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Abstract: DNA origami nanostructures are widely employed in various areas of fundamental and
applied research. Due to the tremendous success of the DNA origami technique in the academic
field, considerable efforts currently aim at the translation of this technology from a laboratory setting
to real-world applications, such as nanoelectronics, drug delivery, and biosensing. While many of
these real-world applications rely on an intact DNA origami shape, they often also subject the DNA
origami nanostructures to rather harsh and potentially damaging environmental and processing
conditions. Furthermore, in the context of DNA origami mass production, the long-term storage
of DNA origami nanostructures or their pre-assembled components also becomes an issue of high
relevance, especially regarding the possible negative effects on DNA origami structural integrity.
Thus, we investigated the effect of staple age on the self-assembly and stability of DNA origami
nanostructures using atomic force microscopy. Different harsh processing conditions were simulated
by applying different sample preparation protocols. Our results show that staple solutions may be
stored at −20 ◦C for several years without impeding DNA origami self-assembly. Depending on
DNA origami shape and superstructure, however, staple age may have negative effects on DNA
origami stability under harsh treatment conditions. Mass spectrometry analysis of the aged staple
mixtures revealed no signs of staple fragmentation. We, therefore, attribute the increased DNA
origami sensitivity toward environmental conditions to an accumulation of damaged nucleobases,
which undergo weaker base-pairing interactions and thus lead to reduced duplex stability.
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1. Introduction

DNA origami has become a widely employed technique for the rapid high-yield synthesis of
arbitrary, yet well-defined, nanoscale shapes [1]. Since the first demonstration by Rothemund in
2006 [2], DNA origami nanostructures have found their way into many different fields of fundamental
and applied research [3]. For instance, DNA origami nanostructures are currently employed as drug
delivery vehicles [4–8], sensors [9–12], templates for the fabrication of nanoelectronic [13–16] and
plasmonic devices [17–21], substrates for single-molecule studies [22–27], and masks in molecular
lithography [28–32]. While all these applications crucially rely on an intact DNA origami shape, many
of them subject the employed DNA origami nanostructures to rather harsh treatments. Consequently,
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interest in the effects that environmental and processing conditions exert on DNA origami structural
integrity has spiked in the last few years [33–45].

Another issue that is becoming more and more relevant in the context of such applications is the
long-term stability of the DNA origami nanostructures under relevant storage conditions [34,46,47].
While it has been established that, even under low-magnesium conditions, DNA origami nanostructures
remain structurally intact over a period of several months when stored at 4 ◦C [34,47], their storage at
higher temperatures may result in quick deterioration [46]. This issue can be circumvented by the
lyophilization of the DNA origami nanostructures prior to storage [46].

While the aforementioned studies have focused on the storage of readily assembled DNA origami
nanostructures, this work investigates the effect of the long-term storage of the employed staple
strands on DNA origami assembly and stability. Atomic force microscopy (AFM) under liquid and
dry conditions was employed to characterize the structural integrity of Rothemund triangles [2]
assembled from different staple sets that have been stored at −20 ◦C for up to 43 months. In addition
to comparing liquid and dry imaging conditions, we further employed different sample washing
protocols to simulate different harsh processing conditions. We found that, while DNA origami
assembly is largely unaffected by staple age, the assembled DNA origami triangles become gradually
more sensitive toward harsh washing conditions as their staple age increased. Matrix-assisted laser
desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry investigations indicate that this
is not a result of staple fragmentation but, rather, of damaged nucleobases. Finally, we present evidence
that these staple age-related effects depend on the DNA origami superstructure.

2. Results and Discussion

In order to ensure comparability between staple sets of different age, all staple strands were mixed
immediately after purchase, divided into 150 µL aliquots, and stored at −20 ◦C for 2 to 56 months.
Therefore, all DNA origami samples were assembled from staple sets that have been frozen and
thawed only once. For each DNA origami assembly, we used freshly defrosted tubes containing
10 µL of M13mp18 scaffold, aliquoted from a common stock solution, stored at −20 ◦C. To minimize
the influence of scaffold preparation, the differently-aged staple sets were assembled using the same
scaffold stock solution originating from the same preparation. Furthermore, the age of the scaffold
stock solution at the time of use was always identical for each of the differently-aged staple sets used
in one sample treatment protocol and comparable to the youngest staple set in each time series (below
8 months).

