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Abstract

In intensive care units (ICU), mortality prediction is a critical factor not only for effective medical 

intervention but also for allocation of clinical resources. Structured electronic health records 

(EHR) contain valuable information for assessing mortality risk in ICU patients, but current 

mortality prediction models usually require laborious human-engineered features. Furthermore, 

substantial missing data in EHR is a common problem for both the construction and 

implementation of a prediction model.

Inspired by language-related models, we design a new framework for dynamic monitoring of 

patients’ mortality risk. Our framework uses the bag-of-words representation for all relevant 

medical events based on most recent history as inputs. By design, it is robust to missing data in 

EHR and can be easily implemented as an instant scoring system to monitor the medical 

development of all ICU patients. Specifically, our model uses latent semantic analysis (LSA) to 

encode the patients’ states into low-dimensional embeddings, which are further fed to long short-

term memory networks for mortality risk prediction. Our results show that the deep learning based 

framework performs better than the existing severity scoring system, SAPS-II. We observe that 

bidirectional long short-term memory demonstrates superior performance, probably due to the 

successful capture of both forward and backward temporal dependencies.
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1. Introduction

Intensive care units (ICU) provide critical care and life support for most severely ill and 

injured patients in the hospital. Patients in ICU need to be monitored closely in order to 

detect the deterioration of patient’s condition or occurrence of various adverse events 

influencing the already fragile patient state. On the other hand, high demand for ICU 
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services and limited bed availability have posted bed planning challenges. Physicians need 

to identify patients with the lowest risk for discharge to reduce ICU admission delays for 

new patients. With the availability of large healthcare databases, such as Medical 

Information Mart for Intensive Care (MIMIC-III), researchers have developed various 

scoring systems1,2 and machine learning models3–5 to assess patient mortality using a small 

set of hand-crafted features. More recently, deep learning models trained on structured 

clinical data have demonstrated promising mortality risk prediction performance.6 However, 

the majority of existing models do not account for dynamically changing patient condition 

and their prediction is a single score for the entire ICU stay, usually based on the 

observations within the first 24 or 48 hours after ICU admission.

To address the above challenges, we propose a new framework for dynamic monitoring of 

ICU patients’ mortality risk based on structured EHR data. Inspired by language-related 

models, we propose to use latent semantic analysis (LSA) based embedding to define the 

current state of the patient. The state is defined by a combination of physiological variables, 

laboratory tests and medications given over a period of time of fixed length. The intuition 

here is that the patient’s data that consists of sequences of events logged in time 

corresponding to various treatments, laboratory tests, medications, and vital signs, can be 

thought of as a document and the codes of these events can be thought of as words. We 

process the EHR data by retrieving the counts of all relevant medical events that occurred in 

each time block during the patient’s ICU stay and accumulate them using the bag-of-words 

(BoW) representation. Similarly to documents, the BoW representation lets us summarize 

the state of the patient in a specific block of time. In our work, we limit the sequence of past 

events to the most recent 48-hour period which is expected to be sufficient for assessment of 

medical condition of ICU patients with respect to patient mortality. We would also like to 

note that the BoW representation is robust and can cope with missing data that are very 

common in EHRs. Since the number of clinical events in the BoW representation can be 

enormous, we use (unsupervised) LSA methods to convert the BoW representation to a 

lower-dimensional embedding. In order to further compress the information useful for 

mortality prediction, we propose and explore various methods for summarizing sequences of 

patient states over the 48-hour history window. These include (1) average pooling, (2) self-

attention mechanism, (3) hidden space of the long short-term memory networks (LSTM), (4) 

hidden space of bidirectional LSTM.

We experiment with our mortality monitoring framework and various history summarization 

methods on MIMIC III dataset. Our results show that, for the task of mortality monitoring, 

features extracted by our framework outperform the traditional features used in a severity 

scoring system, SAPS-II.1 Furthermore, we observe that summarization based on 

bidirectional LSTM yield superior results comparing to other history summarization 

approaches.

