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Context: More than half of all spinal cord injuries (SCI) occur at the cervical level leading to loss of upper limb
function, restricted activity and reduced independence. Several technologies have been developed to assist
with upper limb functions in the SCI population.
Objective: There is no clear clinical consensus on the effectiveness of the current assistive technologies for the
cervical SCI population, hence this study reviews the literature in the years between 1999 and 2019.
Methods: A systematic review was performed on the state-of-the-art assistive technology that supports and
improves the function of impaired upper limbs in cervical SCI populations. Combinations of terms, covering
assistive technology, SCI, and upper limb, were used in the search, which resulted in a total of 1770
articles. Data extractions were performed on the selected studies which involved summarizing details on the
assistive technologies, characteristics of study participants, outcome measures, and improved upper limb
functions when using the device.
Results: A total of 24 articles were found and grouped into five categories, including neuroprostheses (invasive
and non-invasive), orthotic devices, hybrid systems, robots, and arm supports. Only a few selected studies
comprehensively reported characteristics of the participants. There was a wide range of outcome measures
and all studies reported improvements in upper limb function with the devices.
Conclusions: This study highlighted that assistive technologies can improve functions of the upper limbs in SCI
patients. It was challenging to draw generalizable conclusions because of factors, such as heterogeneity of
recruited participants, a wide range of outcome measures, and the different technologies employed.
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Introduction
Each year in the UK, 1000 people sustain a traumatic
spinal cord injury, and in total 40,000 people live with
a spinal cord injury (SCI).1–3 This number is higher in
the United States, where approximately 294,000
(range 250,000–368,000) individuals live with SCI and
each year around 17,810 new SCI cases are
reported.4–6 More than half of all cases of SCI occur
at the cervical level leading to loss of hand and upper

limb function.6,7 This complex impairment results in
restricted activity and independence, hence significantly
compromising wellbeing and quality of life.8,9 This life-
changing injury remains a particular challenge to
modern society as there is no cure. However, techno-
logical systems have been developed to restore some
upper limb function for individuals with tetraplegia
due to SCI including systems with neuroprostheses,
orthotics, robots, and hybrid devices.
Individuals affected by high-level SCI see restoration

of upper limb functions as a high priority.10 Increased
motor function in the hand and arms for this
population can be achieved by surgical interventions
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or by assistive technologies.11,12 Unlike therapeutic
technologies, which seek to improve physical impair-
ments, assistive technologies are designed to assist
with the performance of specific tasks for the user
and intended for use when neurological recovery has
reached a plateau. There has been ongoing research
and development on assistive technologies for tetraple-
gia in the last 20 years. There is no clear clinical consen-
sus on the effectiveness of the current assistive
technologies for the cervical SCI population; therefore,
we decided to review the literature for the years between
1999 and 2019.
The aim of this study was to systematically review the

state-of-the-art assistive technology that supports and
improves function of impaired upper limbs in people
with cervical SCI. In addition, clinical outcomes, result-
ing from the implementation of such technologies, have
been reviewed. To fulfill the aim of the study, we set out
two main objectives and they were to:
(1) Describe the assistive technology, with a focus on

devices that interface with the upper limbs; and
(2) Describe the outcome measures used when testing the

efficacy of the technologies.

Methods
Search strategy
An electronic search of databases, including (CINAHL,
AMED, EMBASE, PUBMED, MEDLINE,
EMCARE) from 1999 to 2019, was performed.
Initially, three categories essential to assess assistive
technologies for clinical purposes were established:
clinical condition, type of technology, and affected
body part. Combinations of search terms within the
three categories were used, sometimes with truncation,
to capture all possible variations (Table 1). Two
examples of search strategies are shown in the sup-
plementary materials (Example S1 and S2). In addition
to the electronic search of the databases, the reference
lists of relevant publications were checked.

Study selection
Initially, duplicate, low-level of evidence (for example
articles with excluded terms), and irrelevant articles
were discarded. Subsequently, the remaining articles
were assessed based on their title and abstract, and
10% of these articles were blindly re-assessed by
another reviewer. With the 10% of article re-assessment
we found little difference of opinion, hence giving us
confidence in the selected articles. Agreement was
reached by discussion and reasoning in case of discre-
pancies. Following abstract and title screening, full
texts of the articles were reviewed for final screening.

Data extraction
The main categories for data extraction were type of
assistive technology and its description, study partici-
pants, outlines of outcome measure, and functional
ability with and without assistive technology. This
information was used to summarize the efficacy of the
current assistive technology for the upper limb in popu-
lations with tetraplegia.

Results
Study selection
The literature search in CINAHL, AMED, EMBASE,
PUBMED, MEDLINE, and EMCARE yielded 218,
71, 498, 483, 297, and 203 studies, respectively.
Following the initial study selection process, 371
studies were found. Subsequently, the abstracts of
these studies were screened by searching for the prede-
fined inclusion and exclusion terms (Table 1).
Abstract screening yielded 37 studies. The 37 studies
were further assessed for inclusion in the current
study by reading the full text of the articles while
looking for contents relevant to assistive technologies
for the upper limb in cervical SCI population, and a
clear report on outcome measures. The full-text assess-
ment resulted in selecting a total of 24 studies for the
analysis in this paper (Fig. 1). Of the 24 selected

Table 1 Included and excluded terms used for electronically searching databases.

Clinical condition Type of technology Affected body part

Search terms
for inclusion

Spinal cord injury, SCI, spinal cord
lesion, tetraplegia, quadriplegia,
tetraplegic, quadriplegic, paralysis

Assistive technology, assistive device, orthotic
device, splint, robotics, arm support, mobile arm
support, anti-gravity support, neuroprostheses,
functional electrical stimulation, FES,
neuromuscular electrical stimulation, NMES,
hybrid device, neuromuscular electrical
stimulation, arm-weight bearing, implanted
electrical stimulator, surface electrical stimulator,
percutaneous electrical stimulator.

