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Genetic Predisposition Impacts 
Clinical Changes in a Lifestyle 
Coaching Program
Niha Zubair1, Matthew P. Conomos1,2, Leroy Hood3,4, Gilbert S. Omenn5, Nathan D. Price3, 
Bonnie J. Spring6, Andrew T. Magis1 & Jennifer C. Lovejoy1,3

Both genetic and lifestyle factors contribute to an individual’s disease risk, suggesting a multi-omic 
approach is essential for personalized prevention. Studies have examined the effectiveness of lifestyle 
coaching on clinical outcomes, however, little is known about the impact of genetic predisposition on 
the response to lifestyle coaching. Here we report on the results of a real-world observational study 
in 2531 participants enrolled in a commercial “Scientific Wellness” program, which combines multi-
omic data with personalized, telephonic lifestyle coaching. Specifically, we examined: 1) the impact 
of this program on 55 clinical markers and 2) the effect of genetic predisposition on these clinical 
changes. We identified sustained improvements in clinical markers related to cardiometabolic risk, 
inflammation, nutrition, and anthropometrics. Notably, improvements in HbA1c were akin to those 
observed in landmark trials. Furthermore, genetic markers were associated with longitudinal changes 
in clinical markers. For example, individuals with genetic predisposition for higher LDL-C had a lesser 
decrease in LDL-C on average than those with genetic predisposition for average LDL-C. Overall, these 
results suggest that a program combining multi-omic data with lifestyle coaching produces clinically 
meaningful improvements, and that genetic predisposition impacts clinical responses to lifestyle 
change.

Each individual has a unique and complex set of genetic, lifestyle, and environmental factors that impact clinical 
biomarkers and contribute to the manifestation of common conditions such as heart disease, diabetes, obesity, 
and hypertension. For this reason, a systems-based approach to quantifying wellness and detecting transitions to 
disease is well suited for prevention of chronic conditions common to modernized societies.

While there is strong scientific interest for using multi-omic data to prevent chronic diseases related to life-
style and behavior, to date little value has been demonstrated for consumers or patients. For example, some 
studies have shown that simply receiving genetic information about one’s risk for chronic diseases does not lead 
to behavior change or actual risk reduction1, although more recent studies including an updated meta-analysis 
show modest behavior changes resulting from genetic information2,3. In addition, some scientists and physicians 
are understandably critical of providing genetic information in the absence of measuring the relevant clinical 
markers.

For some disease phenotypes, the relative contributions of genetics and lifestyle have been explored. One 
recent study found that a polygenic risk score and a lifestyle risk score had independent and additive effects on 
cardiovascular outcomes4. Because of the important effects of lifestyle on chronic disease risk, studies have also 
examined the effectiveness of health coaching on promoting clinical changes. Generally, these studies have found 
lifestyle coaching to be beneficial5,6. Furthermore, while there is some evidence that genetic predisposition has an 
impact on clinical response7,8, much less is known about the role of genetics in determining response to lifestyle 
change, supporting the need for further study.
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To address these gaps, we developed a systems-based approach, “Scientific Wellness”, which combines genetic 
and clinical data with lifestyle coaching. For each individual, we generate personal, dense, dynamic data (PD3) 
clouds, which can aid in identifying unique actionable possibilities to optimize wellness and avoid disease. A 
critical component of Scientific Wellness is regular interaction with a registered dietitian or other allied health-
care provider for education and behavior modification. We previously published a pilot study that established the 
feasibility and potential clinical impact of this approach9.

Here we report on the results of a real-world observational study, using longitudinal blood, saliva, and anthro-
pometric data gathered from 2531 participants in the commercial Scientific Wellness program (Arivale, Inc). We 
quantify the average change of each clinical marker for participants in their first year of the program, both in the 
population as a whole, and in clinically-relevant strata. For several clinical markers, we also examine the relation-
ship between genetic predisposition and baseline values. Finally, we estimate the impact of genetic predisposition 
on changes in these clinical markers during the first year of the program.

Results
The study cohort had a mean age of 48 years (SD = 12), approximately 60% were female, and 79% were White, 9% 
Asian, 4% Hispanic, and 2% Black. The number of participants with longitudinal observations for each clinical 
marker is shown in Table 1. The average time between measurements for blood lab data was 179 days (SD = 49), 
blood pressure 142 days (SD = 81), salivary cortisol 307 days (SD = 95), waist circumference 102 days (SD = 81), 
and weight 9 days (SD = 28).

In total, 55 clinical markers were analyzed. At baseline and latest measurements, population means, SDs, and 
% of participants out of range (OOR) were recorded (Table 1 and Supplementary Table 1).

Longitudinal Changes.  We estimated 6- and 12-month changes for the average participant, adjusted for 
confounding effects; we refer to these as “adjusted changes” throughout. These adjusted changes were estimated 
for the entire participant population, as well as for strata defined by baseline reference ranges (‘normal at base-
line’, ‘low at baseline’, and ‘high at baseline’) when available and with sufficient sample size (Fig. 1, Table 2 and 
Supplementary Table 2).

There was evidence of sustained improvements in clinical markers related to cardiometabolic risk, inflamma-
tion, nutrition, and anthropometrics. Several clinical markers, including triglycerides, gamma-glutamyl trans-
peptidase (GGT), hemoglobin A1c (HbA1c), omega-3 index, vitamin-D, waist circumference, and weight, had 
improvements in the entire population as well as in each baseline strata. Some of these clinical markers, such as 
HbA1c (Fig. 1a,b), had improvements from baseline to 6 months as well as from 6 to 12 months, while others, 
such as Vitamin D (Fig. 1c,d), had improvements from baseline at both 6 and 12 months, but remained stable 
between 6 and 12 months.

Other clinical markers, such as HDL-C, homocysteine, and insulin, showed improvements in the baseline 
OOR strata, but showed no evidence of change in the baseline normal strata. When considering the entire popu-
lation, HDL-C showed no evidence of change, while homocysteine (Fig. 1e,f), showed improvements.