2. Background and Related Work

Two types of EHR data are used commonly to support various clinical predictions: 

unstructured (free text) data, and structured data recording complex sequences of various 

clinical events in EHRs. Unstructured data, such as, clinical notes contain summary of past 
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or present patient’s condition, clinicians’ insights and interpretations of the patient case, as 

well as, treatment plans. Structured data record the detail of the patient case, that include 

sequences observations, measurements, findings, and other clinical events. Both structured 

and unstructured data (either individually or jointly) were successfully used to support a 

variety of prediction tasks such as patient mortality, length of stay, readmission prediction or 

coded diagnoses assignment. Examples of such work include Miotto et al7 work on the Deep 

patient model that uses structured and unstructured data to learn the low dimensional 

representation for length-of-stay, readmission and diagnoses predictions, Perrote et al8 for 

assignment of diagnoses based on text data, Malakouti and Hauskrecht9 for assignment of 

diagnoses and diagnostic categories based on structured EHR data, and many others. In this 

work, we study methods based on structured data and focus on the mortality prediction 

problem.

Mortality prediction problem was initially introduced to predict the final in-hospital 

mortality using early EHR data such as the first 24 hours after ICU admission. Some 

researches have demonstrated advanced results utilizing more flexible periods of data during 

the entire encounter. Johnson et al10 proposed a distinct sampling scheme to extract data 

from a random time window, which generated a model applicable to real-time mortality 

prediction on the eventual mortality risk. Ho et al11 developed an interpretable RNN method 

using Learned Binary Mask to dynamically predict ICU mortality risk at the end of ICU 

encounters. Departing from these studies, in this paper, the mortality monitoring task we 

propose operates continuously across the entire encounter instead of making one prediction 

per encounter.

The success of a predictive algorithm largely depends on the quality of features representing 

the data.12 EHR data are challenging to represent and model due to its high dimensionality, 

noise, incompleteness, and heterogeneity. Recent developments in deep learning models 

allow us to address some of these challenges and unlock the information in the EHR. Miotto 

et al7 used a three-layer stacks of denoising autoencoders to capture hierarchical regularities 

and dependencies in the aggregated EHRs. Rajkomar et al13 demonstrated that deep learning 

methods using patients’ entire raw EHRs are capable of accurately predicting multiple 

medical events from multiple centers without site-specific data harmonization. Lipton14 

proposed to apply LSTM models on EHR data, empirically evaluating its capability in 

recognizing patterns in multivariate time series of clinical measurements. Choi15 built a 

GRU-RNN deep learning model to detect early heart failures with a relatively long 

observation window ranging from 12 to 19 months. Che16 proposed an interpretable mimic 

learning framework to predict mortality and ventilator-free days, which used the learned 

feature representation or soft labels obtained from the deep learning models (based on GRU 

and DNN) to train the gradient boosting tree based mimic model. Song17 proposed and 

studied a full attention-mechanism-based sequence modeling architecture for multivariate 

time-series data, SAnD, and showed it has similar effectiveness as LSTM-based model 

approaches.
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3. Data and Preprocessing

3.1. Data Source and Cohort Selection

We use data from the Multiparameter Intelligent Monitoring in Intensive Care (MIMIC-III v.

1.4), which is a publicly available dataset18 that includes all patients admitted to an ICU at 

the Beth Israel Deaconess Medical Center from 2001 to 2012. One part of the MIMIC-III 

dataset was extracted from the CareVue system which archived data of patients who were 

admitted in years 2001–2008, the other part was extracted from the MetaVision system and 

covers patients admitted to ICUs in years 2008–2012. To avoid mapping of the two disjoint 

coding systems, in this work, we chose only admissions recorded in the MetaVision system. 

This lead to 22,049 unique in-hospital admissions of which 10.5% ended-up dying and 

89.5% were discharged after treatments.

3.2. Data Extraction and Preprocessing

We extract three different types of events: laboratory test, vital signs and medications from 

the following tables: LABEVENTS, CHARTEVENTS and INPUTEVENTS_MV. We derive 

the label of death event for a patient using the field DEATHTIME, which is only present if 

the patient died in hospital, from the table ADMISSIONS.