Upper limb, upper
extremity, hand, arm,
forearm, forelimb

Search terms
for exclusion

Stroke, multiple sclerosis, MS, polio,
poliomyelitis, paraplegic, paraplegia

Prosthesis, prosthetics, exoskeleton, passive
assistive device, artificial limbs

Lower limb, lower
extremity, leg
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Figure 1 Study selection flow diagram for the searched databases. Abbreviations: NP, neuroprostheses.
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studies, 13 were identified as case studies or series,13–25

two as clinical trials,26,27 one as a clinical study,28 and
eight as cohort studies.29–36

Data extraction
Identified assistive technologies
In this study, assistive technologies for restoring upper
limb function in populations with spinal cord injury
were categorized as follows:
• Neuroprosthesis (invasive20–26,29–34 and non-invasive

18,19,27,28) is a system where muscles are stimulated by
small electrical currents to generate motor functions;

• Orthosis is a non-invasive supportive device which
assists with optimum use of remaining motor
control;16,35,36

• Hybrid system is a combination of multiple technol-
ogies such as neuroprosthesis and orthosis,13,14 or
powered orthosis;

• Robot is a non-invasive device generating functional
movements without the need for users to have any
residual motor control,17 and;

• Antigravity arm support is an add-on device to other
assistive technologies.15

From the literature search, 20 of the selected studies
focused on neuroprostheses, with sixteen on invasive
and four on non-invasive neuroprostheses. Selected
studies, focusing on assistive technologies other than
neuroprostheses, were limited, with three on orthotics,
two on hybrid systems, one on robots, and one on anti-
gravity arm supports. Descriptions of the identified
assistive technologies are reported in Table 2.

Study participants
Characteristics of the participants recruited into each
study are summarized in Table 3. Not all of the selected
studies comprehensively reported characteristics of
their participants, for example two studies did not
report participants’ sex,14,28 two studies did not report
participants’ age,16,31 and five studies did not report
time between injury and participant recruit-
ment.14,20,28,31,34 In twenty-two studies, the neurologi-
cal level of the injury ranged from C4 to C8, and two
were above C3. The time since injury varied widely
(range from 3 months to 62 years) with no particular
pattern or correlation to the assistive devices in the
selected studies.

Outcome measures
The outcome measures, adopted in the selected studies,
covered a variety of the domains that comprise the fra-
mework of International Classification of Functioning,
Disability and Health (ICF).37 In total, there were 30
different outcome measures assessing body functions
and structures, activity, and participation domains

(Supplementary Materials Table S1). In the body func-
tions and structure domain, outcome measures
described joint movement, force generation, active
and passive range of motion (ROM) through a
number of standardized tests, such as Jebsen-Taylor-
Hand-Function (JTHF) and Toronto Rehabilitation
Institute Hand Function Test (TRI-HFT). In the
activity domain, outcome measures were evaluated
using a range of tests, including, Grasp-and-Release-
Test (GRT), Activity of Daily Living (ADL), Action
Research Arm Test (ARAT), Functional
Independence Measure (FIM), and Spinal Cord
Independence Measure (SCIM). In the participation
domain, outcome measures assessed individuals when
using the device in the community through tools and
surveys, including the Craig Handicap Assessment
and Reporting Tool (CHART). Only one study clearly
reported on this domain, investigating social inte-
gration and occupation subscale,30 and three studies
carried out satisfaction surveys and participant ques-
tionnaires for using the device at home.24,33,34

Study functional outcomes
All studies reported improvement in functional ability
of the upper limb while using the assistive devices
(Supplementary Materials Table S1). Studies on neuro-
prostheses, both invasive and non-invasive devices,
showed increased hand function, grip and pinch
strength, average range of movement in the upper
limb, and improvement in ADLs.
In one study, the application of non-invasive neuro-

prostheses showed an immediate increase in hand func-
tion in 63% of their compliant subjects of whom 15%
scored a clinically relevant change of 5.7 ARAT
points.28 Studies reported that grip strength was
increased from 0.57N to 16.5N,18 average range of
movement in the forearm and wrist was increased by
9%,27 and participants successfully performed at least
three new ADL tasks.18,19,27 Participants, who continu-
ously used the non-invasive neuroprosthesis devices,
showed a 75% higher performance of the ADL
tasks.27 Similarly, the effect of training with the device
increased ARAT score by 2 points which is clinically
important.28 In addition, using non-invasive neuro-
prosthesis is thought to cause therapeutic effects and
improve hand function.28

Participants, with invasive neuroprostheses, had
undergone invasive methods to implant the device.
The implanted components of the device consist of epi-
mysial and intramuscular electrodes, electrode leads,
and electromyography recording electrodes.22,29,30

Some studies combined corrective surgeries such as
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Table 2 Descriptive summary of assistive devices in the selected studies. Abbreviations: FES, Functional Electrical Stimulation;
BCI, Brain–Computer Interface; IST-12, 12-channel implantable stimulator-telemeter; MES, Myoelectric Signals; EMG,
Electromyographic.

Authors Type of assistive device Device description

Thorsen et al.
28

Non-invasive neuroprosthesis A one-channel battery-powered portable neuroprosthesis
implementing myoelectric controlled functional electrical stimulation
(MeCFES). Standard surface self-adhesive stimulation electrodes
and EMG recording electrodes were used and connected to the
MeCFES unit by flexible cables.

Alon and
McBride18

Non-invasive neuroprosthesis The Handmaster as described in Snoek et al. (2000). The control unit
enables the user to choose between three exercise and three
functional modes which are key grip and release, palmar grasp and
release, and static open hand posture.

Snoek et al.19 Non-invasive neuroprosthesis The Handmaster is a neuroprosthesis combining a spiral wrist and
hand orthosis with integrated surface electrodes to activate muscles
of the paralyzed forearm and hand. Three exercise and two
functional modes can be selected on the control unit. The functional
modes provide, key grip and release, and palmar grasp and release,
while exercise modes provide repetitive stimulation of the muscles.

Popovic et al.27 Non-invasive neuroprosthesis The Bionic glove uses three channels of electrical stimulation to
stimulate finger flexors, extensors, and thumb flexors. The control
signal comes from a wrist position transducer mounted in the
garment.

Bockbrader
et al.20

Invasive neuroprosthesis A BCI system comprising of a 96-channel Utah microelectrode array
implanted in the left dominant cortex, which interfaces with
transcutaneous forearm FES.

Kilgore et al.29 Invasive neuroprosthesis IST-12 described in Kilgore et al. (2008).
Friedenberg
et al.21

Invasive neuroprosthesis A BCI system interfacing a Utah microelectrode array implanted in
the left primary motor cortex with the FES technology. The FES
system of a multi-channel stimulator flexible cuff, consisting of up to
140 electrodes, is wrapped around the subject’s arm.

Memberg
et al.22

Invasive neuroprosthesis IST-12 described in Kilgore et al. (2008).

Gan et al.23 Invasive neuroprosthesis Stimulus Router System (SRS) is a neuroprosthesis device in which
only passive leads are implanted on branches of the upper limb
nerves and each lead picks up a portion of the current transmitted
through the skin by an external stimulator. User triggers stimulation
with small tooth-clicks that are detected by the wireless earpiece
containing a 3-axis accelerometer. Wristlet stimulators are used to
generate trains of pulses that are delivered through 4 electrode
pads. Three of these pads are located over the 3 pick-up terminals
and the fourth centered 12 cm proximal to the wrist crease on the
posterior aspect of the forearm.