Figure 1b–e shows AFM images of Rothemund triangles assembled from staple sets of different
ages. For comparison, a schematic representation of the duplex arrangement in the Rothemund triangle
is given in Figure 1a. Ideally, AFM images of the assembled DNA origami should perfectly match the
scheme. The AFM images in the left column of Figure 1b–e were recorded under liquid conditions
in assembly buffer in order to assess any effects of staple age on the DNA origami assembly. Liquid
imaging represents the least invasive AFM-based approach of analyzing DNA origami structural
integrity at a nanometer resolution. Furthermore, it is frequently employed in DNA origami-based
single-molecule studies [23,25,27,48–51]. As can be seen in the inset of Figure 1b (left), the Rothemund
triangle assembled from seven-month-old staples shows all features expected from the scheme in
Figure 1a. The three cavities in the corners of the triangle where the bridging staples connect the
individual trapezoids are clearly visible, and even the seams in the centers of the trapezoids can be
resolved. The overview image in Figure 1b (left) further suggests that the vast majority of Rothemund
triangles are perfectly assembled, even though some small DNA origami fragments or broken/denatured
triangles are occasionally observed. This general picture does not change significantly with increasing
staple age. Even 43-month-old staples yield predominantly intact DNA origami triangles that show all
the characteristic features of the design, indicating that staple age does not affect DNA origami assembly.
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Figure 1. (a) Schematic illustration of the Rothemund triangle DNA origami. AFM images of DNA 
origami triangles assembled from staple sets aged for (b) 2–7 months, (c) 11–16 months, (d) 22–27 
months, and (e) 38–43 months. Measurements were performed either in liquid (left column) or dry 
conditions after gently dipping the sample into water (central column) or after harsh rinsing (right 
column). Scale bars represent 250 nm. Height scales are given in the individual images. The insets 
show zooms of individual DNA origami triangles. 

For many applications, the DNA origami nanostructures have to be dried after immobilization 
on a substrate surface. This is in order to quench certain reactions of attached chemical species [24] 
or, more frequently, to enable subsequent processing steps [13,15,22,26,28,29,31]. In all of these cases, 
the substrate needs to be washed with water in order to remove residual salt from the surface. The 
gentlest way to do this is by dipping the sample into pure water for a couple of seconds [24]. While 

Figure 1. (a) Schematic illustration of the Rothemund triangle DNA origami. AFM images of DNA
origami triangles assembled from staple sets aged for (b) 2–7 months, (c) 11–16 months, (d) 22–27 months,
and (e) 38–43 months. Measurements were performed either in liquid (left column) or dry conditions
after gently dipping the sample into water (central column) or after harsh rinsing (right column). Scale
bars represent 250 nm. Height scales are given in the individual images. The insets show zooms of
individual DNA origami triangles.

For many applications, the DNA origami nanostructures have to be dried after immobilization on
a substrate surface. This is in order to quench certain reactions of attached chemical species [24] or,
more frequently, to enable subsequent processing steps [13,15,22,26,28,29,31]. In all of these cases, the
substrate needs to be washed with water in order to remove residual salt from the surface. The gentlest
way to do this is by dipping the sample into pure water for a couple of seconds [24]. While this dipping
may result in the dislocation and rearrangement of the adsorbed DNA origami nanostructures [52,53],
it does not induce major damage of the Rothemund triangles [24].
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The AFM image and the corresponding zoom of Rothemund triangles assembled from
two-month-old staples shown in Figure 1b (center) reveal mostly intact DNA origami. Compared to
liquid imaging, the triangular shapes appear less defined. This can be attributed both to drying-induced
conformational alterations of the DNA duplexes in the DNA origami, such as B-A transitions, and
minor shape distortions resulting from the removal of Mg2+ ions from the mica-DNA interface, which
leads to a reduced strength of the interaction [54]. The latter is manifested, for example, in the decreased
width of the trapezoids composing the triangles, which appear somewhat contracted or rolled up.
Nevertheless, the cavities in the corners of the triangles can still be resolved, albeit not as separated
cavities but as a groove. As for the measurements in solution, staple age does not seem to have a
significant effect on DNA origami integrity. Even for 38-month-old staples, mostly intact triangles are
observed after dipping.

