piRNA clusters bind to Aub and 
Piwi and direct cleavage of sense-strand transcripts from ac-
tive transposons, generating RNA fragments with an A 10 nt 
from the 5 terminus (Fig. 1 A). These sense-strand cleavage 
products are proposed to associate with Ago3, after 3 trim-
ming by an undefined mechanism producing mature sense-
strand piRNAs. The resulting piRNA–Ago3 complexes then 
cleave antisense piRNA precursors from clusters to produce 

initially named repeat-associated siRNAs (rasiRNAs; Aravin et al., 
2003). In some other systems, however, the majority of small 
RNAs in this class are not enriched in transposon sequences.  
In addition, these RNAs bind a germline-enriched PIWI clade of 
Argonaute proteins that are distinct from the Argonautes that bind 
miRNAs and siRNAs (Aravin et al., 2006; Girard et al., 2006; 
Grivna et al., 2006a; Lau et al., 2006). As a result, this new small 
RNA family was subsequently renamed Piwi-interacting RNAs 
(piRNAs; Brennecke et al., 2007; Yin and Lin, 2007).

Many of the piRNAs expressed in Drosophila ovaries are 
derived from transposons and other repeats, and thus cannot be 
assigned to specific chromosomal loci (Brennecke et al., 2007; 
Gunawardane et al., 2007; Yin and Lin, 2007). piRNAs that map 
to unique sites, however, are clustered in large pericentromeric 
or subtelomeric domains of up to 240 kb that are rich in trans-
poson fragments (Brennecke et al., 2007). Most of these clus-
ters produce piRNAs from both genomic strands, but a subset of 
clusters produce unique piRNAs almost exclusively from one 
strand (Aravin et al., 2006; Girard et al., 2006; Brennecke et al., 
2007; Gunawardane et al., 2007; Houwing et al., 2007). The 
Drosophila flamenco locus falls into this second class, and ge-
netic and molecular studies on flamenco have provided im
portant insights into piRNA function (Brennecke et al., 2007; 
Malone et al., 2009). Single P-element insertion mutations in 
the telomere-proximal side of flamenco disrupt piRNA produc-
tion and down-regulate expression of longer transcripts from 
across the entire 60-kb locus, suggesting that transposition has 
disrupted a transcriptional promoter for this cluster (Brennecke 
et al., 2007). flamenco contains fragments of active transposons 
that are located throughout the genome; therefore, mutations in 
this locus lead to overexpression of these dispersed elements 
(Brennecke et al., 2007; Mével-Ninio et al., 2007). These obser-
vations strongly suggest that piRNAs derived from flamenco si-
lence transposon expression in trans.

The flamenco locus appears to function primarily in 
ovarian somatic cells, while the major piRNA-producing dual-
strand cluster at cytological position 42AB appears to be 
germline specific. Mutations in 42AB and other dual-strand 
clusters have not been reported, but mutations in the rhino (rhi) 
locus lead to both dramatic reductions in piRNAs from these 
clusters and to 10–150-fold overexpression of 20% of trans-
poson families (Klattenhoff et al., 2009). piRNAs derived from 
dual-strand clusters thus appear to act in the germline to silence 
target transposons in trans.

piRNA clusters represent 1% of the genome, and it is 
unclear how these limited chromatin domains are specified. Most 
clusters are located in heterochromatin and contain complex  
arrays of transposon fragments, but only a subset of transposon-
rich heterochromatic regions produce piRNAs. These observa-
tions suggest that piRNA clusters are epigenetically defined. 
However, single P-element insertions disrupt flamenco locus 
function, suggesting that, at a minimum, cluster promoters are 
hard-wired. The rhi locus is required for accumulation of puta-
tive piRNA precursor RNAs from the 42AB cluster, and the 
heterochromatin protein 1 (HP1) homologue encoded by this 
locus binds to this cluster (Vermaak et al., 2005; Klattenhoff  
et al., 2009). HP1a, the founding member of the HP1 family, 
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germline cells in the ovary, and the mixture of germline and  
somatic tissue complicates interpretation of studies on intact 
tissue. Recently, homogenous cell lines derived from the ovar-
ian somatic sheets (OSSs) and ovarian somatic cells (OSCs) 
have been used to circumvent this limitation (Niki et al., 2006; 
Lau et al., 2009b; Robine et al., 2009; Saito et al., 2009). These 
cells express Piwi but do not express Ago3 or Aub, and produce 
piRNAs from one strand of the flamenco cluster (Lau et al., 
2009b; Saito et al., 2009). Piwi thus appears to drive ping-pong– 
independent piRNA production in somatic cells. The putative 
nuclease encoded by the zucchini locus is also required for 
piRNA production in the soma (Malone et al., 2009; Robine et al., 
2009; Saito et al., 2009). Transcripts encoded by flamenco could 
be cleaved by Zucchini, producing RNA fragments that bind to 
Piwi (Fig. 1 B). Each of the PIWI-clade proteins binds piRNAs 
with a unique length distribution, suggesting that processing 
takes place after binding (Brennecke et al., 2007). Precursor RNA 
fragments bound by Piwi could be trimmed to produce mature 
primary piRNAs (Fig. 1 B).

