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Breast cancer screening using Mammography serves as the earliest defense against
breast cancer, revealing anomalous tissue years before it can be detected through physical
screening. Despite the use of high resolution radiography, the presence of densely
overlapping patterns challenges the consistency of human-driven diagnosis and drives
interest in leveraging state-of-art localization ability of deep convolutional neural networks
(DCNN). The growing availability of digitized clinical archives enables the training of deep
segmentation models, but training using the most widely available form of coarse hand-
drawn annotations works against learning the precise boundary of cancerous tissue in
evaluation, while producing results that are more aligned with the annotations rather than
the underlying lesions. The expense of collecting high quality pixel-level data in the field of
medical science makes this even more difficult. To surmount this fundamental challenge,
we propose LatentCADx, a deep learning segmentation model capable of precisely
annotating cancer lesions underlying hand-drawn annotations, which we procedurally
obtain using joint classification training and a strict segmentation penalty. We demonstrate
the capability of LatentCADx on a publicly available dataset of 2,620 Mammogram case
files, where LatentCADx obtains classification ROC of 0.97, AP of 0.87, and segmentation
AP of 0.75 (IOU � 0.5), giving comparable or better performance than other models.
Qualitative and precision evaluation of LatentCADx annotations on validation samples
reveals that LatentCADx increases the specificity of segmentations beyond that of existing
models trained on hand-drawn annotations, with pixel level specificity reaching a
staggering value of 0.90. It also obtains sharp boundary around lesions unlike other
methods, reducing the confused pixels in the output by more than 60%.
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1 INTRODUCTION

Locating medical abnormalities have historically confounded human-driven clinical procedures. Over
the history of radiology, theBreast Imaging Reporting andData System (BI-RADs) (Rao et al., 2016) has
outlined the procedure of identifying and annotating these critical lesions. However retrospective
studies on the effectiveness of radiology assessment have reported that cancer lesions could be
identified retroactively in past X-rays for more than 30% of patients who were later diagnosed at
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advanced stages (Solveig, 2012). Today annotation tools for
medical images take on an assistive role, but the need for
performant and end-to-end diagnosis models are felt strongly in
this context (Badgeley et al., 2019).

Deep neural nets are a strong candidate in automating the
diagnosis of medical images as they demonstrate state-of-art
performance in the domain of computer vision. To this end,
datasets of annotated medical imaging have been available for
decades since such as DDSM (Heath et al., 1998) which was
compiled in 1997. Deep neural-net based models have
demonstrated expert performance in classification problems for
general objects given large datasets which have become available
(Lin et al., 2014), however we find that they are not immune to the
presence of mislabelled examples presented as ground-truth which
is characteristic of coarsely annotated data. Here, segmentation
models experience a fundamental challenge with hand-drawn
annotations which are encountered when existing clinical
archives are digitized and made available for analysis. It is
reasonable to expect this given that these archives were meant
to be consumed by human experts rather than computational
models. As such, hand drawn boundaries indicate a general area of
abnormality and often do not separate true-positive features from
the image with pixel-level accuracy. Treating loose annotations as
direct annotations inevitably introduces a margin of uncertainty
characterized by features which may or may not belong to the
target class, and we assess that the most widely used segmentation
models would not be immune to this effect. The massive cost for
collecting pixel-level accurate data in the medical domain greatly
hampers the utility of these models.

To surmount these challenges we define LatentCADx, a
modular joint classification-segmentation model which is
procedurally trained in the presence of imperfect
segmentations. The joint objective leverage the property that
features driving high classification accuracy should be
consistent between multiple objectives containing ground-
truth. Furthermore in the context of breast cancer tissue
assessment, we impose a strict penalty in segmentation
training such that predictions do not egress hand-drawn
annotations. We therefore subject segmentations to the
circumscribing boundary of the annotations and underlying
features responsible for classification with high accuracy.

In our results, LatentCADx improves upon both classification
and segmentation performance, and predicts segmentations which
are more expressive and specific than possible with existing
approaches. It should be noted that other existing approaches
are fully capable of segmenting complex lesions with high accuracy
as long as they are provided with high-quality annotated data.
Thus, our focus while developing LatentCADx has been on
circumventing the inaccurate annotations and identifying latent
lesions rather than improving segmentation performance
measured based on the said annotations. The main
contributions of our work are as follows:

• Using joint classification and segmentation architecture and
weakly-supervised loss function, we obtain LatentCADx
model that performs on par or better than other
segmentation models.