For some applications of DNA origami nanostructures, gentle dipping of the substrate into
water is not sufficient. This particularly concerns applications employing viscous buffer components
or other molecular species that strongly adsorb to the substrate surface and need to be removed
afterwards [28,33,36]. In such cases, the substrate surfaces are often rinsed with large amounts of water.
The AFM image in Figure 1b (right) shows DNA origami triangles assembled from 5-month-old staples
after such a rinsing treatment. The Rothemund triangles appear very similar to the ones subjected
to dip-washing in Figure 1b (center), and there is no significant increase in the number of fragments
and denatured DNA origami. Also, for Rothemund triangles assembled from 14-month-old staples
(Figure 1c, right), this rather harsh treatment does not seem to impair DNA origami integrity.

At a staple age of 25 months, however, several Rothemund triangles with distorted shapes are
observed in Figure 1d (right). The DNA origami in the corresponding inset appears somewhat swollen
and has frayed edges with strongly rounded corners. It is also more difficult to identify the cavities
in the corners of the triangles. These rinsing-induced shape distortions become even worse when
41-month-old staples are used for the DNA origami assembly. As can be seen in Figure 1e (right),
the DNA origami still exhibits a roughly triangular shape. However, in this case, the trapezoids of
many DNA origami are strongly deformed and bulging, and the cavities in the corners can no longer
be identified.

In order to quantitatively evaluate the effects of staple age and treatment conditions on the
structural integrity of the Rothemund triangles, the AFM images were analyzed by manually counting
the fractions of intact, broken, deformed, and denatured DNA origami nanostructures. Figure 2 shows
representative examples of these four categories. The results of the statistical analyses are shown in
Figure 3 and Tables S1–S3 (see Supporting Information).
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Figure 2. Representative AFM zooms of Rothemund triangles categorized as (a) intact, (b) broken, (c)
denatured, and (d) deformed.

AFM imaging in liquid is the gentlest of the considered methods and, thus, expected to capture
the solution state of the assembled DNA origami nanostructures. Nevertheless, Figure 3a shows that
the yield of intact DNA origami decreased from ~88% at a staple age of 7 months to ~81% at a staple
age of 43 months. This is due to the slight increase in the fractions of broken and denatured DNA
origami with increasing the staple age. Interestingly, this increase occurred rather suddenly at a staple
age between 16 and 27 months. These data indicate that staples older than this threshold age result in
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slightly more damaged DNA origami nanostructures. However, it is not clear from our measurements
if staple age is correlated with lower assembly yields of intact DNA origami or whether the assembled
DNA origami are more easily damaged during sample handling and purification.
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staple solution for (a) measurements in liquid, (b) measurements using the dry-dipped protocol, and
(c) measurements using the dry-rinsed protocol.

The yields after dip-washing and drying the adsorbed DNA origami are given in Figure 3b. Only
a very small decrease in the fraction of intact DNA origami, from 92 to 87%, is observed. Interestingly,
dip-washing seems to result in a higher yield of intact DNA origami adsorbed onto the mica surface.
This counterintuitive observation can be explained by the fact that broken and denatured DNA origami
have a smaller surface area and, thus, a smaller contact area with the mica surface. Damaged DNA
origami nanostructures are, therefore, more easily removed from the mica surface during dip-washing
than intact ones, which superficially increases the measured yield of intact DNA origami.

In Figure 1, it can be observed that substrate rinsing leads to significant shape distortions and
deformations in the adsorbed Rothemund triangles at a staple age of 25 months and older. The results of
the statistical analyses shown in Figure 3c, however, show a significant decrease in the fraction of intact
DNA origami already at a staple age of 14 months. The yield of intact DNA origami decreases from
88% at 5 months to only 76% at 14 months. At a staple age of 41 months, only 20% of the Rothemund
triangles are still intact after rinsing. This is due to a strong increase in the yield of deformed DNA
origami from only 3% at a staple age of 5 months to 66% at 41 months. Interestingly, the fractions of
broken and denatured DNA origami are hardly affected by the staple age and remain in the range of 4
to 8%.