However, the available data on primary piRNA produc-
tion are very limited and the proposed model is therefore highly 
speculative. In addition, several observations suggest that pri-
mary piRNA production in the germline may be independent of 
Piwi. For example, mutations that disrupt piRNA production in 

RNA fragments that associate with Aub and Piwi (Fig. 1 A). 
Trimming generates mature antisense piRNAs, completing the 
cycle. In this model, reciprocal cycles of PIWI-mediated cleav-
age thus amplify the pool of sense and antisense piRNAs. This 
“ping-pong” amplification cycle thus obviates the need for an 
RNA-dependent RNA polymerase (RdRp), which is needed to 
amplify siRNA triggers in plants, nematodes, and yeast (Verdel 
et al., 2009). The ping-pong model was developed from obser-
vations in Drosophila, but a similar mechanism appears to 
function in other animal groups (Aravin et al., 2007; Houwing 
et al., 2007; Grimson et al., 2008; Palakodeti et al., 2008; Lau 
et al., 2009a).

The ping-pong model requires preexisting “primary”  
piRNAs, presumably derived from clusters, to initiate the amplifi-
cation cycle. How these primary piRNAs are produced remains 
to be determined, but piRNA production from the flamenco 
cluster has been proposed as a model for this process. piRNAs 
from this locus appear to be expressed primarily in the somatic 
follicle cells, which express only one PIWI Argonaute, Piwi.  
In addition, this locus produces unique piRNAs from only one 
genomic strand and complementary piRNAs drive biogenesis  
in the ping-pong model (Brennecke et al., 2007). Somatic 
piRNA production by flamenco may provide a model for primary 
piRNA biogenesis. However, somatic follicle cells surround the 

Figure 1.  piRNA biogenesis and transposon silencing in the germline and soma. The mechanisms that drive piRNA biogenesis and transposon silencing 
are not well understood. Here we summarize speculative models based on the available data. (A) Ping-pong amplification in the germline. Transcripts from 
functional transposons (blue) and piRNA clusters (blue and red) are exported from the nucleus. Aub, preprogrammed with piRNAs generated through the 
primary biogenesis pathway, cleaves complementary transposon and cluster transcripts (blue), yielding randomly sized RNA fragments that bind Ago3. 
3-end trimming produces mature Ago3-sense strand piRNA complexes, which cleave anti-sense cluster transcripts (red). The resulting fragments bind to 
Aub and 3-end processing generates anti-sense piRNAs, completing the amplification cycle. (B) Primary piRNA biogenesis in the soma. Anti-sense precur-
sor transcripts (red) from flam and other uni-strand clusters are cleaved by Zuc to produce intermediate species that bind to Piwi. 3 processing generates 
mature anti-sense piRNAs. (C) Primary piRNA biogenesis in the germline. Long-sense (blue) and anti-sense (red) precursor transcripts from piRNA clusters 
are cleaved by sequence-independent nucleases, which could include Zucchini (Zuc) and/or Squash (Squ), producing intermediates that bind Ago3 and 
Aub. Processing and modification of the 3 ends generates mature piRNA complexes that drive that ping-pong amplification loop. (D) Potential modes of 
piRNA-mediated transposon silencing. (1) Transcriptional silencing of target transposons. piRNAs bound to Piwi, which accumulates in the nucleus, direct 
heterochromatin assembly at target elements. (2) Post-transcriptional target destruction. Transposon transcripts are recognized by Aub–piRNA complexes in 
the nuage, which catalyze homology-dependent cleavage. (3) Aub–piRNA complexes bind transposon transcripts and repress translation.
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The Piwi proteins Aub and Ago3 have recently been 
shown to be modified by the methyltransferase PRMT5, which 
generates symmetrical dimethyl arginines (sDMAs), which cre-
ates a binding site for Tudor domains (Kirino et al., 2009). There 
are 23 Tudor domain proteins in Drosophila, including the 
founding member of the family, Tudor (Tud), which is required 
for assembly of germ plasm and Aub localization in the germ-
line (Boswell and Mahowald, 1985; Nishida et al., 2009). In addi-
tion, the Tudor domain proteins Krimper, Spindle-E, and Tejas 
have been implicated in PIWI localization, piRNA production, 
and transposon silencing (Vagin et al., 2004; Lim and Kai, 2007; 
Malone et al., 2009; Patil and Kai, 2010). These findings sug-
gest that Piwi family protein dimethylation leads to assembly  
of higher order complexes that promote piRNA biogenesis and 
transposon silencing.