Kilgore et al.30 Invasive neuroprosthesis IST-12 is a second-generation implantable neuroprosthesis to control
hand grasp, forearm pronation, and elbow extension. This device
has the capacity to stimulate 12 paralyzed muscles and record MES
from two muscles under voluntary control. Device is controlled
through implanted MES recording electrodes and MES processing
circuitry. The system is driven from an external power and
processing unit, which are connected to a coil that the participant
places on the skin over the implanted device.

Mangold
et al.24

Invasive neuroprosthesis Neuroprosthesis comprising of transcutaneous self-adhesive
electrodes which delivered FES via a stationary stimulation system
and two portable systems (ETHZ- ParaCare FES system and
Complex Motion). The control sensor varied between subjects from a
digital push button switch, EMG signals, and sliding potentiometer
(analogue control).

Memberg
et al.31

Invasive neuroprosthesis An elbow extension neuroprosthesis previously reported by Bryden
et al. (2000).

Taylor et al.32 Invasive neuroprosthesis The Freehand system described in Carroll et al. (2000).
Peckham
et al.33

Invasive neuroprosthesis The Freehand system described in Carroll et al. (2000).

Yu et al.25 Invasive neuroprosthesis A percutaneous intramuscular stimulator restoring elbow and
shoulder functions without stimulating muscles of the hands. The
device comprises of implanted electrodes in the shoulder and elbow
muscles. The device is controlled via a switch on the headrest of the
user’s wheelchair and a position sensor on the contralateral
shoulder. Weak stimulated shoulder movements were compensated
for by adding a forearm orthosis.

Continued
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Table 2 Continued

Authors Type of assistive device Device description

Carroll et al.26 Invasive neuroprosthesis The Freehand system, an implanted 8-channel neuroprosthesis
device, providing unilateral hand grasp and release. The device
comprises of implanted and external components. The
receiver–stimulator, epimysial electrodes, and inter-lead connectors
are implanted internally, whereas the external components are a
controller, a transmitter, and a sensor at the shoulder. The
neuroprosthesis is controlled using contralateral shoulder
movements (either protraction–retraction or elevation–depression).

Bryden et al.34 Invasive neuroprosthesis An elbow extension neuroprosthesis consisting of fully implanted
tricep electrodes. This intervention is implemented as an addition to
the Freehand System. Hand grasp was controlled using a shoulder
or a wrist controller. Stimulation of the triceps for elbow extension
was controlled using a switch or an accelerometer on the user’s
upper arm or applying a constant level of triceps stimulation when
the hand grasp stimulation is active.

Portnova
et al.35

Orthosis A personalized three-dimensional printed wrist-driven orthosis
comprising of 11 parts: hand, forearm, palmar and dorsal pieces,
long and short bars, input link, thumb and finger pieces, and two
finger rings.

Kang et al.36 Orthosis A personalized wrist-driven flexor hinge orthosis (WDFHO) consisting
of a polyethylene forearm and a palmar cuff to grasp objects. The
device stabilizes the index and middle fingers along with the
interphalangeal and metacarpophalangeal joints of the thumb. The
device pushes together the thumb, index, and middle fingers when
the wrist is extended and releases the fingers when the wrist is
flexed.

King et al. 16 Orthosis A lateral key grip orthosis comprising of a flexible cable running
along the anterior surface of the forearm to the palmar region of the
hand, further attaching to a ring around the thumb proximal phalanx.
Tension on the cable pulls the thumb into palmar adduction so that a
grip forms against the lateral region of the proximal or middle
phalanx of the index finger.

Rohm et al.13 Hybrid System A modular hybrid device consisting of a combination of FES with
orthoses and BCI controller. The orthosis has anti-gravity module to
support elbow flexion and extension during stimulation of triceps.
The device comprised of a wrist-stabilizing module to keep the wrist
in neutral position enabling finger flexion. To facilitate the FES, a
personalized neoprene sleeve, with defined electrode positions, was
manufactured. The device was controlled using a motor imagery BCI
and an analogue shoulder position sensor.

Varoto et al.14 Hybrid System A hybrid device comprising of a glove that combines orthosis with
forearm support along with neuromuscular electrical stimulation.
While the elbow dynamic orthosis with forearm support allows elbow
flexion and extension, static orthosis supports the wrist and
neuromuscular electrical stimulation generates grasping function.
The glove with force sensors also allows grasping force feedback via
two user interface modes: visual by light emitting diodes or audio
emitted by buzzer.

Cappello
et al.17

Robots A fabric-based soft robotic glove combined with modular,
independent finger actuators attached by straps, hook, and loop
fasteners. Each actuator is comprised of three fabric layers and two
air-tight bladders between each fabric pocket, one for flexion and
the other for extension. The glove is controlled by a portable and
self-contained control box with three buttons performing a finger
flexion and extension, 3-point pinch, and palmar grasp.

Asai and
Kuroiwa15

Antigravity arm support (i.e. portable spring
balancer (PSB), and mobile arm support

(MAS))

Two devices reported:
(1) A portable spring balancer consisting of three metal parts: an

aluminum tube containing a spring to assist the arm in resisting
gravity; a proximal arm connected to the aluminum tube
allowing vertical movement; and a steel bar connecting the
distal arm assembly to a distal cuff, supporting the arm at the
elbow and wrist.

(2) A mobile arm support consisting of a distal arm assembly, a
proximal arm assembly, a trough, and a bracket. The device
was mounted on the subject’s wheelchair.
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tendon transfer with invasive neuroprostheses to
further improve upper limb function.24,30,32,33

Participants, using invasive neuroprostheses, were able
to manipulate objects with varied size, surface, and
weights.18,20,24,26,29,30,32,33 For example, GRT scores
showed that 92% of participants improved the ability
to manipulate objects,29 participants at least doubled
the number of objects manipulated or tasks per-
formed,30,32,33 and lateral and palmar grasp
improved.33 A study, combining assistive technology
with corrective surgeries, such as arthrodesis, tendon
transfers of muscles, and tendon synchronization,
reported pinch force values at three stages (before inter-
vention, after corrective surgery, and after surgery with
assistive device).30 Pinch force was increased from 4 N
before to 12 N after corrective surgery and then to 19
N with device use, in other words pinch force was
increased by 58% after surgery with device use.30

Increase in pinch force, when using the device, was
also reported in lateral, palmar, and finger grasps.26,32