• LatentCADx provably reduces the uncertainty in the
boundary of segmentation results.

• LatentCADx unearths underlying lesions from coarse hand-
drawn annotations and produces high precision
segmentations.

2 RELATED WORKS

2.1 Feature Engineering and Matching
Manually engineered features have enabled several approaches to
automatic detection with no learning. Regions of interest are
detected with filters which highlight domain-specific tissue
morphology found in Mammography (Eltonsy et al., 2007;
Song et al., 2009; He et al., 2010). However, the process of
crafting individual filters requires prior domain knowledge.
For example, specific methods have been developed to detect
spiculations (Kobatake and Yoshinaga, 1996; Muralidhar et al.,
2010) and further work would be required for additional
categories of lesions.

2.2 Convolutional Neural Nets
Convolutional Neural Nets (LeCun and Bengio, 1998) rely on
learning the features relevant to a classification task during
optimization without the need for feature crafting. The
motivation for CNNs in medical imaging arises from their
ability to obtain state-of-art accuracies in general object
classification tasks (Krizhevsky et al., 2012; He et al., 2015;
Szegedy et al., 2015). Their convolutional architectures can be
adapted by design to predict the location of classes, a driving
feature of many proposed segmentation models such as SegNet
(Badrinarayanan et al., 2017), U-Net (Ronneberger et al.,
2015), FCN (Long et al., 2015), and Mask-RCNN (He et al.,
2017).

Several recent works have relied on variants of region proposal
networks [RCNN (Ren et al., 2015)] for histology image
segmentation (Jeremiah, 2018), brain MRI segmentation
(Akkus et al., 2017), and lesion annotations in mammograms
(Ribli et al., 2018). These mammogram studies find that applying
existing deep architectures can already yield high classification
performance. However, we note in these prior works that
segmentation were not attempted as pixelwise ground-truth
annotations are generally not available for mammograms.

(Abdelhafiz et al., 2020) outlines a detailed benchmark of
applying U-Net directly to mammogram annotations. In this
study, Mass lesions are specifically examined which we find are
types of lesions which most closely adheres to clinical
annotations. In reality lesions span a variety of categories and
our testing spans bothMass and Calcifications, the latter of which
have the most coarse annotations. We assess that an accurately
annotated dataset of Calcifications would improve the reliability
of segmentation models as demonstrated in (Wang et al., 2016),
but such datasets are few and also not publicly available. We note
one increasing difficulty in comparing to former works which
leverage the INBreast mammogram dataset (Moreira et al., 2012)
as the dataset is no longer publicly available due to data
privacy laws.
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2.3 Deep Mammography
Recent efforts have focused on addressing challenges specific
to mammography through neural-net design. The extreme
resolution of mammogram imaging data has been a point of
technical difficulty for deep learning. To this end (Shen et al.,
2019) describes a procedural method of training
convolutional nets on local patches of tissue, then
expanding training to full scans of mammograms to
improve classification performance (Lotter et al., 2021).
further extends the idea of procedural training on tissue
patches to classifying mammograms which are obtained as
3D volumes. In (Wu et al., 2020) the authors introduce a novel
architecture in combining the left, right, and scans of varying
viewpoints for a patient-level classification. Comparatively,
our work focuses on challenges with predicting lesion
annotations which would be apparent in any such datasets
of mammograms. We expect our contribution could improve
such procedurally trained models when attempting full-scan
or patient-level diagnoses.

2.4 Joint Classification and Segmentation
The idea of applying joint classification and segmentation models
to medical images has been explored before in (Chakravarty and
Sivswamy, 2018; Wang et al., 2019; Heker and Greenspan, 2020;
Ryu et al., 2021) among others in different ways. But the
underlying motivation and approach used in the above papers
is different from what we have tried to accomplish in our work.
The multi-task learning framework has mostly been used to
ensure generalization of deep learning models which is known
to benefit the performance on both tasks. We, on the other hand,
have used the same generalization feature to overcome the quality
of hand-drawn annotations on the segmentation task. Adding on,
the constraint objective used in training, we obtain sharper
segmentation results as compared to other methods. We could
not find examples of this approach onmammography datasets for
comparison.

3 DATASET AND CALIBRATION

We obtained mammogram data from the Digital Database for
Screening Mammography (DDSM) which is a public repository
containing cases of healthy individuals, individuals with benign
breast cancer and individuals with malignant breast cancer
(Heath et al., 1998). An updated study cataloged by The
Cancer Imaging Archive under the name Curated Breast
Imaging Subset of DDSM (CBIS-DDSM) revised every cancer
annotation in DDSM and was published in 2017 (Lee et al., 2006).
In Figure 1 we tabulate the total number of samples we obtained
from the datasets. In our work, we collect samples from
individuals with malignant lesions and healthy individuals.