Transposon silencing
The majority of Drosophila piRNAs map to transposons and 
other repetitive elements, and piRNA mutations lead to massive 
transposon overexpression. piRNA–PIWI complexes are there-
fore assumed to directly control transposon activity. piRNAs 
bound to PIWI proteins direct homology-dependent target cleav-
age in vitro, suggesting that transposons are silenced through 
post-transcriptional transcript destruction (Saito et al., 2006;  
Gunawardane et al., 2007; Nishida et al., 2007). Intriguingly, a 
number of the piRNA pathway components, including Aub and 
Ago3, localize to Nuage, an evolutionarily conserved perinuclear 
structure associated with germline RNA processing (Eddy, 1974; 
Ikenishi, 1998; Saito et al., 2006; Brennecke et al., 2007;  
Gunawardane et al., 2007; Nishida et al., 2007). In addition,  
protein-coding genes with transposon insertions within introns 
escape silencing by the piRNA pathway. These observations sug-
gest that piRNAs bound to Aub and Ago3 direct homology- 
dependent cleavage of mature transposon transcripts after 
export from the nucleus (Fig. 1 D). In this model, protein-coding 
genes containing intronic transposon insertions are not silenced 
because piRNA homology is removed by splicing.

However, several lines of evidence raise the possibility that 
piRNAs act at several levels. Piwi, the founding member of the 
PIWI clade, localizes to the nucleus, binds HP1a, and has been 
implicated in heterochromatin assembly in the soma (Pal-Bhadra 
et al., 2004; Brower-Toland et al., 2007). In addition, mutations 
in spn-E, which encodes a putative helicase required for piRNA 
production, reduce HP1a binding to the telomere-specific trans-
poson TART (Klenov et al., 2007). These findings suggest that 
piRNA bound to Piwi guide heterochromatin assembly, and thus 
impose transcriptional silencing. Consistent with this specula-
tion, piRNA mutations reduce DNA methylation in mouse testes. 
However, piRNAs have also been found in polysome fractions 
(Grivna et al., 2006b) and the mouse Piwi protein Mili associates 
with translation initiation factors and may positively regulate 
translation (Unhavaithaya et al., 2009). These findings raise the 
possibility that piRNAs also control translation (Fig. 1 D).

piRNA control of gene expression
In many organisms, including poriferans, cnidarians, Caeno
rhabditis elegans, and mouse, the majority of piRNAs map to 

the germline lead to severe defects in axis specification and  
oocyte nuclear organization (Chen et al., 2007; Klattenhoff  
et al., 2007, 2009; Pane et al., 2007), but germline depletion of 
Piwi does not disrupt egg chamber development or axial pat-
terning (Cox et al., 2000). In addition, piwi mutations reduce, 
but do not eliminate piRNAs mapping to the major germline-
specific 42AB cluster (Malone et al., 2009). Because a loss of 
primary piRNAs should lead to a collapse of the entire piRNA 
biogenesis cycle, these findings suggest that primary piRNA 
production in the germline does not require Piwi. The mecha-
nism of primary piRNA production in the germline thus remains 
to be explored, and could be distinct from piRNA production in 
ovarian somatic tissue.