The range of lateral pinch force with the device was
11.6 N to17 N,22,29,32,33 palmar pinch force was 6.5 N
to 10.4 N,29,32,33 and finger grasp was 14.7 N.32 The
improvement of grasp and release function and strength
of grips contributed to the increased success of the
ADL tasks. ADL tasks, reported in the selected
studies, varied widely, some studies allowed participants
to choose the ADL tasks24,30,32 and others predefined
an extensive list of the tasks.13,15,18,19,22,26,27,33,34 The
results from ADL tests showed that participants experi-
enced reduced disability and increased independence
when using the invasive-neuroprosthesis.
Pinch force in participants increased with the use of

an orthosis, such that in one study pinch force with
an orthosis was 14.3 times greater than without the
device.36 Another study found that an orthosis
increased maximum voluntary contraction (MVC),
resulting in an increase of lateral grip force (the force
ranging between 4.7 N and 22.3 N).16 Only one study
looked at the effect of an orthosis on performing

Table 3 Descriptive summary of study participants in the selected studies. Abbreviations: M, Male; F, Female; NR, Not Reported.

Authors Type of assistive device
Participant number,

Sex

Participant age in
years*

Range (Median)

Time since injury in
years**

Range (Median)
Lesion

at

Thorsen et al.28 Non-invasive
neuroprosthesis

27, NR 18–80 (NR) NR C5–C7

Alon and
McBride18

Non-invasive
neuroprosthesis

7, M 25–46 (37) 3.1–17.3 (11.2) C5–C6

Snoek et al.19 Non-invasive
neuroprosthesis

10, M (8) and F (2) 20–65 (30.5) 0.5–6 (1) C4–C6

Popovic et al.27 Non-invasive
neuroprosthesis

12, M 18–38 (22) 0.25–2 (2) C5–C7

Bockbrader
et al.20

Invasive neuroprosthesis 1, M 27 NR C5

Kilgore et al.29 Invasive neuroprosthesis 12, M (10) and F (2) 26–56 (37.8) 1–21 (3.8) C5–C6
Friedenberg
et al.21

Invasive neuroprosthesis 1, M 27 6 C5–C6

Memberg et al.22 Invasive neuroprosthesis 2, M and F 27 and 48 1.1 and 11 C1–C3
Gan et al.23 Invasive neuroprosthesis 1, M 52 14 C6/C7
Kilgore et al.30 Invasive neuroprosthesis 3, NR 24–43 (34) 1–4 (2) C5–C7
Mangold et al.24 Invasive neuroprosthesis 11, M (9) and F (2) 15–70 (32) 1–62 (1) C4–C7
Memberg et al.31 Invasive neuroprosthesis 10, M (9) and F (1) NR NR C5–C6
Taylor et al.32 Invasive neuroprosthesis 9, M (8) and F (1) NR (Mean = 38.4) NR (Mean = 10.1) C5–C6
Peckham et al.33 Invasive neuroprosthesis 51, M (42) and F (9) 16–57 (32) 1.1–32.2 (4.6) C5–C6
Yu et al.25 Invasive neuroprosthesis 1, M 24 3 C3
Carroll et al.26 Invasive neuroprosthesis 6, M (4) and F (2) 21.9–36 (30.1) 1.2–11.3 (2.7) C5–C6
Bryden et al.34 Invasive neuroprosthesis 4, M 23–48 (33) NR C5–C6
Portnova et al.35 Orthosis 3, M (2) and F (1) 40–65 (54) 16–28 (18.5) C4–C6
Kang et al.36 Orthosis 24, M (22) and F (2) NR (37.1 ± 12.8) + NR (5.6 ± 7.3) + C6–C7
King et al.16 Orthosis 7, M NR 0.5–4 (0.5) C5–C7
Rohm et al.13 Hybrid System 1, M 41 1 C4
Varoto et al.14 Hybrid System 5, NR 29–42 (36) NR C5–C8
Cappello et al.17 Robots 9, M (8) and F (1) 20–68 (53) 0.4–44 (33) C4–C7
Asai and
Kuroiwa15

Antigravity arm support 4, M 15–50 (19) 1.2–0.3 (0.8) C4–C5

* Participant age range indicates the age of participant at the time of recruitment for the study.
** Time since injury indicates the time between injury and recruitment for the study.
+Mean ± SD.
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ADL tasks, and reported that a greater number of tasks
were achieved with the device compared to without.16

Studies on hybrid systems reported successful per-
formance of GRT tasks,13 and increased ability to
manipulate objects using palmar grasp.14

The only study evaluating the antigravity arm
support device on its own showed that the device facili-
tates ADL tasks such as eating.15 A combination of
mobile arm supports with other assistive devices, such
as neuroprostheses, to support the weight of an arm
has been reported but not evaluated on their own.22

Discussion
In this review, we defined a set of inclusion and exclu-
sion criteria to systematically select original research
articles, focusing on the state-of-the-art assistive tech-
nologies, which support and improve function of
impaired upper limbs in cervical SCI populations. The
objectives of the paper are fulfilled by describing the
assistive technologies and the outcome measures used
to assess them.
During study selection, it was noted that a larger

number of recent studies focused on developing
control systems to regulate assistive technologies for
the upper limbs.38–47 Similarly, several studies reported
the use of rehabilitation technologies, such as training
and therapeutic tools to restore function in the upper
limb.48–59 These studies were excluded in this review
paper so that a comprehensive focus could be made
on the efficacy of assistive technologies that offer
ongoing support to the upper limb for restoring func-
tion in people with cervical-level SCI. As a result of
the study selection, the assistive technologies developed,
trialed, or used for restoring upper limb function were
grouped into five categories, namely, neuroprostheses,
orthoses, hybrid systems, robots, and antigravity arm
supports. Some of the technologies described can be
assigned to multiple categories. The Handmaster, for
example, is a combination of a hand orthosis with
surface electrodes and it is categorized under non-inva-
sive neuroprosthesis.18,19 One reason for placing the
Handmaster in the non-invasive neuroprosthesis cat-
egory is because the studies investigated the neuro-
prosthesis more than the orthotic part of the device.
The same reasoning was used for other devices that
spanned categories, such as antigravity arm support
devices and neuroprosthesis.15,22 However, devices
with multiple technologies, such as those reported
in,13,14 are classified as hybrid systems. A survey
study, involving participants with SCI, reported that
many of the participants were not aware of the
current assistive technologies, hence they were not

aware of available options that could improve their
independence and quality of life.60 It is possible that
the lack of clear and accessible categories of assistive
technologies for restoring the upper limb functions
could have been a factor.
The incidences of SCIs vary across countries, regions,

and cities. A study reviewing global prevalence of SCI
highlighted that the highest SCI prevalence was in the
US (Alaska), while the lowest prevalence was in
France (Rhone-Alpes region).61 Globally, there was a
greater percentage of males with SCI than females.61