To obtain the most up-to-date annotations, positive samples
were collected from the CBIS dataset while negative samples were
collected from the healthy cohort in the original DDSM dataset.
For the negative samples acquired from DDSM, we followed the
instructions in the data publication to convert raw mammogram
data where intensity per pixel is digitized in 2562 integer scale to a
linear floating optical density scale between 0 ∼ 3 (Heath et al.,
1998). The optical density scale was then normalized between 0 ∼
1 to match the CBIS mammograms which were already processed
with the calibration and normalization. Before normalization, we
further clipped optical densities below 0.05 to 0 and above 3.0 to
3.0 as outlined by CBIS. All imaging data were therefore mapped
to a scale of 0 ∼ 1 per pixel for all downstream tasks.
Mammogram scans which were originally at a resolution of
4,000 × 6,000 pixels, were padded to the maximum resolution,
and then downsampled × 0.25 to 1,000 × 1,500. Finally, for
positive images, we obtained the center-of-mass for region of
interest in CBIS annotations, from which we sampled 256 × 256
resolution patches of tissue. For negative images, we used a sliding
window to generate patches of the same size. In total we collected
2,835 positive samples and 36,052 negative samples.

At inference time, we can use the sliding window to convert
test images into patches and aggregate the predictions from

FIGURE 1 | Joint DDSM-CBIS Dataset. We gather positive and negative cases of cancerous tissue from DDSM (Heath et al., 1998), the largest publicly available
source of mammogram data, and CBIS-DDSM (Lee et al., 2006) which improves the accuracy of annotations in the original dataset. In total, we sample 38,887 patches
of tissue from the mammograms. We ensure that both datasets are calibrated identically and organized into 5-Folds (5F).
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different patches to make image-level predictions. Under this
procedure, it is evident that the number of negative patches
encountered would be many times greater than the number of
positive patches. To simulate this behaviour, we chose to keep
such imbalance in our training data as well.

As a diagnostic procedure, we confirmed that the average
intensities of the mammograms approximately align across the
two datasets (Figure 1). During training, the image data
underwent augmentations such as random rotation (±15°),
random crop, random noise so that the data bias was expected
to be negligible.

4 METHODS

4.1 Feature Extraction
To empirically diagnose training andmodel choice, we performed
5-fold validation between several ResNet-based architectures.
In the comparisons, we include a Region-Proposal Network
(RPN) based on the ResNet architecture from which we obtain
initial pre-trained weights for training the full LatentCADx
model. In Figure 2, we found that the 54-layer ResNet model
(ResNet54) would ideally fit the dataset and obtained higher
Precision-Recall (PR) of 0.75 over ResNet101 which obtained
0.70 with significance (p < 0.005). Proceeding with ResNet54,
we developed the RPN starting from the feature map (8 × 8 ×
2048) and ending with an output of 8 × 8 × 2. The RPN was
therefore capable of classifying the tissue images in addition to
predicting the coarse location of lesions in each region. The
RPN models improved incrementally in performance over
their standalone ResNet counterparts, where RPN54 reached
up to 0.80 in AP. Between RPN54 and RPN101, the former
model had far fewer parameters, yet their difference in
performance was not significant. Using ROCAUC, all
models obtained a high metric which can be attributed to
high imbalance in the data between positive and negative
samples. Performance by this measure was similar ( ≥ 0.95)
across the ResNet-based models and the differences were
significant.

The RPN54 classifier obtained from joint training was
leveraged as a feature extractor for the LatentCADx model. All
ResNet-based models were trained for 50 epochs with step-wise
learning rate progressing from 0.001 and decreasing by half every
ten epochs on a single Nvidia P40 GPU using the SGD optimizer.

4.2 LatentCADx Architecture
4.2.1 Convolution Head
The LatentCADx architecture was built upon ResNet convolution
head such that we could perform weight transfer from a pre-
trained ResNet model with high classification accuracy. We
initialized these layers using the weights from 54-layer region-
proposal model (RPN54), which was determined to perform the
best with 0.80 in PR and 0.95 ROC AUC. To maintain these
weights through training LatentCADx, we scheduled training
such that for the first 15 epochs, all weights transferred from
RPN54 were locked such that only the output head leading to the
final 256 × 256 segmentation image was trained. After the 15
epochs, the layers were unfrozen such that the convolution head
could be improved. In this stage, both classification and
segmentation outputs were trained, while the region-proposal
output was discarded.