In the LABEVENTS table, FLAG indicates whether the laboratory value is considered as 

abnormal or not. We split abnormal cases into ‘abnormally high’ or ‘abnormally low’ using 

the mean of normal values as the threshold. When creating labels for laboratory test, we 

concatenate ITEMID and the derived FLAG from the LABEVENTS table, so that events 

with normal results, events with abnormally high and abnormally low results are explicitly 

distinguished. Similarly, when creating labels for vital signs, we add a special tag (append a 

letter “W” to ITEMID) to indicate whether the WARNING is labeled by a caregiver on 

patient’s chart. We only use ITEMID to represent all the medications and ignore the dosage 

and other information. For continuous infusion over a certain period of time, we count its 

ITEMID once each time block within that period. This data preprocessing yields 1,147 

unique labels of laboratory test, 2,798 unique labels of vital signs and 277 unique labels of 

medications. The vocabulary size of all labels is 4,222.

4. Methodology

4.1. Mortality Monitoring Task

Our objective is to define a framework for monitoring mortality risk from past patient 

observations in EHRs. A formal definition of the problem is as follows: for a specific patient 

p, and a time series of past clinical events e(t1), e(t2), …, e(tn) observed at times t ∈ {t1, t2, …, 
tn} for that patient prior to the current time T, predict whether a specific event of interest d is 

going to happen in the next prediction window of size Tp, i.e., [T, T + Tp]. Note that many 

different types of past clinical events can be considered, for example, administration of the 

different medications, observations of various laboratory test results or observed 

physiological signals.
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To define our framework we consider a limited history of past events to predict the future 

event of interest. That is, at any given current time point T, our framework looks back in 

time for a fixed time span Th, i.e., [T − Th, T], and retrieves all the relevant medical events 

{e(t)} that occur during this time period, where t ∈ [T − Th, T]. The prediction of the target 

event d then relies only on the events in this time window. As time progresses both history 

window defined by Th and prediction window defined by Tp move according to the current 

time T, thus our framework always predicts the event in the near future.

Capturing the changes in patient’s condition is important for our task. To that end, we divide 

the history window [T − Th, T] into k equal-sized time blocks b(1), b(2), …, b(k), so that 

trends or other dynamic patterns can be effectively modeled. For each b(j), we use LSA19 

projections to obtain low-dimensional representation x
b j  of the events in block b(j) from the 

counts of all medical events e
b j  that occur during this time block. We apply LSA as an 

effective technique for representing complex patient’s state covering many different events. 

Specifically, we take the BoW representations from all available time blocks as inputs and 

then apply singular value decomposition (SVD) to perform dimensionality reduction. The 

obtained LSA embeddings are then standardized (zero-mean, unit variance).

Our next step is to further summarize information from the sequence of embeddings x(1), 
x(2), …, x(k) reflecting the sequence of recent patient’s states occurring during the history 

window Th into a vector representation hseq that can accurately predict patient’s near term 

mortality risk. We explore various methods to combine and summarize the sequence data: 

(1) average pooling, (2) self-attention, (3) LSTM, (4) bidirectional LSTM. The details of 

these methods are provided in the following sub-sections.

4.2. Average Pooling and Attention Mechanism

Several common strategies for combining sequential data include average pooling, max-

pooling or concatenation. However, all these methods treat data representing individual 

sequence steps equally when summarizing the sequence. Briefly, in our framework the 

sequence is defined by a sequence of k most recent patient states covering (equally) the 

history window of size Th. Hence, under the average pooling all these states would be 

treated equally and the final representation is defined as:

hseq
avg = average x

b1 , x
b2 , …, x

bk
(1)

To permit more flexible representation of a patient state sequence, we adopt the idea of self-

attention20 that allows the model to automatically focus its attention on more interesting 

predictive patterns. More specifically, we create a stand-alone module with shared 

parameters to inspect individual representation vector, and the module outputs a score as an 

indication of the significance of that representation. The intuition comes from the 

observation that experienced medical specialists could easily find abnormal results from 

medical tests, pay attention to changes in time and focus on a specific time period based on 
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the signals. The self-attention matrix Wa is trained end-to-end with the main prediction loss 

(mortality-based loss), and the normalized attention score is multiplied back to the 

representation. More specifically, for each representation x
b j , the corresponding “attention” 

score α
b j is calculated as:

α
b j = softmax Wax

b j , j ∈ [1, k]

hseq
attn = ∑

j = 1

k
α

b j x
b j

(2)

Briefly, the final representation of the entire sequence, hseq
attn, is a function of the individual 

sequence components x
b j , weighted by the attention weights α.