The demographics of recruited participants in the
selected studies showed a high male-to-female ratio,
such as 11:1, 9:1, and 8:1,31,32,36 and a wide age range
between 19 and 54 years old. Others recruited either
one participant or a relatively lower male-to-female
ratio, such as a ratio below 5:1. In the UK, for the
years between 1985 and 1988, male-to-female ratio
for people, sustaining a spinal cord injury, was 3.8:1
with an average age of 35.5 and 46 years old for
males and females, respectively.62 No more recent con-
sensus about the epidemiology of SCI in the UK was
found, however, the demographics of SCI patients in
the developed countries is believed to have changed in
terms of age more than sex over the last 20 to 40
years.6,61,63,64 In the US, for the years between 1970
and 2015, the average age at injury increased from 29
to 43 years.6 Similarly, in Scotland, for the years
between 1994 and 2013, there was a notable increase
of new SCI in the over 50-year old population and
those with high level (C1–C4) tetraplegia.63 With the
exception of Japan, where SCI patients in their 70s
are the largest age group,65 a larger percentage of SCI
patients are under the age of 30 in most countries.61

The assistive technologies were population dependent
and inclusion criteria for participant recruitment was
focused more on injury level than age of participants
or time since injury. Two of the selected papers
recruited participants with C3 or higher levels of
injury and the assistive technologies implemented
were invasive neuroprostheses.22,25 Participants in
these two studies had limited to no voluntary contrac-
tion in the upper or lower limbs, hence it is possible
that the decision on the type of device for this popu-
lation was based on practicality for device operations.
Similarly, participants in studies investigated orthotic
devices for SCI had the ability to extend their wrist
against gravity.16,35,36 It would be beneficial for future
studies to outline reasons behind opting to use an assis-
tive device, so that a library of different types of assis-
tive devices and their suitability for different SCI
populations can be established.
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Prior to adopting an assistive device, SCI patients go
through a rehabilitation process which commences in
the acute care setting and lasts for 6 to 12 weeks,
during this time the focus is on patient’s neurological
stability status, indirect complications, such as pressure
ulcers, maintaining range of motion and preventing
muscle atrophy.66 Early rehabilitation is believed to
prevent the development of joint contractures,
especially contractures of elbow flexion and supina-
tion.67 Therefore, identifying a suitable assistive tech-
nology to meet the needs of SCI patients at the early
rehabilitation stage might improve the efficacy of the
selected assistive device, hence enhance the patients’
quality of life. The literature showed limited focus on
the relationship between the efficacy of assistive tech-
nologies and time since injury. It was reported that
assistive technologies built for functional purposes
have therapeutic effects, however, small to no signifi-
cant correlation was reported between time since
injury and functional outcomes as a result of the
device use.28 The selected literature assessed functional
capabilities of the assistive devices through clinical
outcome measures.
The outcome measures for assessing the assistive

technologies were in the activity domain of the ICF.
A limited number of the selected studies covered all
three domains of the ICF; however, all covered the
activity domain. All studies, except for three, followed
the outcome measures identified by the Spinal Cord
Injury Research Evidence (SCIRE) to assess the effect
of device use on activities.14,21,34 One of the three
studies, investigating a hybrid system, assessed shoulder
and scapular movements when using the device through
the measurement of rotational speed, real-time angular
variation, and real-time force. Although these measure-
ments indicated an increased palmar grasp, the study
did not clearly report the translation of the measure-
ments and their relevance to ICF activity domain.14

Similarly, a study on invasive neuroprosthesis reported
an improved volitional control across a continuous
wrist angle but did not test the effect of this increased
ability on participant’s activities.21 The third study
focused on elbow extension using invasive neuroprosth-
esis, developed new evaluations to assess the device
because at the time the existing tests did not evaluate
specific functions.34 They reported that specific infor-
mation (i.e. interval data) to augment the muscle
grade is needed because few gradations exist for a
muscle that achieves full ROM and takes resistance.
To obtain interval instead of ordinal data, they devel-
oped a technique of measuring the weight against
gravity when participants were extending their elbows.

Grip or pinch strength measurement was the most fre-
quently used outcome measure after ADL tasks.
Interestingly, this finding aligns with the choices pro-
fessional practitioners make when selecting an
outcome measure from SCIRE toolkit during their
practice.68 Professionals tend to choose the SCIM and
FIM for assessing self-care and daily living, the GRT
for assessing the upper limb functions, and the
Quebec user evaluation of satisfaction and predisposi-
tion assessment for assessing the effect of assistive tech-
nology. The outcome measures reported in this review
included the FIM, SCIM, GRT and Graded
Redefined Assessment of Strength, Sensibility, and
Prehension (GRASSP) and these were reported to be
reliable and valid.69–71 Whereas the Quadriplegia
Index of Function (QIF) is suggested for use only in
non-ambulatory tetraplegia and its validity has not
been investigated sufficiently.69 It is important to note
that, unlike the FIM, the SCIM, GRT, GRASSP, and
QIF were specifically designed for the SCI population.
The FIM was designed to assess a broad range of dis-
abling medical conditions, hence it might not specifi-
cally reflect on measures for SCI population. In
addition, the selected papers in this review were
limited by the lack of assessment on the efficacy of
the assistive technologies during mobility. It is essential
for future studies to assess assistive devices by looking
at function, activity, and independence in the context
of mobility from the ICF.
There are challenges and limitations that come with