The majority of germline piRNAs appear to be produced 
by the ping-pong amplification cycle, and a simple modification 
of this cycle could explain primary piRNA biogenesis during 
germline development (Fig. 1 C). During ping-pong amplifica-
tion, primary piRNAs are generated by Ago3 or Piwi-mediated 
cleavage of piRNA precursor transcripts derived from clusters, 
which produces longer fragments that bind to Aub and are sub-
sequently trimmed to final length (Fig. 1 C). During primary 
piRNA biogenesis, piRNA cluster transcripts could be cleaved 
by sequence-independent endonuclease producing long RNA 
fragments that enter the biogenesis cycle by binding to Aub or 
Ago3. Subsequent processing by the same mechanisms em-
ployed using the ping-pong cycle could then generate the mature 
primary piRNAs that initiate the amplification loop (Fig. 1 A).

Mutations that eliminate primary piRNAs are predicted to 
lead to a collapse of the ping-pong cycle. However, mutations 
that only reduce primary piRNA production should allow re-
duced piRNA production by the ping-pong cycle. Intriguingly, 
mutations in squash and zucchini, which encode putative nucle-
ases that localize to the perinuclear nuage, reduce piRNA levels 
without blocking ping-pong bias (Malone et al., 2009). As noted 
above, Zucchini has been implicated in ping-pong–independent 
piRNA biogenesis in somatic cells (Robine et al., 2009; Saito  
et al., 2009). Zucchini and/or Squash could therefore cleave cluster 
transcripts to produce RNAs that bind to PIWI-clade proteins and 
generate the primary piRNAs that initiate the germline ampli-
fication loop (Fig. 1, B and C).

Modification of piRNAs and Piwi proteins
Like siRNAs, the 3 ends of most mature piRNAs are 2-O-
methylated, whereas the 5 end carries a phosphate group  
(Girard et al., 2006; Grivna et al., 2006a; Vagin et al., 2006; 
Horwich et al., 2007; Houwing et al., 2007; Saito et al., 2007). 
The 2-O-methylation is performed by DmPimet (piRNA methyl
transferase)/DmHEN1, the Drosophila homologue of Arabi-
dopsis HEN1 (Horwich et al., 2007; Saito et al., 2007). Dmhen1 
mutants eliminate 2-O-methylation and reduce average piRNA 
size and abundance, suggesting that this modification protects 
mature piRNA from degradation (Horwich et al., 2007; Saito  
et al., 2007). These mutations also lead to a modest loss of 
transposon silencing, although mutants are viable and fertile 
(Horwich et al., 2007; Saito et al., 2007). These findings suggest 
that 3-end modification is not essential to piRNA function, but 
existing Dmhen1 alleles may not be null.



909piRNAs, transposon silencing, and Drosophila germline development • Khurana and Theurkauf

germline-specific DEAD box protein required for piRNA pro-
duction (Schüpbach and Wieschaus, 1991; Malone et al., 2009), 
piRNAs derived from the AT-chX-1 and AT-chX-2 loci are ho-
mologous to the vasa gene, and mutations in aub and ago3 that 
disrupt production of these piRNAs lead to Vasa overexpression 
(Nishida et al., 2007; Li et al., 2009). During early embryogen-
esis, maternally deposited mRNAs are destroyed as transcrip-
tion is activated, leading to a switch from maternal to zygotic 
control of development. Recent studies suggest that the piRNA 
pathway may have a role in this developmental switch (Rouget 
et al., 2010). However, genome-wide tiling array analyses show 
that mutations in the piRNA pathway genes aub, ago3, rhi, and 
armi do not significantly alter expression of protein-coding 
genes during oogenesis (Klattenhoff et al., 2009; Li et al., 2009). 
piRNA control of gene expression may therefore be restricted to 
specific tissues or developmental stages.

piRNA function and Drosophila  
germline development
In every system studied to date, mutations in piRNA pathway 
genes disrupt germline development, often producing complex 
and poorly understood phenotypes that are difficult to directly 
associate with transposon targets of the pathway. Analyses of 
the ovarian phenotypes in Drosophila piRNA mutants, however, 
have helped link transposon mobilization to germline develop-
ment and may provide a paradigm for phenotypic analysis of 
piRNA mutants in other systems.