4.3. Recurrent Neural Network (RNN)

Recurrent neural networks let us model and learn input-output sequences with the help of a 

hidden state. In this work, we consider LSTM21 to model RNN. LSTM has demonstrated 

superior performance for modeling sequential data due to the internal gating mechanism 

preventing the vanishing and exploding gradient calculations. By incorporating “input gate”, 

“output gate” and “forget gate”, LSTM cell learns to control the information flow, thus 

increasing its capability for handling long-term input-output dependencies. The specific 

gating operations are defined below. i, f, o represents “input”, “output” and “forget” gates 

respectively, and W and U are trainable parameter matrices. Note that ☉ denotes element-

wise multiplication, and σ and tanh denote commonly used non-linear activation functions.

i
b j = σ W(i)x

b j + U(i)h
b j − 1

f
b j = σ W( f )x

b j + U( f )h
b j − 1

o
b j = σ W(o)x

b j + U(o)h
b j − 1

c
b j = tanh W(c)x

b j + U(c)h
b j − 1

c
b j = f

b j ⊙ c
b j − 1

+ i
b j ⊙ c

b j

h
b j = o

b j ⊙ tanh c
b j

hseq
lstm = h

bk

(3)
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In our work, we use LSTM and its hidden state to summarize the sequences of patient states. 

Briefly, after obtaining the LSA embeddings for each block in the recent history window, the 

embeddings are sequentially fed to the LSTM model step by step following their temporal 

order. The hidden state generated by the LSTM for the last block h
bk  is then used as a 

representation of the entire embedding sequence hseq
lstm and supports patient mortality 

monitoring.

Inspired by the recent advancements in natural language processing,22–24 we also explore 

bidirectional RNNs.25 The bidirectional RNNs were introduced to better handle long-term 

dependencies in sequences. Briefly, even with the help of LSTMs, the RNN models may 

forget some of the early signals in the sequence. A trick to fix this problem is to build two 

RNNs, one digesting the sequence forward following the temporal order, and the other one 

backwards. The final sequence representation is then obtained by concatenation of the 

forward and backward hidden states.

5. Experimental Design

5.1. Sampling Strategy

After data preprocessing, as described in Section 3.2, we extract actual training samples 

from admission records. Since our goal is to assess the mortality risk of ICU patients 

continuously, we divide each admission record into multiple history windows, each of which 

can be seen as a single training instance. The label for each instance depends on whether the 

target event (death) appears in the corresponding prediction window. In this way, the original 

dataset that consists of admissions is converted into individual instances, as illustrated in 

Figure 1. Please note that we do not generate any instance for the patient whose admission 

record is shorter than the history window.

Since multiple instances can be sampled by moving the history window over a single 

admission, the number of total negative instances is much higher than the number of positive 

instances that only occur if patients died at the end of ICU stay. To deal with unbalanced 

data and learn features predictive of mortality, we keep all positive instances and down-

sample an equal number of negative instances while training the final logistic regression 

models. However, the results on the test set are always based on all instances generated for 

the testing admissions.

5.2. Baseline Model

SAPS-II1 score is designed to measure the severity of the disease for ICU patients using data 

collected within the first 24 hours of admission. From the prediction window of each 

instance, we extract and process features used in the calculation of the SAPS-II score, 

including serum urea nitrogen level, white blood cells count, serum bicarbonate level, 

sodium level, potassium level, urine output, pao2/fio2 ratio, body temperature, heart rate, 

systolic blood pressure, Glasgow coma scale, indicators of chronic diseases and admission 

type. We perform mean imputation to fill-in missing values. We exclude the bilirubin level 

score, since its missing rate is too high. We fit a logistic regression model using the SAPS-II 
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features as the baseline for comparison with other models using data-driven feature 

representations.