Lastly, markers such as LDL-C, glucose, hs-CRP, and diastolic and systolic blood pressure, had improvements 
in the baseline OOR strata, but had worsening in the normal strata. This pattern of changes may be indicative of 
regression to the mean effects arising due to measurement variability, along with using strata defined by baseline 
observations of the outcome variable10. Regression to the mean leads to biased overestimates of changes in strata 
analyses; however, it does not bias estimates of changes in the entire population, for which some of these markers 
showed improvements, such as LDL-C (Fig. 1g,h) and diastolic and systolic blood pressure.

Phenotypic Variation in Baseline Measures Explained by Genetic Markers.  Associations were rep-
licated between 11 of 13 genetic markers tested and the baseline measurements of clinical markers with which 
they were expected to be correlated. The most informative polygenic scores (PGSs) were for low-density lipopro-
tein cholesterol or LDL-C (11.1% variation explained), total cholesterol (8.7%), high-density lipoprotein choles-
terol or HDL-C (6.9%), and triglycerides (3.9%). Compared to participants with LDL-C PGS in the second or 
third quartile (Q2/Q3) of the population (i.e. genetic predisposition for average LDL-C), participants with LDL-C 
PGS in the first quartile (Q1) of the population (genetic predisposition for lower LDL-C) had adjusted baseline 
LDL-C that was 15.7 mg/dL lower on average. Conversely, participants with LDL-C PGS in the fourth quartile 
(Q4) of the population (genetic predisposition for higher LDL-C) had adjusted baseline LDL-C that was 13.7 mg/
dL higher on average.

The most informative single nucleotide polymorphisms (SNPs) were rs174537 (13.8% variation explained for 
arachidonic acid and 1.8% for EPA) and rs4588 (1.5% variation explained for vitamin D). Compared to partici-
pants with the GG genotype at rs4588, participants with the GT and TT genotypes had adjusted baseline vitamin 
D that was 1.8 ng/mL lower and 6.0 ng/mL lower on average, respectively. The percent of variation explained for 
PGS and SNPs used in this study were comparable to the original studies11,12. The partial r2 and estimated effect 
sizes for each clinical-genetic marker pair tested are presented in Table 3 and Supplementary Table 3.

Effect of Genetics on Longitudinal Changes.  The SNPs with the strongest genetic effects on longitudinal 
changes of associated clinical markers were the same SNPs that were most informative for baseline levels of those 
clinical markers (Table 3 and Supplementary Table 3). The G allele of rs174537 was additively associated with 
higher baseline levels of both arachidonic acid and EPA among participants in the program. Interestingly, having 
more copies of the G allele was associated with a greater increase of arachidonic acid through the course of the 
program (0.3% by wt. for GT vs TT, and 0.6% by wt. for GG vs. TT), but no difference in change of EPA.

We found similar longitudinal effects on differential change of clinical markers for the lipid PGSs (Table 3 and 
Supplementary Table 3). Adjusting for baseline LDL-C, those with an LDL-C PGS in Q1 (predisposed to lower/
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Clinical Markera Nb
Mean (SD) 
Baselinec

Mean (SD) 
Latestd

% OOR 
Baselinee

% OOR 
Latestf

Δ 
OORg

Cardiovascular Markers
HDL-C, mg/dL 1809 63.2 (19.2) 63.0 (18.9) 7.9% 7.9% 0.0%
HDL particle number, μmol/L 1371 34.3 (6.0) 34.0 (5.9) 27.0% 28.4% 1.4%
Homocysteine, μmol/L 1572 10.3 (3.2) 9.5 (2.6) 7.8% 3.1% −4.7%
LDL-C, mg/dL 1801 116.6 (33.5) 115.0 (32.0) 68.5% 67.6% −0.9%
LDL particle number, nmol/L 1371 1315.2 (464.6) 1306.4 (459.2) 73.8% 73.8% 0.0%
LDL size, nm 1365 21.2 (0.5) 21.2 (0.5) 12.9% 10.5% −2.3%
LDL small particle number, nmol/L 1371 459.3 (340.9) 439.5 (330.8) 33.5% 31.0% −2.5%
Oxidized LDL cholesterol, U/L 1055 48.0 (15.9) 45.2 (14.5) 23.5% 16.6% −6.9%
Total cholesterol, mg/dL 1809 200.1 (37.2) 197.2 (36.2) 47.5% 44.7% −2.8%
Triglycerides, mg/dL 1809 101.6 (55.0) 95.7 (50.2) 13.5% 11.6% −2.0%
Insulin Resistance Markers
Adiponectin, μg/mL 1618 8.8 (6.9) 8.6 (6.1) NA NA NA
Gamma-glutamyl transpeptidase (GGT), U/L 1946 23.3 (20.0) 21.2 (18.0) 4.2% 3.0% −1.2%
Glucose, mg/dL 1990 91.8 (10.0) 91.8 (10.3) 15.9% 17.2% 1.3%
Hemoglobin A1c, % 1992 5.5 (0.4) 5.4 (0.4) 27.6% 22.6% −4.9%
HOMA-IR 1990 2.4 (2.8) 2.2 (2.0) NA NA NA
Insulin, μIU/mL 1989 10.1 (8.9) 9.3 (7.0) 5.6% 6.0% 0.4%
Inflammatory Markers
hsCRP, mg/L 1584 2.6 (5.8) 2.2 (3.1) 23.3% 21.3% −2.0%
IL-6, pg/mL 816 2.6 (22.2) 2.9 (23.8) 1.6% 1.5% −0.1%
IL-8, pg/mL 817 14.3 (19.6) 12.9 (27.4) 2.4% 1.2% −1.2%
TNF-alpha, pg/mL 815 1.1 (6.2) 1.7 (15.3) 2.0% 1.6% −0.4%
Total neutrophils, % 2079 57.2 (8.9) 55.5 (8.8) NA NA NA
Stress Markers
DHEA, ng/mL 174 7.2 (5.8) 6.9 (6.2) NA NA NA
Morning cortisol, ng/mL 335 7.6 (20.2) 7.4 (14.8) 23.9% 24.5% 0.6%
Noon cortisol, ng/mL 335 2.6 (2.2) 2.5 (1.5) 22.7% 25.7% 3.0%
Evening cortisol, ng/mL 335 1.7 (1.9) 1.6 (1.0) 23.6% 23.9% 0.3%
Night cortisol, ng/mL 334 1.1 (1.3) 1.0 (0.8) 32.9% 33.8% 0.9%
Nutritional Markers
Arachidonic acid, % by wt 1578 10.6 (1.7) 10.8 (1.7) NA NA NA
DHA, % by wt 1578 2.7 (0.8) 3.2 (0.8) NA NA NA
DPA, % by wt 1578 1.1 (0.2) 1.3 (0.3) NA NA NA
EPA, % by wt 1578 0.8 (0.4) 1.3 (0.7) NA NA NA
Ferritin, ng/mL 1688 129.9 (134.6) 117.8 (111.3) 18.7% 12.6% −6.1%
Hematocrit, % 2084 42.2 (3.6) 41.9 (3.2) 3.1% 1.4% −1.7%
Hemoglobin, g/dL 2084 14 (1.3) 14.1 (1.2) 2.2% 1.2% −1.0%
Linoleic acid, % by wt 1578 25.8 (2.7) 25.6 (2.6) NA NA  NA
Magnesium, mg/dL 996 2.0 (0.2) 2.1 (0.2) 2.2% 2.4% 0.2%
Mean corpuscular volume (MCV), fL 2084 90.4 (5.4) 90.2 (4.8) 10.6% 6.3% −4.3%
Mercury, μg/L 1035 3.2 (4.6) 2.8 (3.3) 2.1% 0.7% −1.4%
Methylmalonic acid (MMA), nmol/L 1436 171.2 (108.2) 152.8 (65.2) 3.3% 1.0% −2.3%
Omega 3 index, % 1578 4.5 (1.3) 5.8 (1.6) 81.1% 42.5% −38.6%
Vitamin D, ng/mL 2085 33.7 (14.7) 40.8 (14.3) 44.8% 20.4% −24.4%
Zinc (red blood cell), μg/dL 559 1339 (255.2) 1387.8 (214) 15.9% 16.6% 0.7%
Blood Pressure & Anthropometrics
Diastolic, mmHg 1804 76.7 (10.3) 74.3 (10.1) 40.2% 29.5% −10.7%
Systolic, mmHg 1804 122.7 (14.7) 120.8 (14.1) 56.2% 50.2% −6.0%
Body mass index (BMI), kg/m2 2355 28.2 (6.4) 27.6 (6.1) 64.5% 60.1% −4.4%
Waist circumference, inches 1325 37.3 (7.4) 36.1 (7.7) 41.7% 32.1% −9.7%
Weight, lbs 2355 181.9 (44.8) 178.1 (42.7) 64.5% 60.1% −4.4%