4.2.2 Unpooling of Activated Features
Several architectures exist to transition deep feature map in latent
space to an interpretable image such as unpooling and
deconvolution, further modifiable with skip connections
(Ronneberger et al., 2015) or pyramid feature mapping (Lin
et al., 2017). Skipping architectures allow information to carry
over from initial layers of the neural net before down-
convolutions, and factor in as additional activations in the up-
convolutions leading to the segmentation prediction. We
implement a series of deconvolution blocks which takes as
input the forward evaluated features and skipped features
from the initial ResNet layers. From the deepest feature map
of 8 × 8 × 2048, each deconvolution increases the sizes of the
image dimension by a factor of 2 while reducing the number of
latent dimensions. The final output of the deconvolution head
arrives at a dimension of 256 × 256 × 1 which is interpreted as a

FIGURE 2 | Model Selection. We compared ResNet-54, ResNet-101 and a joint prediction and region-proposal model architecture (RPN) based on the ResNet
model. Under Precision-Recall and the Receiver Operating Characteristic, the joint predictors RPN54 and RPN101 both significantly outperformed their baseline
counterparts with significance. We chose RPN54 as the feature extractor for the full LatentCADx model.
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segmentation image. We visualize the architecture of the full
model in Figure 3.

4.3 Weakly-Supervised Objective
Separate treatment is given to segmentation areas which egress
outside or remain inside the clinical hand-drawn boundary. We
build upon the combination of Categorical Cross-Entropy
(CrossEnt) (Rubinstein, 1999) and Mean-Square Error (MSE)
(Makhzani et al., 2015) losses for the objective of simultaneous
classification and localization (Ross, 2015; He et al., 2017).
Hyperparameters α and β can control the prioritization of
either part of the objective during training.

CrossEnt(y, ŷ) � −ŷlog(y) + (1 − ŷ)log(1 − y) (1)

MSE(M, M̂) � 1
N

∑N
i�1

Mi − M̂i( )2 (2)

L(y, ŷ,M, M̂) � αpCrossEnt(y, ŷ) + βpMSE(M, M̂) (3)

We define M̂ as the ground-truth segmentation mask, which
in our context were hand-drawn annotations of lesions converted
to binary masks in tissue samples.

Ideally the mask is assumed to be reasonably semantically
consistent with the target subject in the images for the best
segmentation results. We note once more that for the
mammography task that the annotated boundaries are far
from pixel-perfect. To overcome this challenge, we first relied
on the convolution features driving high accuracy in binary
prediction by weight transfer. Then in segmentation training,
we treat the area outside the segmentation boundary oob and
inside the boundary inb separately, allowing greater flexibility for
mask loss LM̂.

LM̂ ∼ βpLinb + cpLoob (4)

Element-wise product with the inverted mask 1 − M̂ � M̂
′

with the prediction can indicate the oob positions which egress
outside the annotated boundary. As we tolerate no predictions in
oob, a heavy loss is incurred for such predictions. The penalty for
this region is applicable to Noob � ∑N

i�1M̂i′ positions and can be
expressed as:

Loob � 1
Noob

∑N
i�1

M̂i′ Mi − 0( )2 � 1
Noob

∑N
i�1

M̂i′M2
i (5)

Note that the sum part (∑N
i�1M̂i′M2

i ) essentially represents the
sum over all elements in M̂

′
with Noob elements. Thus, Loob is an

MSE loss over M̂
′
. Similarly, the region in-bounds inb can be

indicated element-wise by the annotation mask M. Due to the
joint architecture of LatentCADx, segmentation predictions
within inb are driven by features which also contribute to the
accuracy of ŷ. The valid area within bounds can be tallied
as Ninb � ∑N

i�1M̂i.

Linb � 1
Ninb

∑N
i�1

M̂i M̂i −Mi( )2 (6)

In the presence of unreliable ground-truth annotations for inb,
we regularize the overall parameter space through pre-training,
scheduling and prioritization of objectives. We prioritize the
different objectives using hyperparameters α, β and c,
expressing the full objective:

L(y, ŷ,M, M̂) � αpCrossEnt(y, ŷ)

+βp 1
Ninb

∑N
i�1

M̂i M̂i −Mi( )2⎛⎝ ⎞⎠

+cp 1
Noob

∑N
i�1

M̂i′M2
i

⎛⎝ ⎞⎠
(7)

As the model should not compromise classification accuracy,
nor produce segmentations outside the annotation boundary, the
weighting of the hyperparameters were prioritized as β < c < α.