5.3. Experimental Settings

We first randomly divide the MIMIC dataset according to the admission ID into three 

disjoint subsets representing train, validation and test sets. This yields 13,344 admissions 

used for training, 4,329 admissions for validation and 4,376 admissions for testing. We use 

the block size of 6 hours (Tb = 6), as picking a too small block size leads to very sparse bag-

of-words representations while using an excessively long block size diminishes important 

trend signals. We set the length of history window to 48 hours or 8 blocks (k = 8, Th = 48) 

based on a comparison analysis, which shows history window of 48 hours slightly 

outperforms history window of 24 hours. We set the length of the prediction window to 12 

hours or 2 blocks (Tp = 12). The methods in the paper are implemented using PyTorch,26 

and we use RMSProp27 for optimization with the initial learning rate set to 0.001. We use a 

single hidden layer of size 32 in both LSTM and bidirectional LSTM experiments.

For feature representation, we experiment with different architectures from simple average 

pooling to more complicated recurrent neural network. For a fair comparison, all methods 

use a logistic regression model for binary classification. For evaluation metrics, we use the 

area under the receiver operating characteristics (ROC-AUC score) and Precision-Recall 

Curve (or Average Precision) to report the model’s performance. The results are reported on 

all instances generated for test admissions that include 19,107 negative instances and 634 

positive instances.

6. Results and Analysis

6.1. Dimensionality Analysis

We experimented with the dimensionality of the LSA embeddings on the training and 

validation data. We found that the embedding size of 256 yields the best performance using 

the LSTM as the method for feature representation. Our experiments show that over-reduced 

dimensionality on the input embeddings hurts prediction performance, while over-supplying 

redundant information (e.g., LSA embedding size of 512) would likely cause overfitting.

We also experimented with the different hidden state-space size. We observed that LSTM is 

able to find a more compact sequence representation and achieves the best performance with 

the hidden state-space size of 32. Based on these experiments (based on training and 

validation data), we fixed the LSA embedding size at 256 and the LSTM hidden state size at 

32.

6.2. Prediction with Different Feature Representations

Table 1 shows the in-hospital mortality prediction results for the different feature 

representation methods. We observed that: (1) data-driven feature representations 

consistently outperform SAPS-II features, (2) self-attention mechanism slightly outperforms 

average pooling by using weighted sum of individual representations, (3) the recurrent 

neural networks obtain better results by learning the temporal dependency in the sequence 
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data, in which the bidirectional LSTM achieves the best AUROC and AUPRC scores. Note 

that the results presented in Table 1 are not strictly comparable with the benchmarking 

results reported by other modern mortality prediction models,4,6 because their task is to 

predict the patient’s mortality risk at the end of the ICU stay while ours is to monitor the 

mortality risk of the patient continuously.

We used t-Distributed Stochastic Neighbor Embedding28 (t-SNE) as a visualization tool to 

project the hidden states h
b j  of the LSTM models into lower dimensions. t-SNE is a non-

linear dimensionality reduction technique, which captures local structures of the original 

high-dimensional data while revealing global structures in the meantime. The shorter 

distance of two points in the resulting low dimensional figure represents the higher similarity 

of the original data. Figure 2 demonstrates that unidirectional LSTM works dynamically and 

is able to discover increasingly more effective representations over time steps. From Figure 

3 we observed that: (1) the forward module of bidirectional LSTM learned almost the same 

structure as the unidirectional LSTM at the last time step (with 180° rotation); (2) the 

representation learned by the backward module of bidirectional LSTM exhibits a different 

structure than its forward representation, and may help the model achieve superior results; 

(3) Both the forward and backward module learn linearly-separable patterns from the LSA 

embeddings.

6.3. Interpreting Mortality of Learned Representation

We also analyzed how the feature representations learned from the RNN models relate to 

medical significance. In Figure 4 we show an interesting pattern that SAPS-II scores, which 

are the sum of all the SAPS-II features used in the baseline model, are highly correlated with 

the sequence representation hseq
lstm of our bidirectional LSTM at the last time step. 