utilizing assistive technologies for people with SCI.
Loss of proprioception, for example, can make it chal-
lenging for people with SCI to adopt the aforemen-
tioned assistive technologies.72 Other disadvantages of
assistive technologies, such as invasive neuroprostheses,
include risks associated with surgical operations and
potentially additional surgeries to reposition migrated
electrodes or replace failed hardware components.
However, compared to non-invasive neuroprostheses’
stronger forces and better muscle selectivity can be
achieved with invasive neuroprostheses because the
stimulation electrode can be implanted closer to the
motor nerve and in deeper muscles.73–75 In addition,
the orthosis, robots, hybrid systems, and antigravity
arm supports are advantageous because of their non-
invasive nature; however, they are disadvantaged by
the difficulties with donning, doffing, and achieving
selective muscle stimulation.76 In addition to the
generic disadvantages of these assistive devices, the
technologies reported in the selected literature were
limited, including the fabric-based soft robotic glove
which could not generate adequate pinch grasp
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between the thumb and index finger due to a deficiency
in their actuator design.17 Furthermore, a study on
grasp coordination with an invasive neuroprosthesis
did not have an electrode to stimulate thenar muscle;
therefore, they could not accurately measure the
maximal palmar, lateral, and tip-to-tip grip force.20 It
is worth mentioning that achieving the upper limb
movements with assistive devices alone can be challen-
ging; therefore, a number of the studies reported a com-
bination of surgical and technological interventions for
improving upper limb functions.24,30,32,33 For example,
corrective surgeries, such as tendon transfer, were per-
formed to augment the system.32 A study reported
that smaller objects, such as pegs and wooden blocks,
could be manipulated better with an active tenodesis
grasp rather than with a transcutaneous functional elec-
trical stimulation.24 This is because the position of the
object within the hand can be corrected more effectively
and there is no time required for the interaction with
the device. However, the electrical stimulation is advan-
tageous and sometimes necessary to manipulate heavier
or slippery objects. Assistive technologies, combined
with corrective surgeries, could provide higher degrees
of upper limb functionalities in tetraplegia.33,73

Further research is needed to investigate the efficacy
of assistive technologies when they are integrated with
corrective surgeries, such as tendon77 or nerve
transfer.78

In conclusion, here we categorized the assistive tech-
nologies into five main cohorts, hence making the evi-
dence base of current technology more accessible and
identifiable for clinicians, users, researchers, and
readers. There is evidence that the assistive technol-
ogies reported in this study can help people living
with cervical SCI. Compared to the other technol-
ogies, a larger number of studies focused on the devel-
opment of neuroprostheses two decades ago which was
followed by much less interests in recent years. As a
result, the application of neuroprostheses has been
more extensively studied recently, hence future
research is equipped to focus on developing user–
control systems. There is an imbalance on how the effi-
cacy of assistive technologies is assessed in relation to
the three domains of the ICF. We recommend future
studies on assistive technologies to follow the
outcome measures identified by SCIRE and, when
possible, equally address the three domains of the
ICF in order to better quantify the effectiveness of
assistive technologies. For example, future studies
could focus on developing and following a method-
ology that would facilitate comparisons between
different assistive devices.

Disclaimer statements
Contributors None.

Funding This work was supported by Engineering and
Physical Sciences Research Council: [Grant Number
EP/R035091/1].

Conflicts of interest None.

ORCID
Rosti Readioff http://orcid.org/0000-0003-4887-
9635
Zaha Kamran Siddiqui http://orcid.org/0000-0001-
9421-877X
Edward K. Chadwick http://orcid.org/0000-0003-
0877-5110

References
1 NHS England. NHS standard contract for spinal cord injuries (all
ages). Redditch: NHS England; 2013. p. 1–70.

2 Barr F. Preserving and developing the national spinal cord injury
service: phase 2 – seeking the evidence. Milton Keynes: Spinal
Injuries Association; 2009. p. 1–32.

3 Gall A, Turner-Stokes L. Chronic spinal cord injury: management
of patients in acute hospital settings. Clin Med (Lond). 2008 Feb;8
(1):70–4.

4 Lasfargues JE, Custis D, Morrone F, Cars Well J, Nguyen T. A
model for estimating spinal cord injury prevalence in the United
States. Spinal Cord 1995 Feb;33(2):62–8.

5 Jain NB, Ayers GD, Peterson EN, Harris MB, Morse L,
O’Connor KC, et al. Traumatic spinal cord injury in the United
States, 1993–2012. JAMA 2015 Jun 9;313(22):2236–43.

6 National Spinal Cord Injury Statistical Center. Facts and figures
at a glance. [Internet]. University of Alabama at Birmingham;
2020 [cited 2020 Nov 15]. Available from https://www.nscisc.
uab.edu/Public/Facts%20and%20Figures%202020.pdf.

7 Zimmer MB, Nantwi K, Goshgarian HG. Effect of spinal cord
injury on the respiratory system: basic research and current clini-
cal treatment options. J Spinal Cord Med. 2007;30(4):319–30.

8 Graupensperger S, Sweet SN, Evans MB. Multimorbidity of over-
weight and obesity alongside anxiety and depressive disorders in
individuals with spinal cord injury. J Spinal Cord Med. 2018
Sep 5: 1–9. doi:10.1080/10790268.2018.1507801.

9 Noonan VK, Fallah N, Park SE, Dumont FS, Leblond J, Cobb J,
et al. Health care utilization in persons with traumatic spinal cord
injury: the importance of multimorbidity and the impact on
patient outcomes. Top Spinal Cord Inj Rehabil. 2014;20(4):
289–301.

10 Simpson LA, Eng JJ, Hsieh JTC, Wolfe DL. The health and life
priorities of individuals with spinal cord injury: A systematic
review. J Neurotrauma 2012 May 20;29(8):1548–55.

11 House JH, Gwathmey FW, Lundsgaard DK. Restoration of
strong grasp and lateral pinch in tetraplegia due to cervical
spinal cord injury. J Hand Surg [Am]. 1976 Sep 1;1(2):152–9.

12 Kamper DG. Restoration of hand function in stroke and spinal
cord injury. In: Reinkensmeyer DJ, Dietz V, (ed.)
Neurorehabilitation technology. Cham: Springer International
Publishing; 2016. p. 311–31.

13 Rohm M, Schneiders M, Muller C, Kreilinger A, Kaiser V,
Muller-Putz GR, et al. Hybrid brain-computer interfaces and
hybrid neuroprostheses for restoration of upper limb functions
in individuals with high-level spinal cord injury. Artif Intell
Med. 2013 Oct;59(2):133–42.

14 Varoto R, Barbarini ES, Cliquet AJ. A hybrid system for upper
limb movement restoration in quadriplegics. Artif Organs. 2008
Sep;32(9):725–9.

15 Asai N, Kuroiwa S. Comparison of portable spring balancer with
mobile arm support in aiding self-feeding in quadriplegic patients

Readioff et al. Use and evaluation of assistive technologies for upper limb function in tetraplegia

The Journal of Spinal Cord Medicine 2022 VOL. 45 NO. 6818

http://orcid.org/0000-0003-4887-9635
http://orcid.org/0000-0003-4887-9635
http://orcid.org/0000-0001-9421-877X
http://orcid.org/0000-0001-9421-877X
http://orcid.org/0000-0003-0877-5110
http://orcid.org/0000-0003-0877-5110
https://www.nscisc.uab.edu/Public/Facts%20and%20Figures%202020.pdf
https://www.nscisc.uab.edu/Public/Facts%20and%20Figures%202020.pdf
https://doi.org/10.1080/10790268.2018.1507801


with high cervical injuries-rate of adaptation to both devices. J
Phys Ther Sci 1999;11(1):11–7.