the unannotated regions of the genome and only a limited set 
match transposons and other repeats (Aravin et al., 2006; Girard 
et al., 2006; Ruby et al., 2006; Batista et al., 2008; Grimson  
et al., 2008). Drosophila also express piRNAs derived from the 
3-UTRs of a subset of mRNAs (Aravin et al., 2006; Robine  
et al., 2009; Saito et al., 2009). These observations suggest that 
piRNAs may control gene expression. Several recent studies 
support this hypothesis. The most abundant genic piRNAs in 
Drosophila somatic cells are linked to the 3-UTR of a tran-
scription factor, traffic jam (tj) (Robine et al., 2009; Saito et al., 
2009). In cultured somatic cells, tj piRNAs coimmunoprecipi-
tate with Piwi protein, and in ovaries their levels are reduced  
in zucchini mutants, but not in ovaries mutant for several 
other genes implicated in secondary piRNA amplification (Saito  
et al., 2009). Mutations in tj appear to reduce Piwi protein levels 
in somatic follicle cells, suggesting that this locus controls Piwi 
expression and is the source of piRNAs that bind to it. Muta-
tions in tj and piwi produce similar defects in oogenesis and 
lead to two- to fourfold overexpression of FasIII, a cell adhe-
sion molecule necessary for oogenesis. These changes are mod-
est compared with the 100–200-fold increases in transposon 
expression observed in several piRNA pathway mutants. None-
theless, these findings suggest that piRNAs from the tj locus 
down-regulate fasIII in the somatic follicle cells (Saito et al., 
2009). In fly testes, the vasa and stellate (ste) genes also appear 
to be targeted by the piRNA pathway (Aravin et al., 2001; Vagin 
et al., 2006; Nishida et al., 2007). The vasa gene encodes a 

Figure 2.  Microtubule polarity and axis specification in wild-type and piRNA mutant oocytes. A pair of germline stem cells (red) in region 1 of the 
germarium divide to produce cystoblasts (light green), which undergo four divisions with incomplete cytokinesis to generate inter-connected 16-cell cysts. 
Meiotic recombination initiates in region 2a (green) and DSBs are formed. Meiosis is restricted to a single pro-oocyte in the center of the cyst in region 2b 
(dark green). DSBs are repaired by region3/stage 2 (blue) of oogenesis. A microtubule-organizing center (MTOC) forms in the oocyte where microtubules 
direct osk mRNA (yellow) to the posterior pole. In piRNA mutants, meiosis is initiated normally in region 2a (B). However, transposons are overexpressed 
and DSBs accumulate in region 2b. DSBs persist in region 3, activating Chk2 signaling, which blocks MTOC formation and grk mRNA localization. Bottom 
panel shows early and late stage 8 oocytes in wt (A) and piRNA mutants (B). The oocyte cortex nucleates microtubules (green, arrowheads indicate plus 
end). Kinesin moves osk mRNA (red) to the interior. In the wild type, posterior follicle cells (yellow) signal to the oocyte (blue arrow), triggering depolymer-
ization of cortical microtubules. Osk mRNA moves to the posterior by kinesin-dependent random walk. In piRNA mutants (B, bottom panel), osk mRNA 
moves to the interior, but posterior follicle cell signaling fails, posterior microtubules persist, and osk mRNA is trapped in the interior.
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The first clear oocyte patterning defects associated with 
piRNA mutations are observed in late stage 8 and early stage 9 
(Chen et al., 2007; Klattenhoff et al., 2007; Pane et al., 2007).  
By early stage 8, most of the oocyte cortex appears to nucleate 
microtubules, and the microtubule network shows no clear polarity. 
At this stage, osk mRNA, which specifies the posterior pole, is 
localized to the anterior and lateral cortex (Kim-Ha et al., 1991). 
By stage 9, however, osk mRNA is tightly localized to the poste-
rior cortex. Both fluorescence in situ hybridization and time-lapse 
studies using molecular beacons show that osk mRNA transiently 
accumulates in the center of the oocyte before moving to the pos-
terior pole (Cha et al., 2002; Bratu et al., 2003). The second step 
in osk mRNA localization temporally correlates with loss of cor-
tical microtubules specifically at the posterior pole, and muta-
tions in grk, pka, and par1 trap osk mRNA in the interior of the 
oocyte and block depolymerization of microtubules at the poste-
rior cortex (Lane and Kalderon, 1993; Roth et al., 1995; Cox  
et al., 2001; Benton et al., 2002). In addition, osk mRNA re-
mains uniformly at the cortex in oocytes mutant for khc, which 
encodes the plus end–directed microtubule motor kinesin-I 
(Brendza et al., 2000; Cha et al., 2002). These findings support a 
two-step model in which microtubules nucleated at the cortex and 
randomly projecting into the oocyte support kinesin-dependent 
movement of osk mRNA toward the interior. Depolymerization 
of posterior microtubules, induced by a signal from the posterior 
follicle cells and mediated by par-1 and cAMP-dependent pro-
tein kinase in the oocyte, eliminates the cortical exclusion force 
specifically at the posterior pole (Fig. 2). The remaining oocyte 
microtubules then support a biased random walk toward the pos-
terior (Serbus et al., 2005; Zimyanin et al., 2008). Assembly of a 
single MTOC in the oocyte during early oogenesis thus leads to 
polarized Grk signaling to follicle cells (Fig. 2, bottom), which 
differentiate and signal back to the oocyte during mid-oogenesis, 
inducing a second microtubule reorganization that allows osk 
mRNA movement to the posterior cortex (Fig. 2 A). At the same 
time, grk mRNA localizes to the anterior–dorsal cortex of the 
oocyte, leading to Grk/TGF- signaling to the dorsal follicle 
cells. It is unclear how grk mRNA moves to the dorsal cortex, but 
this process requires microtubules and the minus-end motor,  
dynein. Mutations that disrupt osk mRNA localization generally 
disrupt grk mRNA localization, suggesting that both processes 
may be initiated by Grk signaling from the oocyte to the follicle 
cells during early oogenesis.