Training of the model was performed using one Nvidia P100
instance over 100 epochs with early termination. We chose the
SGD optimizer with initial training weight of 0.001 and
scheduled a decrease in learning rate by a factor of half every
10 epochs. A learning schedule was implemented such that for
the first 15 epochs, the inb and oob weights β and c were
unweighted and equal to 1. After 15 epochs, all layers of

FIGURE 3 | LatentCADx Architecture. LatentCADx consist of a modular architecture which allows weight transfer and selective training of layers and prediction
outputs. We outline a procedural approach to training LatentCADx such that features driving high classification accuracy are consistent with final segmentation image
(diagram created via Google Slides https://slides.google.com).
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LatentCADx were trained which included loss from the
classification output. For the full training stage, the loss
weights were configured with α � 2, β � 1 and c � 0.5. For
all training procedures, we used a batch size of 32 images per
batch and allows early termination when validation loss did not
change within 1 × 10−6. The convergence of all ResNet-based
models and the final LatentCADx model is shown in the
Supplementary Materials (Supplementary Figures S2, S3).

5 RESULTS

5.1 Performance Evaluation With Imprecise
Annotations
We demonstrate quantitatively and qualitatively that
LatentCADx detects underlying features of lesions, improving
the quality of lesion segmentations. Several examples of
annotations were visualized for which LatentCADx
segmentations captured underlying lesions with greater detail
within hand-drawn annotations (Figure 4). We quantified and
compared segmentation performance of our model based on
Average Precision (AP) on specific IOU thresholds of 0.3, 0.5,
and 0.7 as defined in the COCO (Lin et al., 2014) and PASCAL
VOC (Everingham et al., 2015) challenges. In comparisons with
U-Net (Ronneberger et al., 2015) [implemented using (Buda
et al., 2019)’s official implementation], Fully Convolutional
Networks (FCN) (Long et al., 2015), and Multi-Scale Attention
Network (MANET) (Fan et al., 2020) [implemented using
(Yakubovskiy, 2020)] (Figure 5), we found LatentCADx
demonstrated the best overall AP score. The performance of
AP � 0.75 was significantly better the second best model U-Net
(AP � 0.62) on IOU � 0.5 threshold (Table 1). Performance was
also separately measured for test samples categorized as Mass and
Calcification type lesions, in which LatentCADx also obtained
highest AP for Mass lesions. For Calcification lesions, U-Net and
MANET demonstrated the highest performance.

We note that the annotations taken as ground truth for
calculation of these metrics are imprecise and thus, these
metrics don’t accurately measure performance. This problem
persists with other commonly used metrics like average IOU
scores and DICE scores as well. Thus, in the next subsection, we
introduce new metrics that give us more insights into the
performance of these models and are more suited to the task
at hand, and demonstrate the superiority of our method.

We also note that Calcification annotations rarely adhere to
the underlying lesion area as compared to Mass annotations. The
orthogonal performance between Mass and Calcifications lesions
likely reflects the coarseness of Calcification annotations and the
conservative segmentations for smaller underlying lesions by
LatentCADx. We justify this claim in the next subsection.

We further access the performance of LatentCADx predictions
by looking at the binary classification performance. InTable 2, we
compared our classification results to baseline models VGG19
(Simonyan and Zisserman, 2014) and ResNet (He et al., 2015). In
5-fold testing we observed that using the LatentCADx features
allowed the classifier to reach a final performance which was
overall best in F1-Score, Precision-Recall, AP, and Receiver
Operating Characteristic (ROC). Most notably, the
LatentCADx-based classifier obtained 0.87 AP improving with
signifiance upon 0.81 AP of the unmodified ResNet trained from
scratch (p < 0.005). As the dataset was imbalanced due to higher
number of healthy tissues than annotated tissues, there was
smaller differences in ROC performance yet LatentCADx also
obtained the highest metric of 0.97 ROCAUC.