Table 1.  Clinical characteristics of the study population. aClinical marker of interest followed by unit. bNumber 
of individuals included in longitudinal analysis of corresponding clinical marker. cMean and standard deviation 
of corresponding clinical marker at baseline measurement. dMean and standard deviation of corresponding 
clinical marker at latest measurement. e% of individuals with out of range values of corresponding clinical 
marker at baseline measurement; NA if either no out of range definition or less than 50 individuals out of range. 
f% of individuals with out of range values of corresponding clinical marker at latest measurement; NA see above. 
gChange in out of range % from baseline to latest measurement; NA see above. N: number of individuals; NA: 
not applicable; OOR: out of range; △ OOR: change in out of range from baseline to latest measurement; SD: 
standard deviation. Liver and Kidney markers are shown in Supplementary Table 1.
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better LDL-C levels) had a 3.8 mg/dL greater decrease in LDL-C on average than those with an LDL-C PGS in Q2 or 
Q3 after the same amount of time in the program (Supplementary Figure 1). Adjusting for baseline total cholesterol, 
those with a total cholesterol PGS in Q1 (predisposed to lower/better total cholesterol levels) had a 4.3 mg/dL greater 
decrease in total cholesterol on average than those with a total cholesterol PGS in Q2 or Q3 after the same amount of 
time in the program. Adjusting for baseline HDL-C, those with an HDL-C PGS in Q4 (predisposed to higher/better 
HDL-C levels) had a 1.3 mg/dL greater increase in HDL-C on average than those with an HDL-C PGS in Q2 or Q3 
after the same amount of time in the program. Lastly, adjusting for baseline triglycerides, those with a triglycerides 
PGS in Q4 (predisposed to higher/worse triglycerides levels) had a 5.1 mg/dL lesser decrease in triglycerides on 
average than those with a triglycerides PGS in Q2 or Q3 after the same amount of time in the program.

Discussion
This study extends the results of previous studies9,13 and supports the importance of a Scientific Wellness 
approach, combining multi-omic data and personalized lifestyle coaching in a real-world setting. First, partici-
pants saw notable improvements in multiple clinical markers related to health, many of which were observed in 
the entire population, not just in those who began with out of range values. Second, previously reported associa-
tions between genetic markers and select clinical markers were replicated. Most intriguingly, some genetic mark-
ers were found to be associated with differences in the longitudinal changes in response to this lifestyle coaching 
program. These results suggest that certain genetic predispositions have an effect on the magnitude of change in 
clinical markers achieved through this program.

Some clinical improvements observed in this real-world study were comparable to improvements seen in diet 
and lifestyle randomized controlled trials (RCTs). For example, we found an adjusted average decrease in HbA1c of 
about 0.20% at 12 months in the entire study population. Among those participants with elevated baseline HbA1c, 
the adjusted average decrease was 0.26% at 12 months. The Diabetes Prevention Program, a RCT comparing 
intensive lifestyle intervention vs. metformin/standard care, saw slightly less than a 0.1% decrease in HbA1c at 12 
months for those in the lifestyle intervention arm14. According to a meta-analysis, a 0.16% improvement in HbA1c 
in prediabetes is associated with at least a 1% reduction in the annualized incidence of diabetes, or an estimated 
880,000 fewer cases of diabetes per year in the U.S15,16. These findings highlight that a program founded in systems 
biology and behavioral theory, and using scalable telephonic coaching, can provide improvements in glycemic 
health that compare to those seen in landmark clinical trials, and could have a meaningful impact on public health.