Specifically, in the xy-plane, we plot the learned representations transformed by t-SNE, and 

the z-axis represents the SAPS-II scores of that particular instance. The hidden states 

generated by our bidirectional LSTM are correlated with SAPS-II scores; patients with high 

scores are located in the upper-right region of the hidden space, and patients with low scores 

are more concentrated in the lower-left region. Note that the sequence representation 

generated by the bidirectional LSTM only uses the labels of medical events as source inputs, 

and is never exposed to the explicit values used in the calculation of SPAS-II score, such as 

heart rate, urine output, WBC count and etc. Nevertheless, our approach is able to capture 

clinically meaningful representations in a latent space generated by our recurrent neural 

network.

7. Discussion and Conclusions

This paper proposes an approach to closely monitor patients’ mortality risk using the most 

recent medical history of structured EHR data. The new framework can be used as an instant 

scoring system that helps ICU clinicians assess the severity of illness of patients in ICUs. 

Inspired by language-related models, we use counts of all relevant medical events as source 

features that are robust to missing data, and apply latent semantic analysis (LSA) to obtain a 

compact embeddings to represent patients states. To better model the time dependencies 
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within a specific history window, we experimented with various feature representation 

methods, including average pooling, self-attention mechanism and hidden states of various 

LSTM models. Notably bidirectional LSTM demonstrates the most competitive 

performance, partly because it explicitly takes both forward and backward temporal 

information into consideration. Our exploration shows that using data-driven approach with 

very little human intervention is able to achieve accurate predictions. We expect our method 

to generalize well also for prediction of other critical events (e.g. sepsis) and we plan to 

investigate these in the future.

Although promising, our approach also comes with several limitations. First, medical events 

we used to construct feature representations were discrete-valued. By considering exact 

numerical information associated with medical events, such as lab test results, vital sign 

readings, or dosage information our models may further improve. Second, we did not use 

(free-text) progress notes, which contain rich information about the patient and are also less 

prone to coding errors. Finally, in the medical domain it is important to consider the 

interpretability of feature representations. Whilst hidden states of LSTM models are 

effective for risk stratification, they are also difficult to trace back to the original medical 

events.
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Fig. 1. Illustration of a strategy for extracting positive and negative instances from admission 
records.
Bands with different colors represent different medical events (with varied duration), and the 

whole record is split by predefined block size (dotted line). At any given time, the most 

recent events within the history window are used to define features and the occurrence of the 

target event (death) in the prediction window defines the label. Notice, that the instance that 

is generated for Patient 3 is labeled negative, although the patient eventually dies. This is 

because the future event is assessed purely by the prediction window.
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Fig. 2. Visualization of hidden states at various time steps in unidirectional LSTM using two 
dimensional t-SNE.
Yellow dots represent the instances of positive class (death) and purple dots represent the 

instances of negative class. Note that the classes are progressively separated out over time 

steps in unidirectional LSTM.
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Fig. 3. Visualization of first and last hidden states in bidirectional LSTM using two dimensional 
t-SNE.
Yellow dots represent the instances of positive class (death) and purple dots represent the 

instances of negative class. Representations learned from forward module (right figure) and 

backward module (left figure) of bidirectional LSTM exhibit different structures in the 

reduced 2D space. Both of them are useful for separating the positive and negative instances.
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Fig. 4. Relationship between SAPS-II score and bidirectional LSTM hidden states transformed 
by t-SNE.
X, Y axis are the two embeddings selected from the t-SNE transformation. Z axis as well as 

the color bar show the value of SAPS-II score. The hidden states generated by bidirectional 

LSTM are correated with SAPS-II scores.
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Table 1.
Prediction performance for the different feature representation strategies.

Binary classification is performed by a logistic regression. The best performing models are highlighted in 

bold.

Model AUROC AUPRC

SAPS-II 0.7749 0.1051

Average Pooling 0.8359 0.2612

Self-Attention 0.8360 0.2679

Unidirectional LSTM 0.8783 0.3092

Bidirectional LSTM 0.8854 0.3184
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