Finally, we explored the necessity of procedural training in
obtaining the LatentCADx model by training the same
architecture from scratch with no feature transfer step. This
alternative to LatentCADx was trained through random
initialization and from scratch while using an identical
architecture as the final LatentCADx model. Forgoing all
procedural steps, the same architecture obtained 0.81 AP
which was in line with the performance of unmodified ResNet,

FIGURE 4 | LatentCADx Segmentation. Clinical annotations are denoted in red and LatentCADx segmentations are overlayed in green. The weakly-supervised
model constrained with multiple objectives predicted segmentation labels with higher detail than the annotations viewed in training. Predictions are visualized from
validation samples which were not observed by the model until evaluation (Mammograms obtained from (Lee et al., 2006); CC BY open access license).
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FIGURE 5 | Segmentation Characteristics. Segmentation performance of LatentCADx (LCX) was measured using Average Precision (AP) based on precision-
recall, for fixed Intersection Over Union (IOU) thresholds. (A) For IOU � 0.5 on all types of lesions, LatentCADx obtained the highest AP, followed by comparable
segmentation models U-Net and FCN. Further breakdown on performance is given by separating predictions for lesions by (B)Mass, where LatentCADx also obtained
the highest AP and (C) Calcifications.

TABLE 1 | Segmentation Performance (based on imprecise annotations) Average Precision (AP) of segmentation predictions were measured for ground truth annotations at
varying Intersection Over Union (IOU) thresholds 0.3, 0.5 and 0.7 for LatentCADx (LCX) and three comparable approaches. Segmentation performance was further
examined by binning APs by lesions annotated as Mass (M) and Calcification (C).

Lesion M & C Mass Calcification

IOU 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7
U-Net (Ronneberger et al., 2015) 0.84 0.62 0.37 0.94 0.80 0.51 0.73 0.41 0.19
FCN (Long et al., 2015) 0.69 0.48 0.26 0.86 0.64 0.36 0.48 0.26 0.05
LCX 0.86 0.75 0.48 0.97 0.86 0.53 0.41 0.21 0.15
MANET (Fan et al., 2020) 0.72 0.54 0.29 0.86 0.71 0.41 0.58 0.36 0.19

Bolded numbers indicate highest score obtained under each metric.
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and could not reach the same performance as our final model
(Supplementary Figure S1).

5.2 Precision Evaluation
In an overwhelming majority of hand-drawn annotations, the
annotations circumscribe the lesion completely, leaving extra
space between the underlying lesion and annotation boundary
that captures healthy tissue. For simplification, we will ignore the
minority cases where this is not true and the annotations don’t
circumscribe the lesions.

Given this, IOU between prediction mask and annotations is
not a valid metric to judge the performance of a segmentation
model. Thus, we split IOU into two new metrics, namely IOP
(Intersection over Prediction) and IOA (Intersection over
Annotation) to reveal more details about the performance. As
the name suggests,

IOP � Prediction ∩ Annotation

Prediction
(8)

IOA � Prediction ∩ Annotation

Annotation
(9)

IOP and IOA can also be understood as the pixel level specificity
and sensitivity of the predictions. For the situation when the
Annotation mask is known to imprecisely circumscribe the actual
underlying lesion, any model that accurately predicts the underlying
lesions will have high IOP and low IOA. On the other hand, the
models that get confused by the circumscribing annotations will
have higher IOA but lower IOP. Now, we look at the average IOA
and IOP values for different models on the validation set.

In Table 3, we see that LatentCADx predictions have
overwhelmingly and uniquely high mean IOP across all types
of lesions. Our predictions score an IOP of 0.88 for Calcifications
and 0.92 IOP for Mass, in contrast to U-Net with the next best
IOP of 0.66 for both types of calcifications. In addition to high
IOP, LatentCADx predictions also obtain the lowest mean IOA of

0.28 for all lesions and 0.13 for Calcifications specifically. No
other models obtained similar IOA, where the next-best overall
IOA of 0.44 was obtained using FCN. Thus, we demonstrate that
LatentCADx predictions are majorly intersecting with the
annotations but generally smaller in size. Given circumscribing
annotations, we expect the unobserved underlying lesions to have
a profile which is consistent with our findings using IOP and IOA.
Considering that segmentation and classification performance
using LatentCADx are comparable or better than other
approaches, we claim that LatentCADx is likely targeting
underlying lesions. Simultaneously, our result points to the
deficiency in annotation quality for calcification cases, which
was observed in qualitative evaluation.

To further distinguish LatentCADx from the capabilities of
existing methods, we seek to quantify the uncertainty in
segmentation prediction in the boundary of lesions. To capture
the uncertainty of this prediction boundary, we look at the pixel level
probabilities in the predictions of different models. For each model,
we observe varying degrees of confusion in the segmentation
prediction, which is visualized in Figure 6.