The estimated effect sizes of many of the genetics used in this study on baseline lab markers were clinically 
meaningful. For example, the difference in average adjusted baseline LDL-C was 29.4 mg/dL between LDL-C PGS 
Q1 and Q4. In previous studies, a reduction of similar magnitude in LDL-C (38.7 mg/dL) was found to be associ-
ated with a 23% reduction in relative risk of major vascular events17. Additionally, the LDL-C PGS was associated 
with differences in longitudinal changes of LDL-C, controlling for baseline values and time in the program. On 
average, after controlling for other risk factors, a participant with LDL-C PGS in Q1 would have seen a 3.82 mg/dL 
greater decrease in LDL-C in response to coaching than a participant with LDL-C PGS in Q2 or Q3. This suggests 
that a lifestyle coaching program may be more effective at lowering LDL-C for an individual with genetic predis-
position for lower LDL-C relative to an individual with higher genetic risk. This result may not be surprising, as 
poor lifestyle choices may explain why someone with low genetic risk still has high LDL-C. These results are con-
sistent with earlier studies showing high genetic predisposition for adverse lipid profiles limits the improvement 
in total cholesterol in response to lifestyle change7,8. Importantly, our results suggest that as the understanding 
of genetic predisposition continues to improve, so too will the ability to provide targeted personalized lifestyle 
recommendations, as well as the ability to identify when medical treatment is the best course of action.

This study has several limitations. As an observational study without a control group, we cannot separate 
the effect of coaching and the effect of being provided personalized data. In the future, it would be interesting to 
compare the full Scientific Wellness program to a standard coaching program that did not provide any clinical 
or genetic data to measure these effects separately. The lack of a control group may be particularly limiting for 
analyzing changes stratified by baseline clinical marker values, as regression to the mean could lead to biased 
estimates of effects10. We attempted to control for this by reporting changes in the total population as well as the 
out-of-range population. A pattern of improvements in the baseline OOR strata but worsening in the normal 
strata may be indicative of regression to the mean effects arising due to measurement variability.

Due to the personalized nature of the coaching, not all participants were working on improving all out of 
range clinical markers. Thus, our results may under-estimate the actual impact of health coaching on clinical 
outcomes. Coaches were aware of participants’ genetic predispositions when they generated personalized rec-
ommendations, which could lead to a bias in which participants with greater genetic predispositions (e.g. for 
higher LDL-C) received more aggressive lifestyle interventions. However, our results indicate that participants 
with greater genetic predispositions improve less in the program relative to participants with lower genetic pre-
dispositions. Therefore, any coaching bias to intervene more aggressively would act to attenuate our results rather 
than amplify them.

An additional potential limitation is the issue of compliance bias, which we were unable to address in the cur-
rent study. Hypothetically, individuals who know they have higher - or lower - genetic risk for a trait may be less 
motivated to actively engage in lifestyle change. Some studies3 have reported greater self-reported behavior change 
in people who learned they were high-risk genetic carriers compared to low-risk non-carriers, but others2,18  
did not find a relationship between genetic risk score and behavior change. Importantly, previous studies did 
not involve interactions with a trained lifestyle coach who can identify underlying core motivations and provide 
behavioral support and accountability to drive sustained behavior change. At the start of this study, data on 
participants’ actions and compliance were not collected in a way suitable for analysis; these data are now being 
collected and will be analyzed in the future.
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Figure 1.  Longitudinal changes for select clinical markers. Panels a,c,e, and g: Adjusted changes for the average 
participant in the entire study population. Panels b,d,f,h: Adjusted average differences from the ‘normal at 
baseline’ strata at baseline for each baseline strata over time in the program. In panels, the points represent the 
estimates from the GLMMs, and the vertical bars show the 95% confidence intervals. The solid lines connecting 
the points visually shows the trajectories over time and the dashed horizontal lines show the starting value of the 
entire population or corresponding strata.

https://doi.org/10.1038/s41598-019-43058-0


6Scientific Reports |          (2019) 9:6805  | https://doi.org/10.1038/s41598-019-43058-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

Clinical Markera Baseline Stratab Rangec Nd Adj 6 mo Δe Adj 12 mo Δf

Cardiovascular Markers

HDL-C, mg/dL All 1809 0.23 (−0.27, 0.73) −0.40 (−1.28, 0.48)

Low < = 39.00 143 2.75 (1.01, 4.50) 2.97 (−0.42, 6.35)

Normal >39.00 1666 −0.04 (−0.56, 0.48) −0.73 (−1.63, 0.18)

HDL particle number, μmol/L All 1371 −0.45 (−0.72, −0.18) −0.48 (−0.93, −0.03)

Low <30.50 370 1.39 (0.88, 1.89) 1.75 (0.87, 2.62)

Normal > = 30.50 1001 −1.13 (−1.44, −0.82) −1.33 (−1.84, −0.82)

Homocysteine, μmol/L All 1572 −0.17 (−0.34, −0.01) −0.36 (−0.61, −0.12)

Normal < = 15.00 1450 0.14 (−0.02, 0.30) 0.01 (−0.22, 0.25)

High >15.00 122 −4.43 (−4.96, −3.91) −5.04 (−5.93, −4.16)

LDL-C, mg/dL All 1801 −2.58 (−3.84, −1.33) −3.26 (−5.44, −1.09)

Normal < = 99.00 567 6.36 (4.23, 8.48) 5.26 (1.68, 8.85)

High >99.00 1234 −6.81 (−8.27, −5.36) −7.32 (−9.95, −4.70)

LDL particle number, nmol/L All 1371 −0.42 (−20.83, 19.99) −13.20 (−46.81, 20.42)

Normal <1000.00 359 80.02 (40.97, 119.07) 63.89 (2.95, 124.83)

High > = 1000.00 1012 −29.70 (−53.11, −6.29) −40.76 (−80.46, −1.07)

LDL size, nm All 1365 0.00 (−0.03, 0.02) 0.07 (0.03, 0.11)

Low < = 20.50 176 0.32 (0.25, 0.39) 0.41 (0.30, 0.52)

Normal >20.50 1189 −0.05 (−0.08, −0.02) 0.02 (−0.03, 0.07)

LDL small particle number, nmol/L All 1371 −0.89 (−9.87, 8.09) −15.09 (−28.95, −1.24)

Normal < = 527.00 912 9.67 (0.63, 18.70) −6.51 (−20.09, 7.07)

High >527.00 459 −127.87 (−174.16, −81.57) −158.36 (−225.66, −91.07)

Oxidized LDL cholesterol, U/L All 1055 −2.33 (−3.49, −1.17) −5.52 (−7.09, −3.95)