Our results indicate that the frozen staple strands are slowly degraded during storage. However,
the fact that AFM imaging in liquid shows predominantly intact DNA origami even for the oldest
staple sets implies that the DNA origami assembly itself is only mildly affected by staple age. Rather,
the assembled DNA origami nanostructures appear to become more sensitive toward environmental
conditions. Therefore, we speculate that the staple strands are not fragmented during storage, as this
would result in the assembly of fewer intact DNA origami, but rather experience some sort of base
damage that interferes with base pairing or stacking. In order to test this hypothesis, we analyzed the
compositions of the complete staple mixtures using MALDI-TOF mass spectrometry. Figure 4 shows
the spectra of all four staple sets that differ in age from 6 to 42 months. The DNA staple mixtures
consisted of mainly three populations of strands based on their size. One peak (around 7400 Da)
displays strands consisting of 22–25 nucleotides, a second peak (around 9800 Da) is from strands with
32 nucleotides, and a third peak (around 12,300 Da) shows strands consisting of 40 nucleotides. Peaks
corresponding to the half-mass of the three main peaks (approximately 6100, 4900, and 3700 Da (not
shown)) represent the doubly-ionized species. All spectra look identical regardless of staple age, and
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there is no apparent shift of individual peaks towards lower masses. Thus, any degradation or other
fracturing of whole staple strands can be excluded.
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Finally, we investigated whether these staple age-related effects also depend on the DNA origami
superstructure. The Rothemund triangle is designed on a square lattice and is thus highly strained.
Furthermore, its open, sheet-like structure offers no additional architectural stability apart from direct
connections via crossovers to the neighboring helices. These two design factors may render it more
susceptible to washing-induced damage than other DNA origami nanostructures. Therefore, we also
subjected DNA origami six-helix bundles (6HBs) assembled from 56-month-old staples to the rinsing
treatment and evaluated the effect of this using AFM. As can be seen in Figure 5, the 6HBs turn out to
be much more robust than the Rothemund triangles and barely show any damage, with about 85% of
the 6HBs remaining intact. This agrees with previous observations that these particular DNA origami
nanostructures show extraordinarily high stability under denaturing conditions [34,38].
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Figure 5. (a) Schematic illustration and (b) AFM image of DNA origami 6HBs assembled from
56-month-old staples after rinsing. The scale bar and height scale are 500 and 2.0 nm, respectively. The
inset shows a zoom of an individual 6HB. (c) Corresponding yields of intact, broken, denatured, and
looped DNA origami 6HBs. The insets show examples of the individual categories. Scaffold age at the
time of use was one month.
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3. Materials and Methods

3.1. Preparation and Storage of the Staple Strands

Immediately upon delivery, the freshly synthesized staple strands (Metabion, Planegg, Germany),
dissolved in pure water at 100 µM concentrations, were mixed at equal concentrations to yield the
complete staple mixture. This stock solution was then divided into 150 µL aliquots and stored at
−20 ◦C in the dark.

3.2. DNA Origami Assembly and Purification

The Rothemund triangles and DNA origami 6HBs were assembled from 208 and 170 staple strands,
respectively, using the 7249-nt long M13mp18 genome as a scaffold. Assembly was performed in 1×
TAE (Tris Acetate-EDTA, Carl Roth, Karlsruhe, Germany) containing 10 mM MgCl2 (Sigma-Aldrich,
St. Louis, MO, USA) at a 10-fold excess of staples to scaffolds. Hybridization was carried out in a
Thermocycler Primus 25 advanced (PEQLAB, Erlangen, Germany) by heating the sample to 80 ◦C and
subsequently cooling it to room temperature over a time course of 90 min. The samples were then
purified of excess staples with a 1× TAE/MgCl2 buffer by spin filtering using Amicon Ultra-0.5 mL
Centrifugal Filters with 100 kDa molecular weight cut-off (Merck Millipore, Burlington, MA, USA), as
previously described [34]. The DNA origami concentration was determined by UV/Vis absorption
using an IMPLEN Nanophotometer (München, Germany) and ranged from 12 to 16 nM, independent
of staple age. The DNA origami concentration was subsequently adjusted to 3 nM for all experiments.