Asmost annotations do not perfectly separate healthy tissue from
the lesion areas, all models exhibit a boundary of uncertainty
approaching the annotation boundary. This leads to large bands
of uncertain pixels around the predicted lesions. To capture the size
of this band, we define a new metric called confused pixels. In
practice, we quantified confused pixels in the model predictions by
thresholding the pixel values between 0.5 − ϵ and 0.5 + ϵ for some
suitable value of ϵ. For ϵ � 0.2, we calculated the average number of
confused pixels in the model outputs on the validation set and
tabulated our results inTable 4.We observed a clear reduction in the
mean number of confused pixels in LatentCADx. For all types of
lesions, confused pixels were reduced × 2.5 fold in comparison to
FCN, which was the next best model under thismetric.We therefore
assessed that our approach drastically reduces the uncertainty in the
prediction boundary.

TABLE 2 | Classification Performance. We compared the classification accuracy of VGG19, standalone ResNet-54, and the final LatentCADx model as a classifier. Through
weight transfer and additional joint training for segmentation under the LatentCADx objective, we observed an increase in classification performance of the final
LatentCADx model.

Model F1 score Precision Recall AP ROC

VGG19 (Simonyan and Zisserman, 2014) 0.75 0.84 0.68 0.83 0.95
ResNet54 (He et al., 2015) 0.74 0.80 0.68 0.81 0.95
LCX 0.77 0.86 0.70 0.87 0.97

Bolded numbers indicate highest score obtained under each metric.

TABLE 3 | Intersection Performance. Mean intersection over union (IOU), prediction (IOP) and annotation (IOA) for LatentCADx and other models. Predicted pixel values of all
models was normalized to 0–1 range and were threshold at 0.5. Intersection performance was further examined by binning the values by lesions annotated as Mass (M)
and Calcification (C). LatentCADx has the maximum mean IOP and minimum mean IOA values.

Lesion M & C Mass Calcification

Metrics IOU IOP IOA IOU IOP IOA IOU IOP IOA

U-Net (Ronneberger et al., 2015) 0.41 0.66 0.62 0.49 0.69 0.68 0.34 0.63 0.57
FCN (Long et al., 2015) 0.28 0.64 0.44 0.37 0.69 0.51 0.21 0.61 0.37
LCX 0.25 0.90 0.28 0.42 0.92 0.44 0.11 0.88 0.13
MANET (Fan et al., 2020) 0.40 0.66 0.62 0.50 0.69 0.70 0.31 0.62 0.55

Bolded numbers indicate highest score obtained under each metric.
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Another look at Table 4 shows that for methods that take the
annotations as ground truth labels, the mean number of confused
pixels shows amarked increase frommass to calcification bracket.
This is another indication that calcification annotations in the
dataset are of poorer quality. On the other hand, our method in-
fact decreases the number of confused pixels on calcification cases
suggesting that our model is able to hone in on lesions with high
precision.

5.3 Qualitative Evaluation
5.3.1 Interpretable Segmentations
Qualitative evaluation was performed by visualizing all
segmentation predictions over the reserved validation set. We
visualized the predictions of LatentCADx and U-Net which was
the next best performing segmentation model. We also introduced
LatentCADx-α to this comparison as an ablation experiment,
which shares the same architecture of LatentCADx but was
trained from scratch under an unweighted classification-
segmentation objective. We highlight the differing segmentation
characteristics of the models in Figures 7–9.

Segmentation models share a similar pixel-wise probability
output by constraining the output layer using Softmax or Sigmoid
operations. In our evaluation, we first noted greater clarity and
specificity in weakly-supervised segmentations without the need
for clipping predictions to an arbitrary threshold (≥ 0.5).
Specifically in Figure 7A, we emphasize that outputs for
U-Net can be hard to interpret due to lack of a classification
boundary. LatentCADx predicts clear segmentations, and we
emphasize that they would not be obtainable through
thresholding the predictions of an alternate model.

FIGURE 6 | Confused Pixels. We find that all model outputs form a gradually decreasing intensity value as we leave the location of predicted lesion.

TABLE 4 | Confused Pixels. We find out the average number of pixels in the
predictions of different models such that their values lie between 0.3 and 0.7.
We claim that these are confused pixels where the model is unsure of classifying
them between healthy and pathological.

Metric: Mean number of confused pixels

Lesion M & C Mass Calcification

U-Net (Ronneberger et al., 2015) 6,878.00 5,337.25 8,186.59
FCN (Long et al., 2015) 4,335.97 4,127.27 4,513.22
LCX 1,677.55 1811.41 1,563.86
MANET (Fan et al., 2020) 9,238.39 7,322.93 10,865.23

Bolded numbers indicate highest score obtained under each metric.