Normal <60.00 807 1.73 (0.51, 2.95) −1.16 (−2.79, 0.48)

High > = 60.00 248 −15.38 (−17.31, −13.45) −18.32 (−21.56, −15.09)

Total cholesterol, mg/dL All 1809 −3.40 (−4.87, −1.93) −4.91 (−7.40, −2.42)

Normal > = 100.00 and<200.00 950 4.22 (2.30, 6.14) 3.78 (0.51, 7.05)

High > = 200.00 859 −11.96 (−13.98, −9.95) −14.83 (−18.40, −11.27)

Triglycerides, mg/dL All 1809 −3.69 (−5.23, −2.15) −4.71 (−7.14, −2.28)

Normal < = 149.00 1564 −1.32 (−2.79, 0.15) −2.77 (−5.08, −0.46)

High >149.00 245 −53.60 (−61.34, −45.86) −46.26 (−58.55, −33.96)

Insulin Resistance Markers

Adiponectin, μg/mL All 1618 0.01 (−0.11, 0.12) 0.02 (−0.15, 0.18)

Gamma-glutamyl transpeptidase 
(GGT), U/L All 1946 −0.51 (−0.78, −0.24) −0.79 (−1.21, −0.37)

Normal < = 65.0 (M);< = 60.0 (F) 1864 −0.43 (−0.68, −0.18) −0.67 (−1.07, −0.28)

High >65.0 (M); >60.0 (F) 82 −29.99 (−35.75, −24.24) −38.17 (−44.8, −31.54)

Glucose, mg/dL All 1990 0.13 (−0.28, 0.54) 0.56 (−0.09, 1.22)

Normal > = 65.00 and< = 99.00 1673 0.94 (0.53, 1.36) 1.38 (0.70, 2.05)

High >99.00 317 −5.67 (−6.77, −4.57) −5.37 (−7.02, −3.72)

Hemoglobin A1c, % All 1992 −0.12 (−0.13, −0.11) −0.20 (−0.22, −0.18)

Normal > = 4.80 and < = 5.60 1443 −0.07 (−0.09, −0.06) −0.16 (−0.19, −0.14)

High >5.60 527 −0.22 (−0.24, −0.20) −0.26 (−0.30, −0.23)

HOMA−IR All 1990 0.02 (−0.03, 0.06) 0.02 (−0.05, 0.08)

Insulin, μIU/mL All 1989 0.06 (−0.11, 0.23) 0.06 (−0.22, 0.34)

Normal > = 2.60 and < = 24.90 1878 0.04 (−0.13, 0.21) −0.02 (−0.30, 0.26)

High >24.90 81 −10.99 (−14.2, −7.77) −8.17 (−13.09, −3.25)

Inflammatory Markers

hsCRP, mg/L All 1584 0.06 (0.02, 0.09) 0.03 (−0.02, 0.09)

Normal < = 3.00 1215 0.10 (0.06, 0.15) 0.06 (0.00, 0.12)

High >3.00 369 −1.75 (−2.34, −1.17) −2.88 (−3.64, −2.13)

IL-6, pg/mL All 816 0.14 (0.02, 0.26) −0.13 (−0.34, 0.09)

IL-8, pg/mL All 817 −0.87 (−1.85, 0.11) −2.09 (−3.86, −0.33)

TNF-alpha, pg/mL All 815 0.07 (0.00, 0.13) 0.22 (0.09, 0.35)

Total neutrophils, % All 2079 −0.69 (−1.06, −0.32) −0.93 (−1.53, −0.33)

Stress Markers

Continued
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Clinical Markera Baseline Stratab Rangec Nd Adj 6 mo Δe Adj 12 mo Δf

DHEA, ng/mL All 174 0.40 (−0.46, 1.26) −0.93 (−1.93, 0.06)

Morning cortisol, ng/mL All 335 −0.57 (−1.83, 0.69) 0.13 (−1.15, 1.40)

Low <3.70 52 2.21 (0.47, 3.95) 2.97 (1.57, 4.37)

Normal > = 3.70 and < = 9.50 255 −1.14 (−1.92, −0.37) −0.06 (−0.78, 0.67)

Noon cortisol, ng/mL All 335 −0.26 (−0.72, 0.21) −0.16 (−0.43, 0.11)

Normal > = 1.20 and < = 3.00 259 0.17 (−0.32, 0.65) 0.02 (−0.22, 0.26)

High >3.00 60 −1.97 (−2.92, −1.02) −2.35 (−3.3, −1.39)

Evening cortisol, ng/mL All 335 −0.27 (−0.56, 0.02) −0.04 (−0.23, 0.14)

Normal > = 0.60 and < = 1.90 256 0.04 (−0.21, 0.30) 0.19 (0.03, 0.35)

High >1.90 69 −1.65 (−2.31, −0.99) −1.99 (−2.54, −1.44)

Night cortisol, ng/mL All 334 −0.17 (−0.41, 0.07) −0.09 (−0.23, 0.04)

Normal > = 0.40 and< = 1.00 224 0.04 (−0.16, 0.24) 0.15 (0.02, 0.28)

High >1.00 104 −0.44 (−0.93, 0.06) −1.06 (−1.36, −0.75)

Nutritional Markers

Arachidonic acid, % by wt All 1578 0.05 (−0.04, 0.15) 0.32 (0.16, 0.48)

DHA, % by wt All 1578 0.67 (0.62, 0.71) 0.53 (0.45, 0.61)

DPA, % by wt All 1578 0.21 (0.19, 0.22) 0.21 (0.19, 0.24)

EPA, % by wt All 1578 0.65 (0.61, 0.69) 0.59 (0.51, 0.66)

Ferritin, ng/mL All 1688 −1.30 (−2.88, 0.29) −7.88 (−10.67, −5.09)

Low <30.00 (M);<15.00 (F) 109 8.36 (6.43, 10.29) 9.56 (4.38, 14.75)

Normal > = 30.00 and< = 400.00 (M); 
> = 15.00 and < = 150.00 (F) 1372 −1.39 (−2.93, 0.14) −4.41 (−6.89, −1.93)

High >400.00 (M); >150.00 (F) 207 −38.62 (−53.49, −23.75) −59.81 (−83.31, −36.31)

Hematocrit, % All 2084 −0.02 (−0.14, 0.09) −0.13 (−0.33, 0.06)