In piRNA pathway mutants, osk mRNA fails to localize 
to the posterior pole and grk mRNA fails to localize to the dor-
sal cortex during late stage 9 and early stage 10, and this corre-
lates with persistence of cortical microtubules at the posterior pole 
(Fig. 2 B; Cook et al., 2004; Chen et al., 2007; Klattenhoff  
et al., 2007; Pane et al., 2007). These patterning defects during mid-
oogenesis lead to production of elongated eggs with reduced or 
missing dorsal appendages, which are egg shell structures in-
duced by Grk signaling. These findings suggest that piRNA  
mutations disrupt assembly of the MTOC early in oogenesis,  
disrupting an early step in oocyte patterning that ultimately 
leads to production of spindle-shaped eggs.

Insight into the link between piRNA function in transpo
son silencing and these polarity defects came from studies by 

Drosophila oogenesis is initiated by the division of a 
germline stem cell within a somatic cell niche at the tip of the 
germarium (Fig. 2; Spradling, 1993). Signaling between the 
niche and the stem cell controls stem cell division and is likely 
to orient division plane (Deng and Lin, 1997; Lin and Spradling, 
1997). The latter process is critical to asymmetric cleavage, 
which regenerates the stem cell and produces the cystoblast  
precursor of the oocyte and nurse cells (Deng and Lin, 1997). 
Mutations in piwi, which encodes a founding member of the 
PIWI clade of Argonaute proteins, lead to a near complete loss 
of germline stem cells (Cox et al., 1998). Genetic mosaic studies 
indicate that Piwi protein is required in both the somatic cells of 
the niche and in the germline (Cox et al., 1998, 2000). Eliminat-
ing piwi from the soma disrupts stem cell maintenance, but does 
not alter the viability of the eggs that are produced (Cox et al., 
2000). In contrast, germline clones of piwi mutations slow stem 
cell division and the eggs that are produced do not hatch (Cox  
et al., 2000). Unlike mutations in many other piRNA pathway 
genes, however, piwi germline clones do not disrupt oocyte pat-
terning, which appears to be a downstream consequence of 
transposon overexpression (see below). The function for Piwi 
and piRNAs in stem cell maintenance and divisions are not well 
understood, and may be distinct from latter functions in trans-
poson control.

