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Introduction
Cell proliferation in the multicellular organism is tightly con-

trolled through the cooperative efforts of numerous microenvi-

ronmental cues, including soluble growth factors and adhesion 

to the ECM. One potential point of integration between growth 

factor and adhesive signaling is in the focal adhesion (Schwartz 

and Ginsberg, 2002). Focal adhesions are structures that arise 

during the binding and clustering of integrins and serve to phys-

ically link the actin cytoskeleton to the underlying ECM. 

 Because they also contain numerous growth factor receptors 

and signaling proteins, focal adhesions have been proposed as 

localized sites where growth factor and adhesion signaling con-

verge (for reviews see Schwartz and Ingber, 1994; Sastry and 

Horwitz, 1996). FAK is a key effector in focal adhesion sig-

naling and a potential integrator of integrin- and growth factor–

mediated proliferative signaling. It is rapidly phosphorylated 

after integrin ligation (Guan et al., 1991; Burridge et al., 1992; 

Kornberg et al., 1992), which stimulates its kinase activity 

(Guan and Shalloway, 1992; Lipfert et al., 1992) and triggers 

the activation of signaling pathways involved in modulating 

 focal adhesions and their surrounding cytoskeletal structures 

(Parsons et al., 2000; Geiger et al., 2001).

Given its central role in adhesion signaling, it is not sur-

prising that numerous studies have demonstrated a regulatory 

role for FAK in cell cycle progression (Gilmore and Romer, 

1996; Zhao et al., 1998; Oktay et al., 1999). Such studies have 

shown that FAK overexpression drives G1/S phase cell cycle 

progression, whereas dominant–negative FAK mutants, such as 

FRNK, or anti-FAK antibodies block the cell cycle at the G1/S 

phase boundary (Gilmore and Romer, 1996; Zhao et al., 1998; 

Nolan et al., 1999; Oktay et al., 1999). Mechanistically, FAK 

overexpression appears to enhance the transcriptional activa-

tion of cyclin D1 (Zhao et al., 1998). FAK appears to regu-

late the G1 cell cycle machinery through numerous signaling 

pathways. In endothelial cells (EC), FAK is required for sus-

tained ERK activity downstream of VEGF stimulation (Hood 

et al., 2003).  Additionally, FAK regulates the activity of the 

Rho GTPase RhoA, which is also required for sustained ERK 

signaling (Danen et al., 2000; Ren et al., 2000; Welsh et al., 

2001).  Importantly, although FAK signaling clearly modulates 
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dependent growth control in these cells, and expression of 
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and promote growth, and underscore the importance of 
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cell  cycle progression, it does not appear to be required, as 

FAK−/− cells and cells treated with FAK RNAi still prolif-

erate (Ilic et al., 1995; Duxbury et al., 2003). Thus, the role of 

FAK in adhesion-regulated proliferation is likely to be multi-

faceted, and may depend on the adhesive context in which FAK 

signaling occurs.

To conceptually dissect how FAK might regulate  adhesion-

dependent proliferation, it is necessary to defi ne adhesion 

more precisely. Although cell adhesion is initiated by integrin 

binding to ECM ligands, it involves numerous other processes, 

such as integrin clustering, focal adhesion maturation, and cell 

spreading and fl attening against the substrate, each of which ap-

pears to be involved in regulating proliferation. Integrin ligation 

and clustering, although necessary for the proliferation of ad-

herent cells, is not suffi cient to support cell cycle progression. 

Proliferation also requires that the ECM allows cells to physi-

cally spread against the substrate; cells that are prevented from 

spreading or fl attening against the ECM are growth arrested 

(Chen et al., 1997). Interestingly, these changes in cell spread-

ing appear to be required for RhoA-mediated cytoskeletal ten-

sion and focal adhesions to develop (Chen et al., 2003; Tan 

et al., 2003), and inhibiting cytoskeletal tension and focal adhe-

sion formation appear to abolish proliferation in spread cells 

(Bohmer et al., 1996; Huang et al., 1998). Thus, changes in in-

tegrin ligation, cell spreading, cytoskeletal tension, and focal 

adhesion formation are clearly interdependent, and have all 

been implicated in growth regulation. Because of the prominent 

role of FAK in multiple aspects of the adhesive processes, in-

cluding focal adhesion development (Lewis and Schwartz, 

1995), spreading (Gilmore and Romer, 1996; Richardson et al., 

1997), and mechanical tension (Burridge and Chrzanowska-

Wodnicka, 1996), FAK may serve as a critical point of integra-

tion for transducing each of these adhesive processes into a 

coordinated biological response, such as proliferation.  However, 

despite the involvement of FAK in the various aspects of adhe-

sion, how FAK functions to regulate proliferation under differ-

ent adhesive contexts is ill defi ned.