Hemoglobin, g/dL All 2084 −0.01 (−0.05, 0.03) −0.05 (−0.11, 0.02)

Linoleic acid, % by wt All 1578 −0.18 (−0.32, −0.05) −0.17 (−0.39, 0.05)

Magnesium, mg/dL All 996 0.01 (0.00, 0.03) 0.01 (0.00, 0.03)

Mean corpuscular volume (MCV), fL All 2084 0.39 (0.25, 0.52) 0.44 (0.21, 0.67)

Low <79.00 52 4.55 (3.76, 5.34) 5.20 (3.57, 6.84)

Normal > = 79.00 and< = 97.00 1863 0.32 (0.19, 0.46) 0.38 (0.15, 0.61)

High >97.00 169 −1.06 (−1.51, −0.61) −1.53 (−2.39, −0.67)

Mercury, μg/L All 1035 0.06 (−0.05, 0.17) −0.04 (−0.14, 0.05)

Methylmalonic acid (MMA), nmol/L All 1436 −4.57 (−8.17, −0.96) −12.31 (−16.83, −7.79)

Omega 3 index, % All 1578 1.52 (1.43, 1.61) 1.30 (1.14, 1.45)

Low < = 5.40 1279 1.69 (1.60, 1.79) 1.53 (1.34, 1.71)

Normal >5.40 299 0.80 (0.61, 0.99) 0.24 (−0.15, 0.62)

Vitamin D, ng/mL All 2085 7.92 (7.24, 8.60) 7.71 (6.56, 8.87)

Low <30 928 12.60 (11.67, 13.54) 11.74 (10.14, 13.34)

Normal > = 30.00 and < = 100.00 1151 3.91 (3.06, 4.77) 3.92 (2.39, 5.44)

Zinc (red blood cell), μg/dL All 559 33.76 (10.45, 57.08) 86.05 (−4.93, 177.03)

Normal > = 822.00 and< = 1571.00 470 74.01 (50.12, 97.89) 125.40 (36.47, 214.34)

High >1571.00 85 −173.44 (−227.95, −118.93) 78.02 (−369.45, 525.49)

Blood Pressure & Anthropometrics

Diastolic, mmHg All 1804 −1.77 (−2.26, −1.28) −1.23 (−1.98, −0.47)

Normal <80.00 1078 0.71 (0.11, 1.31) 0.47 (−0.57, 1.50)

High > = 80.00 726 −5.56 (−6.26, −4.85) −3.93 (−5.06, −2.80)

Systolic, mmHg All 1804 −2.29 (−2.99, −1.58) −1.34 (−2.40, −0.27)

Normal <120.00 790 2.40 (1.38, 3.42) 1.71 (0.09, 3.33)

High > = 120.00 1014 −5.38 (−6.25, −4.51) −3.23 (−4.60, −1.85)

Body mass index (BMI), kg/m2 All 2355 −0.65 (−0.70, −0.61) −0.52 (−0.61, −0.43)

Normal > = 18.50 and<25.00 836 −0.22 (−0.30, −0.14) 0.03 (−0.12, 0.17)

Overweight > = 25.00 and<30.00 781 −0.58 (−0.66, −0.51) −0.48 (−0.63, −0.33)

Obese > = 30.00 723 −1.16 (−1.24, −1.08) −1.17 (−1.33, −1.02)

Waist circumference, inches All 1325 −1.18 (−1.37, −0.99) −1.59 (−1.93, −1.25)

Normal < = 40.00 (M);< = 35.00 (F) 772 −0.47 (−0.72, −0.22) −0.76 (−1.20, −0.32)

High >40.00 (M);>35.00 (F) 553 −2.08 (−2.35, −1.81) −2.67 (−3.14, −2.20)

Weight, lbs All 2355 −4.22 (−4.51, −3.92) −3.38 (−3.96, −2.80)

Continued
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Human wellness and disease are complex biological phenomena. The Scientific Wellness approach deals with 
this complexity by generating large amounts of multi-omic data, which we refer to as personal, dense, dynamic 
data (PD3) clouds, on many different biological systems for each individual. PD3 clouds can be used to under-
stand an individual’s unique actionable possibilities for optimal wellness. This approach has the potential to trans-
form our understanding of personalized medicine.

Conclusions
This real-world study of a Scientific Wellness program demonstrated not only clinical improvements in partic-
ipants with out of range biomarkers at baseline, but also many clinical improvements in the overall population, 
presumably related to sustained engagement and lifestyle changes. Furthermore, we report that genetic predispo-
sition for nutrition and wellness-related phenotypes impacts clinical responses to a lifestyle coaching program. 
We believe that investigations into the relationship between genetic predispositions and the impact of lifestyle 
intervention will prove a fruitful avenue for further study.

Methods
Participants.  All research was conducted in accordance to regulations and guidelines for observational 
research in human subjects. The study was reviewed and approved by the Western IRB (Study Number 1178906). 
The research was performed entirely using de-identified and aggregated data of individuals who had signed a 
research authorization allowing the use of their anonymized data in research. Per current U.S. regulations for use 
of deidentified data, informed consent was not required. To be eligible to join the program, participants had to 
be over 18 years of age, not pregnant, and a resident of any U.S. state except New York. The participants analyzed 
in this study are the 92% of participants who agreed to research use as of 6/19/2018 and enrolled in the program 
between July 2015 and March 2018.

Personalized lifestyle coaching.  Personalized, telephonic lifestyle coaching was provided to each partic-
ipant in the program by registered dietitians, certified nutritionists, or registered nurses. A participant’s clinical 
data were available for them to view online via a data dashboard. To address specific OOR clinical markers, 
coaches provided lifestyle recommendations based on published scientific evidence which were further person-
alized in the context of the participant’s health goals and relevant genetic predispositions. Coaches did not make 
recommendations solely based on genetic risk, although they might take genetics into account when developing a 
behavioral plan for an out-of-range biomarker. For example, reducing sodium or caffeine might be recommended 
to any participant with high blood pressure, but if they also had risk alleles indicating enhanced susceptibility 
to dietary sodium or caffeine, this would be emphasized. See Supplementary Methods for details on personal-
ized lifestyle coaching and Supplementary Table 4 for general clinical recommendations given for out-of-range 
biomarkers.