16 KingM, Verkaaik J, Nicholls A, Collins F. Awrist extension oper-
ated lateral key grip orthosis for people with tetraplegia. Technol
Disabil. 2009;21:19–23.

17 Cappello L, Meyer JT, Galloway KC, Peisner JD, Granberry R,
Wagner DA, et al. Assisting hand function after spinal cord
injury with a fabric-based soft robotic glove. J Neuroeng
Rehabil. 2018 Jun 28;15(1):59.

18 Alon G, McBride K. Persons with C5 or C6 tetraplegia achieve
selected functional gains using a neuroprosthesis. Arch Phys
Med Rehabil. 2003 Jan;84(1):119–24.

19 Snoek GJ, IJzerman MJ, in ‘t Groen FA, Stoffers TS, Zilvold G.
Use of the NESS handmaster to restore handfunction in tetraple-
gia: clinical experiences in ten patients. Spinal Cord 2000 Apr;38
(4):244–9.

20 Bockbrader M, Annetta N, Friedenberg D, Schwemmer M,
Skomrock N, Colachis S, et al. Clinically significant gains in
skilful grasp coordination by an individual with tetraplegia
using an implanted brain-computer interface with forearm trans-
cutaneous muscle stimulation. Arch Phys Med Rehabil. 2019;100
(7):1201–17.

21 Friedenberg DA, Schwemmer MA, Landgraf AJ, Annetta NV,
Bockbrader MA, Bouton CE, et al. Neuroprosthetic-enabled
control of graded arm muscle contraction in a paralyzed
human. Sci Rep. 2017 Aug 21;7(1):8386.

22 Memberg WD, Polasek KH, Hart RL, Bryden AM, Kilgore KL,
Nemunaitis GA, et al. Implanted neuroprosthesis for restoring
arm and hand function in people with high level tetraplegia.
Arch Phys Med Rehabil. 2014 Jun;95(6):1201–11.e1.

23 Gan LS, Ravid E, Kowalczewski JA, Olson JL, Morhart M,
Prochazka A. First permanent implant of nerve stimulation
leads activated by surface electrodes, enabling hand grasp and
release: the stimulus router neuroprosthesis. Neurorehabil
Neural Repair 2012 May;26(4):335–43.

24 Mangold S, Keller T, Curt A, Dietz V. Transcutaneous functional
electrical stimulation for grasping in subjects with cervical spinal
cord injury. Spinal Cord 2005 Jan;43(1):1–13.

25 Yu DT, Kirsch RF, Bryden AM, Memberg WD, Acosta AM. A
neuroprosthesis for high tetraplegia. J Spinal Cord Med. 2001;
24(2):109–13.

26 Carroll S, Cooper C, Brown D, Sormann G, Flood S, Denison M.
Australian experience with the Freehand system for restoring
grasp in quadriplegia. Aust N Z J Surg. 2000 Aug;70(8):563–8.

27 Popovic D, Stojanovic A, Pjanovic A, Radosavljevic S, Popovic
M, Jovic S, et al. Clinical evaluation of the bionic glove. Arch
Phys Med Rehabil. 1999 Mar;80(3):299–304.

28 Thorsen R, Dalla Costa D, Chiaramonte S, Binda L, Beghi E,
Redaelli T, et al. A noninvasive neuroprosthesis augments hand
grasp force in individuals with cervical spinal cord injury: the
functional and therapeutic effects. Sci World J. 2013;2013:836959.

29 Kilgore KL, Bryden A, Keith MW, Hoyen HA, Hart RL,
Nemunaitis GA, et al. Evolution of neuroprosthetic approaches
to restoration of upper extremity function in spinal cord injury.
Top Spinal Cord Inj Rehabil. 2018;24(3):252–64.

30 Kilgore KL, Hoyen HA, Bryden AM, Hart RL, Keith MW,
Peckham PH. An implanted upper-extremity neuroprosthesis
using myoelectric control. J Hand Surg Am. 2008 Apr;33(4):
539–50.

31 MembergWD, Crago PE, KeithMW. Restoration of elbow exten-
sion via functional electrical stimulation in individuals with tetra-
plegia. J Rehabil Res Dev. 2003 Dec;40(6):477–86.

32 Taylor P, Esnouf J, Hobby J. The functional impact of the free-
hand system on tetraplegic hand function, clinical results. Spinal
Cord 2002 Nov;40(11):560–6.

33 Peckham PH, Keith MW, Kilgore KL, Grill JH, Wuolle KS,
Thrope GB, et al. Efficacy of an implanted neuroprosthesis for
restoring hand grasp in tetraplegia: a multicenter study. Arch
Phys Med Rehabil. 2001 Oct;82(10):1380–8.

34 Bryden AM, Memberg WD, Crago PE, Polacek L. Electrically
stimulated elbow extension in persons with C5/C6 tetraplegia: a
functional and physiological evaluation. Arch Phys Med
Rehabil. 2000;81(1):80–8.

35 Portnova AA, Mukherjee G, Peters KM, Yamane A, Steele KM.
Design of a 3D-printed, open-source wrist-driven orthosis for
individuals with spinal cord injury. PLoS One 2018;13(2):
e0193106.

36 Kang Y-S, Park Y-G, Lee B-S, Park H-S. Biomechanical evalu-
ation of wrist-driven flexor hinge orthosis in persons with spinal
cord injury. J Rehabil Res Dev. 2013;50(8):1129–38.

37 World Health Organization. International classification of func-
tioning, disability and health (ICF). Geneva: World Health
Organization; 2001.

38 Young D,Willett F, MembergWD,Murphy B, Rezaii P, Walter B,
et al. Closed-loop cortical control of virtual reach and posture
using Cartesian and joint velocity commands. J Neural Eng.
2019;16(2):026011.

39 Annetta NV, Friend J, Schimmoeller A, Buck VS, Friedenberg
DA, Bouton CE, et al. A high definition noninvasive neuromuscu-
lar electrical stimulation system for cortical control of combina-
torial rotary hand movements in a human with tetraplegia.
IEEE Trans Biomed Eng. 2019;66(4):910–9.

40 Tigra W, Navarro B, Cherubini A, Gorron X, Gelis A, Fattal C,
et al. A novel EMG interface for individuals with tetraplegia to
pilot robot hand grasping. IEEE Trans Neural Syst Rehabil
Eng. 2018 Feb;26(2):291–8.