3.3. Preparation of DNA Origami Samples for AFM Analysis

Liquid. 10 µL of the 3 nM DNA origami solution were pipetted onto a freshly cleaved mica surface
in a liquid cell and incubated for 1 min. Subsequently, the cell was filled with 1 mL of 1× TAE/MgCl2.

Dry-dipped. 10 µL of the 3 nM DNA origami solution were incubated for 1 min on freshly cleaved
mica. The mica substrate was then vertically dipped into pure water for 10 s and blown dry with a
stream of ultra-pure air at an angle of 45◦ with respect to the substrate surface.

Dry-rinsed. 10 µL of the 3 nM DNA origami solution were incubated for 1 min on freshly cleaved
mica. Using a pipette, the mica substrate was then rinsed five times with 2 mL of pure water at an
angle of 45◦ with respect to the substrate surface. Then, the sample was blown dry with a stream of
ultra-pure air at an angle of 45◦ with respect to the substrate surface.

3.4. AFM Imaging

AFM imaging in air was carried out using a JPK Nanowizard ULTRA Speed (Berlin, Germany), an
Agilent 5100, and an Agilent 5500 AFM (Santa Clara, CA, USA), operated in intermittent contact mode.
AFM imaging in liquid was carried out using a JPK Nanowizard ULTRA Speed. For measurements
under dry and liquid conditions, HQ-NSC18/AlBS (MikroMasch, Sofia, Bulgaria) and USC-F0.3-k0.3
cantilevers (NanoWorld, Neuchâtel, Switzerland) were used, respectively.

3.5. Determination of Yields

In this section, the general procedure for determining the yields given in Tables S1–S3 is described.
For dry imaging, two independent samples were analyzed for each staple age. For liquid imaging,
only one sample was analyzed for each staple age. Five to ten AFM images were recorded for each
staple age. For each recorded AFM image, the different yields were determined by manual counting.
Final yields were obtained by finding the average of the yields obtained for the individual AFM
images, with standard deviations as a measure of error. This is exemplified in Table 1 for the case of
38-month-old staple strands and imaging under dry conditions after dip-washing. The determined
yields and numbers of DNA origami analyzed for all conditions are listed in Tables S1–S3.
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Table 1. Number of analyzed DNA origami triangles (N(DNA origami)) for each of the eight AFM images
recorded after dip-washing a sample assembled from 38-month-old staples and the corresponding
yields of intact, broken, deformed, and denatured DNA origami in %.

AFM Image N(DNA origami)
Intact DNA
Origami (%)

Broken DNA
Origami (%)

Denatured
DNA Origami

(%)

Deformed
DNA Origami

(%)

1 524 89.5 4.2 4.8 1.5

2 518 88.2 6.2 4.1 1.5

3 444 86.0 5.0 5.2 3.8

4 515 86.8 4.8 6.0 3.1

5 491 88.0 5.7 3.1 3.3

6 526 85.2 7.0 3.4 4.4

7 552 88.2 4.5 3.1 4.2

8 554 87.5 6.0 2.7 3.8

Sum 4124 87.4 ± 1.4 5.4 ± 1.0 4.0 ± 1.2 3.2 ± 1.1

3.6. MALDI-TOF Mass Spectrometry

For the mass spectrometry analysis, an Autoflex Speed mass spectrometer (Bruker Daltonik,
Bremen, Germany) was used in linear positive mode. At first, 0.5 µL of 3-HPA matrix (half-saturated,
dissolved in water/acetonitrile (50:50) with 10 mg/mL diammonium hydrogen citrate) were spotted on
the AnchorChip target and dried at room temperature. Then, 0.5 µL of the DNA staple mixture were
spotted and dried at room temperature. Before measurement, the machine was calibrated using the
Oligonucleotide Calibration Standard (Bruker Daltonik, Bremen, Germany).