Lab Data.  Fasting blood draws were scheduled every 6 months but actual collection times varied. Salivary 
cortisol measurements were collected at home using a 4-time-point collection procedure and analyzed by ZRT 
(Beaverton, OR). Blood pressure measurements were recorded at each blood draw, and some participants pro-
vided additional self-reported measurements between visits via the data dashboard.

All laboratory tests were performed in CLIA-approved labs. The labs provided reference ranges for a major-
ity of these clinical markers. Reference ranges for blood pressure were defined by U.S. public guidelines19. See 
Supplementary Methods for details on lab data collection.

Anthropometric Data.  Height, weight, and waist circumference were measured either at the blood draws 
(45%) or were self-reported via an online assessment or through the Fitbit Aria scale. Reference ranges for anthro-
pometric data were defined by U.S. public health guidelines20.

Clinical Markera Baseline Stratab Rangec Nd Adj 6 mo Δe Adj 12 mo Δf

Normal BMI> = 18.50 and<25.00 836 −1.48 (−1.97, −0.99) 0.03 (−0.92, 0.99)

Overweight BMI> = 25.00 and<30.00 781 −3.78 (−4.27, −3.28) −3.25 (−4.21, −2.28)

Obese BMI> = 30.00 723 −7.40 (−7.90, −6.89) −7.40 (−8.39, −6.41)

Table 2.  Longitudinal changes from generalized linear mixed model analyses stratified by baseline range. 
aClinical marker of interest followed by unit. bStrata as defined by baseline measurement of corresponding 
clinical marker; All: all participants regardless of strata; Low: those low at baseline; Normal: those normal 
at baseline, High: those high at baseline. Strata only shown for markers with defined ranges and with 50 
or more individuals. cRange used to define strata for corresponding clinical marker; sex-specific where 
indicated. dNumber of individuals included in longitudinal analysis of corresponding clinical marker and 
strata. eEstimated 6 month changes and 95% CIs for the average participant, adjusted for confounding effects. 
fEstimated 12 month changes and 95% CIs for the average participant, adjusted for confounding effects. Adj 6 
mo Δ: adjusted 6 month change; Adj 12 mo Δ: adjusted 12 month change; F: female; M: male; N: number of 
individuals. Bolded values indicate p<0.05. Liver and Kidney markers are shown in Supplementary Table 2, 
which also contains p-values and adjusted p-values.
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Clinical Markera Genetic Featureb
Baseline % Variation 
Explainedc

Genetic 
stratad Difference at Baselinee

Difference in 
Longitudinal Δf

LDL-C, mg/dL LDL-C PGS 11.1% Q1 −15.74 (−18.80, −12.59) −3.82 (−5.92, −1.72)
Q2/Q3 Ref Ref
Q4 13.69 (10.16, 17.22) −0.91 (−3.00, 1.18)

Total Cholesterol, mg/dL Total Cholesterol PGS 8.7% Q1 −13.82 (−17.42, −10.22) −4.32 (−6.77, −1.88)
Q2/Q3 Ref Ref
Q4 15.79 (11.95, 19.64) −0.61 (−3.04, 1.81)

HDL-C, mg/dL HDL-C PGS 6.9% Q1 −6.02 (−7.75, −4.28) −0.58 (−1.47, 0.32)
Q2/Q3 Ref Ref
Q4 6.67 (4.79, 8.55) 1.25 (0.38, 2.12)

Triglycerides, mg/dL Triglycerides PGS 3.9% Q1 −13.44 (−18.34, −8.55) −1.96 (−5.44, 1.52)
Q2/Q3 Ref Ref
Q4 15.76 (9.62, 21.90) 5.14 (1.68, 8.60)

Waist circumference 
(Females), inches

Waist circumference PGS 
(Females) 3.2% Q1 −0.98 (−2.00, 0.04) −0.37 (−0.80, 0.05)

Q2/Q3 Ref Ref
Q4 1.98 (0.86, 3.10) −0.29 (−0.71, 0.13)

Waist circumference 
(Males), inches

Waist circumference PGS 
(Males) 1.8% Q1 −0.47 (−1.45, 0.51) 0.18 (−0.26, 0.62)

Q2/Q3 Ref Ref
Q4 1.41 (0.34, 2.47) 0.04 (−0.39, 0.46)

Body mass index (BMI 
Females), kg/m2 BMI PGS (Females) 2.7% Q1 −1.39 (−2.19, −0.58) 0.04 (−0.10, 0.19)

Q2/Q3 Ref Ref
Q4 1.71 (0.84, 2.58) 0.09 (−0.05, 0.23)

Body mass index (BMI 
Males), kg/m2 BMI PGS (Males) 1.7% Q1 −0.22 (−0.90, 0.47) 0.02 (−0.14, 0.17)

Q2/Q3 Ref Ref
Q4 1.33 (0.54, 2.13) 0.09 (−0.06, 0.25)

Homocysteine, μmol/L Homocysteine PGS 0.7% Low Ref Ref
Moderate 0.01 (−0.28, 0.30) −0.19 (−0.39, 0.00)
High 0.73 (0.20, 1.26) −0.03 (−0.34, 0.28)

Arachidonic acid, % by wt rs174537 13.8% TT Ref Ref
GT 0.9 (0.65, 1.14) 0.32 (0.12, 0.52)
GG 1.83 (1.59, 2.08) 0.63 (0.41, 0.85)

EPA, % by wt rs174537 1.8% TT Ref Ref
GT 0.11 (0.05, 0.17) 0.05 (−0.04, 0.15)
GG 0.17 (0.11, 0.23) 0.07 (−0.02, 0.17)

DPA, % by wt rs174537 1.8% TT Ref Ref
GT 0.05 (0.01, 0.09) 0.02 (−0.01, 0.05)
GG 0.09 (0.05, 0.12) 0.01 (−0.02, 0.05)

Vitamin D, ng/mL rs4588 1.5% GG Ref Ref
GT −1.81 (−2.97, −0.64) 0.11 (−0.79, 1.00)
TT −6.01 (−8.17, −3.86) −1.68 (−3.43, 0.06)

hsCRP, mg/L rs1205 0.5% TT Ref Ref
CT 0.55 (−0.04, 1.14) 0.05 (−0.31, 0.41)
CC 0.89 (0.30, 1.47) 0.21 (−0.15, 0.58)