41 Skomrock ND, Schwemmer MA, Ting JE, Trivedi HR, Sharma
G, Bockbrader MA, et al. A characterization of brain-computer
interface performance trade-offs using support vector machines
and deep neural networks to decode movement intent. Front
Neurosci. 2018;12:763.

42 Colachis SC, Bockbrader MA, Zhang M, Friedenberg DA,
Annetta NV, Schwemmer MA, et al. Dexterous control of seven
functional hand movements using cortically-controlled transcu-
taneous muscle stimulation in a person with tetraplegia. Front
Neurosci. 2018;12:208.

43 Andreasen Struijk LNS, Egsgaard LL, Lontis R, Gaihede M,
Bentsen B. Wireless intraoral tongue control of an assistive
robotic arm for individuals with tetraplegia. J Neuroeng
Rehabil. 2017 Nov 6;14(1):110.

44 Libedinsky C, So R, Xu Z, Kyar TK, Ho D, Lim C, et al.
Independent mobility achieved through a wireless brain-machine
interface. PLos One 2016 Nov 1;11(11):e0165773.

45 Wang W, Collinger JL, Degenhart AD, Tyler-Kabara EC,
Schwartz AB, Moran DW, et al. An electrocorticographic brain
interface in an individual with tetraplegia. PLoS ONE 2013;8
(2):e55344.

46 Ortner R, Allison BZ, Korisek G, Gaggl H, Pfurtscheller G. An
SSVEP BCI to control a hand orthosis for persons with tetraple-
gia. IEEE Trans Neural Syst Rehabil Eng. 2011 Feb;19(1):1–5.

47 Chadwick EK, Blana D, Simeral JD, Lambrecht J, Kim SP,
Cornwell AS, et al. Continuous neuronal ensemble control of
simulated arm reaching by a human with tetraplegia. J Neural
Eng. 2011 Jun;8(3):034003.

48 Rakos M, Freudenschuss B, Girsch W, Hofer C, Kaus J, Meiners
T, et al. Electromyogram-controlled functional electrical stimu-
lation for treatment of the paralyzed upper extremity. Artif
Organs 1999 May;23(5):466–9.

49 Popovic DB, Popovic MB, Sinkjaer T. Neurorehabilitation of
upper extremities in humans with sensory-motor impairment.
Neuromodulation 2002 Jan;5(1):54–66.

50 Popovic MR, Thrasher TA, Adams ME, Takes V, Zivanovic V,
Tonack MI. Functional electrical therapy: retraining grasping in
spinal cord injury. Spinal Cord 2006 Mar;44(3):143–51.

51 Kowalczewski J, Chong SL, GaleaM, Prochazka A. In-home tele-
rehabilitation improves tetraplegic hand function. Neurorehabil
Neural Repair. 2011 Jun;25(5):412–22.

52 Popovic MR, Kapadia N, Zivanovic V, Furlan JC, Craven BC,
McGillivray C. Functional electrical stimulation therapy of volun-
tary grasping versus only conventional rehabilitation for patients
with subacute incomplete tetraplegia: a randomized clinical trial.
Neurorehabil Neural Repair 2011 Jun;25(5):433–42.

53 Rudhe C, Albisser U, Starkey ML, Curt A, Bolliger M. Reliability
of movement workspace measurements in a passive arm orthosis
used in spinal cord injury rehabilitation. J Neuroeng Rehabil.
2012 Jun 9;9(1):37.

Readioff et al. Use and evaluation of assistive technologies for upper limb function in tetraplegia

The Journal of Spinal Cord Medicine 2022 VOL. 45 NO. 6 819



54 Cortes M, Elder J, Rykman A, Murray L, Avedissian M, Stampas
A, et al. Improved motor performance in chronic spinal cord
injury following upper-limb robotic training. NeuroRehabil.
2013;33(1):57–65.

55 Hortal E, Planelles D, Resquin F, Climent JM, Azorín JM,
Pons JL. Using a brain-machine interface to control a hybrid
upper limb exoskeleton during rehabilitation of patients with
neurological conditions. J Neuroeng Rehabil. 2015 Oct 17;12
(1):92.

56 Francisco GE, Yozbatiran N, Berliner J, O’Malley MK, Pehlivan
AU, Kadivar Z, et al. Robot-assisted training of arm and hand
movement shows functional improvements for incomplete cervical
spinal cord injury. Am J Phys Med Rehabil. 2017 Oct;96(10 Suppl
1):S171–7.

57 Iwahashi K, Hayashi T, Watanabe R, Nishimura A, Ueta T,
Maeda T, et al. Effects of orthotic therapeutic electrical stimu-
lation in the treatment of patients with paresis associated with
acute cervical spinal cord injury: a randomized control trial.
Spinal Cord 2017;55(12):1066–70.

58 Lu Z, Tong K-Y, Shin H, Stampas A, Zhou P. Robotic hand-
assisted training for spinal cord injury driven by myoelectric
pattern recognition: a case report. Am J Phys Med Rehabil.
2017 Oct;96(10 Suppl 1):S146–9.

59 Freyvert Y, Yong NA, Morikawa E, Zdunowski S, Sarino ME,
Gerasimenko Y, et al. Engaging cervical spinal circuitry with
non-invasive spinal stimulation and buspirone to restore hand
function in chronic motor complete patients. Sci Rep. 2018;8(1):
15546.

60 Collinger JL, Boninger ML, Bruns TM, Curley K, Wang W,
Weber DJ. Functional priorities, assistive technology, and brain-
computer interfaces after spinal cord injury. J Rehabil Res Dev
2013 Apr;50(2):145–60.

61 Singh A, Tetreault L, Kalsi-Ryan S, Nouri A, Fehlings MG.
Global prevalence and incidence of traumatic spinal cord injury.
Clin Epidemiol. 2014 Sep 23;6:309–31.

62 Aung TS, el Masry WS. Audit of a British centre for spinal injury.
Spinal Cord 1997 Mar;35(3):147–50.

63 McCaughey EJ, Purcell M, McLean AN, Fraser MH, Bewick A,
Borotkanics RJ, et al. Changing demographics of spinal cord
injury over a 20-year period: a longitudinal population-based
study in Scotland. Spinal Cord 2016 Apr;54(4):270–6.

64 DeVivo MJ. Epidemiology of traumatic spinal cord injury: trends
and future implications. Spinal Cord 2012 May;50(5):365–72.

65 Miyakoshi N, Suda K, Kudo D, Sakai H, Nakagawa Y, Mikami
Y, et al. A nationwide survey on the incidence and characteristics

of traumatic spinal cord injury in Japan in 2018. Spinal Cord 2020
Aug 11. doi:10.1038/s41393-020-00533-0.
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