FIGURE 7 | Overlap between clinical annotations (red) and segmentation predictions are indicated as yellow. Segmentation predictions outside the ground-truth
annotations are colorized in green. Columns left to right visualize the tissue image from the validation set, followed by segmentation predictions by four comparable
models including LatentCADx. (A)Clarity in Segmentations LatentCADx predicted segmentations with clear boundaries and localization beyond the coarse annotations.
(B) Calcification Detection LatentCADx segmentations circumscribe calcifications while circumscribing minimal amounts of healthy tissue (Mammograms obtained
from (Lee et al., 2006); CC BY open access license).
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5.3.2 Calcification Detection
LatentCADx was effective in predicting calcifications with
minimal over-segmentation. In Figure 7B we present
several samples where segmentations for calcifications were
either smaller than the annotated region or smallest compared
to all other methods. In the majority of cases smaller
segmentation predictions corresponded to calcification
lesions with excessive annotation boundaries.

5.3.3 Multiple Detections
Several segmentation predictions were more descriptive than
ground-truth annotations (Figure 8). We observed several

annotations combining more than one lesion, which could be
individually highlighted by LatentCADx segmentation
predictions. We assessed that a fully supervised approach is
unlikely to produce these multiple segmentations as no hand-
drawn annotation was nearly as detailed.

5.3.4 Indication of Incomplete Annotations
Among the cases where segmentations obtained through
unsupervised training does egress the ground-truth annotation,
we note that the annotation boundary sometimes capture growth
or calcifications which were not completely annotated as part of
the CBIS or DDSM datasets (Figure 9).

FIGURE 8 | Multi-Modal Detection Top, predictions across models on a sample with multi-modal spread of calcifications. Bottom, detailed view of multi-modal
predictions (Mammograms obtained from (Lee et al., 2006); CC BY open access license).

FIGURE 9 | Incomplete Annotations Ground-truth segmentations which do not appear to comprehensively capture the region of interest and segmented differently
by LatentCADx (Mammograms obtained from (Lee et al., 2006); CC BY open access license).
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6 DISCUSSION

Direct segmentation is not usually attempted where ground-truth
pixel values are not available because the presence of inconsistent
margins in ground truth introduces uncertainty to a segmentation
objective. Instead prior work have delegated to heatmap proposal
or bounding box segmentation (Ribli et al., 2018; Ulzee et al., 2018).

When attempting segmentation on imperfect annotations, we
observed a lack of separation between subject and background.
This effect corresponds to a gradual decrease in probability as the
true boundary could not be resolved due to the high presence of
healthy tissue annotated around underlying lesions.

Existing models evaluated in our study are capable of
producing reasonably distinct segmentations as long as pixel-
perfect ground-truth annotations are available. However, this is
an expensive proposition in the domain of medical imaging and
especially tissue segmentation. The problem of lesion
segmentation itself is a difficult task which follows a
standardized procedure (Rao et al., 2016) developed over the
history of radiology. Historically, the largest datasets in the
domain such as DDSM (Heath et al., 1998) have therefore
been compiled from digitizing existing repositories of real-
world diagnosis made by experts in the real clinical setting
over the years. Along increasing privacy regulations hindering
the distribution of imaging data for general research, such
datasets can be rare to come by and costly to source.

Given the ability of LatentCADx to give high-precision
prediction masks, this work can be naturally extended to
create a semi-supervised annotation pipeline by annotating a
small number of images with pixel-perfect accuracy and training
a relatively simple difference model that maps the output of
LatentCADx to gold standard annotations. This pipeline can be
further tested by radiologists to ascertain quality control. Such a
system would be able to drastically improve the performance of
current assistive diagnostic tools with the least possible cost.

7 CONCLUSION

We pose a fundamental problem of coarse annotations that
are widely found in medical imaging datasets which are

originally hand-annotated. We propose LatentCADx, a
deep neural net architecture and a joint localization-
classification objective capable of surmounting the effect of
ill-defined margins affecting deep segmentation models today.
Fitting the joint objective leads to a shared featuremap which
yields an improvement in classification accuracy beyond
baseline classifiers (AUC 0.97, AP 0.87). We also observe
that LatentCADx is capable of leveraging those same features
to not only improve general segmentation performance (AP
56.8) but also infer highly expressive segmentations with
greater specificity (IOP 0.90, IOA 0.28) than the hand-
drawn annotations the model observed in training Heath
et al., 2010.
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