Systolic, mmHg rs699 0.1% AA Ref Ref
AG −0.61 (−2.11, 0.88) 0.12 (−0.91, 1.15)
GG −0.85 (−2.79, 1.09) 0.06 (−1.26, 1.38)

Diastolic, mmHg rs699 0.0% AA Ref Ref
AG −0.13 (−1.17, 0.91) −0.24 (−0.97, 0.49)
GG 0.24 (−1.16, 1.65) −0.75 (−1.68, 0.18)

Table 3.  Effects of genetics on baseline levels and on longitudinal changes of clinical markers. aClinical marker 
of interest followed by unit. bGenetic feature used to measure genetic predisposition for corresponding clinical 
marker; polygenic scores (PGS) or single nucleotide polymorphisms as indicated. c% variation explained of 
baseline levels of corresponding clinical marker by genetic feature. dStrata examined, defined by genetic feature; 
quartile (Q) or genotype as indicated. eEstimated difference in baseline levels of corresponding clinical marker 
compared to reference genetic strata. fEstimated difference in longitudinal change of corresponding clinical 
marker compared to reference genetic strata. Q1/2/3/4: quartile 1/2/3/4; Ref: reference genetic strata. Bolded 
values indicate p<0.05. See Supplementary Table 3 for p-values and adjusted p-values.
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Genetic Data.  Genetic data were collected using whole genome sequencing for 2,380 participants or SNP 
microarray genotyping for 151 participants. Curated genetic markers relevant to nutrition and wellness were 
reported to all participants as part of the program. These included SNPs previously associated with a nutri-
tion or wellness-related phenotype (e.g. rs4588 with Vitamin D21,22 and rs174537 with omega-3 and omega-6 
fatty acids12,23), and polygenic scores (PGSs for LDL-C, HDL-C, triglycerides, BMI, and waist circumference. 
Each of these PGSs was constructed using publicly available summary statistics from published Genome-Wide 
Association Studies (GWAS)11,24,25. See Supplementary Methods for details on genotype calling.

Polygenic Score Creation.  Briefly, the set of SNPs included in a PGS was determined as follows. The 
Benjamini-Hochberg26 procedure was applied to the p-values for all SNPs tested in the GWAS to account for 
multiple testing by controlling the false discovery rate (FDR) at a 5% level. This FDR filtered set of SNPs was then 
further pruned using linkage disequilibrium (LD): pairs of SNPs in close proximity capturing highly correlated 
information (r2 > 0.2) were identified, and the SNP with the smaller p-value in the pair was kept; this was repeated 
until all remaining SNPs were mutually uncorrelated (r2 < 0.2 for all pairs). The PGS for each individual was then 
calculated by summing up the published effect size for each selected SNP multiplied by the number of effect 
alleles the individual carried for that SNP, across all of the selected SNPs. Missing genotypes were mean imputed 
using the effect allele frequency. See Supplementary Table 5 for the list of variants in each polygenic score and 
their associated effect sizes. The homocysteine polygenic score was computed based on specific rules, which are 
provided in Supplementary Table 5.

Data and Sample Filtering.  To be included in the analysis of a clinical marker (labs or anthropomet-
rics), a participant was required to have a baseline measurement within 30 days of their first blood draw, and 
at least one follow-up measurement between 90 days and 15 months later. Measurements collected more than 
15 months after the participant’s baseline blood draw were excluded. Blood draws reported as non-fasting were 
excluded (1.7% of all blood draws). Lipid measurements were excluded for participants who reported taking 
cholesterol-lowering medication; diabetes markers were excluded for participants who reported taking blood 
sugar medication; blood pressure measurements were excluded for participants who reported taking blood pres-
sure medication. Additionally, 17 participants who reported having type 1 diabetes were excluded from analyses 
of diabetes markers.

Longitudinal Changes in Clinical Markers.  Generalized linear mixed models (GLMMs) were used to esti-
mate the average change in each clinical marker after 6 and 12 months in the program. The actual collection times 
of measurements varied from participant to participant. Therefore, rather than treating time in the program as a 
categorical variable with pre-specified collection points, linear regression splines were used to fit time as a contin-
uous variable, allowing for differences in the trajectory of change of the clinical marker throughout the course of 
the program. To adjust for potential confounding effects, age at baseline, sex, enrollment channel, genetic ancestry, 
observation season, and observation vendor were included as fixed effects covariates in each GLMM.

Longitudinal Changes Stratified by Baseline Range.  We classified participants into strata by their 
baseline measurements: those with baseline measurements within the healthy range (as defined by clinical refer-
ence ranges) were classified as ‘normal’, below this range as ‘low’, and above this range as ‘high’. We estimated the 
change at 6 and 12 months for the average participant by baseline strata using GLMMs as described above, with 
the addition of an interaction term between a categorical variable for baseline strata and the linear regression 
spline for time in the program. Changes were not estimated for baseline strata containing less than 50 participants.

Association of Genetic and Clinical Markers at Baseline.  Linear regression models were used to esti-
mate the % of variation explained by the genetic markers (SNPs or PGSs) provided to participants, as well as SNP 
genotype or PGS quartile effect sizes on baseline levels of the corresponding clinical markers. The same covariates 
included in the longitudinal change models were included in these regressions.

Impact of Genetic Markers on Longitudinal Changes.  Each genetic marker tested for association with 
a particular clinical marker at baseline was also tested for an effect on the longitudinal change of that clinical 
marker. Linear mixed models (LMMs) were used to identify interaction effects between different SNP genotypes 
or PGS quartiles and clinical marker changes, adjusting for baseline clinical marker values after the same amount 
of time in the program. Fixed effects covariates based on the same potential confounding variables as described 
for the longitudinal change models were used in these models.

See Supplementary Methods for details on regression models. P-values for all analyses were adjusted for the 
effects of multiple hypotheses testing using the Benjamini-Hochberg procedure26 (Supplementary Tables 2 and 3). 
All of the Results discussed in this study were significant after multiple hypothesis correction.

Data Availability
The multi-omic dataset will be made available through Arivale to qualified researchers under an agreement with 
Arivale that protects the privacy of the Arivale participants. Please contact data-access@arivale.com for more 
information and to apply to access the data.
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