4. Conclusions

In summary, we investigated the effect of staple age on DNA origami assembly and stability
using AFM under liquid and dry conditions. DNA origami assembly is only mildly affected by staple
age, yielding approximately 80% intact Rothemund triangles when using a staple mixture stored for
43 months at −20 ◦C. However, the assembled Rothemund triangles become more sensitive toward
environmental conditions with increasing staple age. In particular, the older the employed staples,
the more deformed triangles are observed in AFM images recorded after extensive sample washing
and drying. At a staple age of 41 months, this rinsing treatment results in 66% of the DNA origami
showing significant shape distortions.

We could not detect any evidence of staple fragmentation in the aged staple mixtures using
MALDI-TOF mass spectrometry, and we attribute this increased DNA origami sensitivity to an
accumulation of damaged nucleobases which undergo weaker base-pairing interactions, resulting
in reduced duplex stability. The mechanical forces acting on the adsorbed Rothemund triangles
during rinsing, in combination with the depletion of stabilizing Mg2+ salt bridges, then lead to
the dehybridization of some particularly weak staple strands from the scaffold and the subsequent
rearrangement of the remaining duplexes within a given DNA origami. This finally results in the
observed shape distortions. Unfortunately, the exact nature of the storage-induced base damage is
very hard to assess because of the experimental complications arising when analyzing a mixture of
approximately 200 non-purified oligonucleotides with different sequences and lengths. However,
the different reaction rates displayed by the different types of spontaneously occurring nucleobase
damage may provide some indication of the predominant type of damage. For instance, the hydrolytic
deamination of cytosine in single-stranded DNA occurs with a half-life of about 200 years, while
deamination of the other bases is much slower [55]. Hydrolytic depurination in single-stranded DNA
occurs at similar half-lives of around 100 years, while the loss of pyrimidine bases is slower by several
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orders of magnitude [55]. Because of these long reaction times, hydrolytic deamination and base
loss appear rather unlikely candidates in the formation of excessive nucleobase damage in frozen
oligonucleotides over a time course of a few years. On the other hand, OH radical-driven oxidative
base damage, such as the generation of 8-oxo-guanine or ring-opened lesions in guanine and thymine,
occurs much faster with half-lives of the order of hours [55]. Furthermore, oxidative base damage has
been shown to result in the destabilization of the DNA duplex [56,57]. Therefore, we assume that
oxidative base damage is the origin of the observed increase in DNA origami sensitivity.

Our results reveal a complex interplay between staple storage, DNA origami treatment conditions,
and the DNA origami superstructure. If the assembled DNA origami nanostructures are employed
only in liquid under mild environmental conditions and using appropriate buffers [34], staple age
will not play a significant role at all. In the case of harsh environmental conditions, such as excessive
sample rinsing (as demonstrated here), exposure to denaturing buffer conditions [33,36], or elevated
temperatures, the structural integrity of the DNA origami may be seriously impaired if staples older
than a few months are used. As we have demonstrated, however, the degree of staple age-induced
damage may drastically depend on the DNA origami superstructure, and this needs to be evaluated
individually for each DNA origami design under the relevant conditions. Finally, we would like to
stress that the above experiments were conducted with staple mixtures dissolved in pure water that
have been frozen and thawed only once. Repeated freezing and thawing cycles may induce more
serious damage and have more devastating effects on DNA origami assembly and structural stability
than observed here. On the other hand, the use of buffers instead of pure water may reduce the
negative effects of long-term storage [58]. Furthermore, since oxidative base damage appears to be the
most likely origin of the observed increase in DNA origami sensitivity, the addition of antioxidants
may also improve the quality of the staple strands after long-term freeze storage.

Supplementary Materials: The following are available online, Tables S1–S3: yields for the Rothemund triangles
obtained from the evaluation of the individual AFM images recorded under liquid and dry conditions, Table
S4–S6: p-values of the individual yields for the Rothemund triangles, Table S7: yields for the 6HBs obtained from
the evaluation of the individual AFM images, Figures S1–S13: additional AFM images.
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