In the majority of piRNA pathway mutations, the earliest 
phenotype is an increase in DNA damage in germline cells of 
the germarium (Klattenhoff et al., 2007, 2009). After stem cell 
division, the cystoblast proceeds through four incomplete divi-
sions to produce a cyst of 16 interconnected cells that will dif-
ferentiate into a single oocyte and the nurse cells (Spradling, 
1993). Region 2a of the germarium contains early 16 cell cysts, 
and all 16 cells begin to accumulate double-strand breaks and 
initiate synaptonemal complex (SC) assembly (Carpenter, 1975, 
1979). The SC is progressively restricted to a single oocyte, lo-
cated at the posterior pole, as cysts progress to region 3, where 
they are surrounded by a monolayer of somatic follicle cells and 
bud from the germarium to form stage 2 egg chambers (Spradling 
et al., 1997). During the progression, meiotic DNA breaks are 
first restricted to the pro-oocyte and then repaired in the oocyte 
(Jang et al., 2003). Reorganization of the microtubule cytoskel-
eton is coordinated with these nuclear changes. In early region 
2a cysts, the microtubule network shows no clear polarity. How-
ever, a single microtubule-organizing center (MTOC), focused 
on the pro-oocyte, begins to dominate as cysts progress through 
region 2b and into region 3. This polarized microtubule scaffold 
is required for asymmetric localization of a TGF- homologue 
encoded by the grk gene, which signals to posterior follicle 
cells that are in contact with the pro-oocyte. This initiates a 
reciprocal germline-to-soma signaling cascade that patterns  
the oocyte and the surrounding egg shell (Schüpbach, 1987; 
Neuman-Silberberg and Schüpbach, 1993). In piRNA mutants, 
double-strand breaks form normally in region 2a cysts, but the 
breaks persist and appear to increase as egg chambers mature  
(Klattenhoff et al., 2007). In addition, the microtubule network 
is not polarized, which disrupts Grk signaling and initiation of 
oocyte patterning (Chen et al., 2007; Klattenhoff et al., 2007, 
2009; Pane et al., 2007).
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these finding suggest that piRNA pathway mutations lead to 
transposon overexpression and mobilization, which triggers  
Chk2-dependent defects in MTOC formation early in oogenesis, 
thus preventing an early step in the oocyte patterning cascade  
(Fig. 3, A and B).

Although this model is appealing, DNA damage in the 
piRNA pathway mutations has not been directly linked to transpo-
son mobilization, and the mechanism of Chk2-dependent disrup-
tion of the oocyte MTOC remains to be determined. In addition, 
mutations in mnk and mei-41 do not suppress the maternal-effect 
embryonic lethality associated with piRNA pathway mutation, 
and the essential embryonic functions for this pathway remain to 
be explored. Nonetheless, the available data suggest that the axis 
specification defects produced by many Drosophila piRNA muta-
tions are an indirect consequence of transposon overexpression 
and DNA damage signaling.

Conclusions
Mutations that disrupt the piRNA pathway in mouse and fish lead 
to germline-specific cell death and sterility, and are also associated 
with increased transposon expression (Aravin et al., 2007; Carmell 
et al., 2007; Houwing et al., 2007). Studies in Drosophila suggest 
that transposon mobilization represents the primary biological trig-
ger for these phenotypes, and that mobile elements are the primary 
targets for the piRNA pathway. However, the vast majority of  
piRNAs in the mouse germline map to unique sequences in un
annotated regions of the genome, a subset of Drosophila piRNAs 
is derived from protein-coding genes, and piRNAs appear to control 
at least one gene target in Drosophila ovarian somatic cells. The 
biological relevance of genic piRNAs remains to be fully explored. 
There is also intriguing data implicating the piRNA pathway in 
learning and memory and chromatin assembly in the soma (Pal-
Bhadra et al., 2004; Ashraf et al., 2006; Brower-Toland et al., 2007), 
and we have recently found that a subset of piRNA pathway muta-
tions disrupt telomere protection and lead to chromosome fusion 
segregation during meiosis and mitosis (Khurana et al., 2010). The 
biological function for this novel class of small RNAs may there-
fore extend well beyond transposons and germline development.
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