By examining the proliferative effects of modulating FAK 

in different adhesive contexts, we have found that FAK plays 

a dual role in regulating growth. In contexts of high adhesion, 

FAK activity and proliferation are high. In low ECM ligand or 

low cell-spreading contexts, normally growth-arrested cells can 

be induced to proliferate by activating FAK. Surprisingly, the 

growth inhibition in these low adhesive states is mediated by 

inactive FAK, as loss of FAK in either FAK−/− cells or FRNK-

expressing cells dysregulated adhesion-dependent growth control. 

Full-length, kinase-dead FAK-Y397F, in contrast to FRNK, 

rescued adhesion-dependent growth regulation, suggesting the 

possibility that the N terminus of FAK may mediate the growth 

inhibitory function. The uncontrolled growth after loss of FAK 

was mediated through an increase in RhoA signaling and cyto-

skeletal tension. Thus, FAK appears to transduce both high 

adhesive signals, to stimulate proliferation, and low adhesive 

signals, to arrest growth. This dual nature highlights FAK as a 

central control point for growth regulation, and underscores its 

critical role in integrating the multiple adhesive, mechanical, 

and biochemical functions of focal adhesions.

Results
FAK regulates adhesion-mediated 
proliferation
To begin to explore the role of FAK in regulating proliferation, 

we fi rst established the dependence of bovine pulmonary artery 

EC proliferation on growth factors and adhesion. Cells were 

G0 synchronized at confl uence, replated under various growth 

factor or adhesive conditions, and assayed for proliferation by 

tracking BrdU incorporation as a marker of S phase entry. As 

expected, when ECs were exposed to low serum (0.01%) or 

grown on surfaces coated with a low density of fi bronectin 

Figure 1. FAK regulates adhesion-mediated 
proliferation. (A–D) Graph of the percentage 
of ECs in S phase, measured by the incorpora-
tion of BrdU (A), immunofl uorescence images 
of vinculin (B and C), and a graph of the aver-
age focal adhesion area per cell (D) in cells 
cultured for 24 h in 5 or 0.01% serum, on sur-
faces coated with 25 μg/ml fi bronectin. (E–H) 
Graph of the percentage of ECs in S phase (E), 
immunofl uorescence images of vinculin 
(F and G), and graph of average focal adhesion 
area per cell (H) in cells cultured in 5% serum 
on surfaces coated with 25, 0.5, or 0.1 μg/ml 
 fi bronectin. (I–K) Graph of the percentage of 
GFP- or FAK-overexpressing ECs that enter S 
phase when cultured on 25 μg/ml fi bronectin-
coated surfaces in 5% serum (I), on 25 μg/ml 
fi bronectin-coated surfaces in 0.01% serum (J), 
or on 0.1 μg/ml fi bronectin-coated surfaces in 
5% serum (K). (L) Average area of cells when 
cultured in 5% serum and on surfaces coated 
with 25, 0.5, or 0.1 μg/ml fi bronectin. Data 
is expressed ± SEM for three independent 
 experiments. *, P < 0.05. Bar, 20 μm.
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(0.1 μg/ml), cell proliferation was inhibited compared with 

cells grown in high serum (5%) or on surfaces coated with a 

high density of fi bronectin (25 μg/ml; Fig. 1, A and E). To ex-

amine whether the serum or fi bronectin concentrations affected 

focal adhesion formation, we analyzed vinculin distribution 

by immunofl uorescence. Whereas cells grown in high serum 

formed large, well-defi ned focal adhesions (Fig. 1 B), cells cul-

tured in low serum showed reduced focal adhesion number and 

area (Fig. 1, C and D). Fibronectin concentration affected focal 

adhesion formation to an even greater extent (Fig. 1, F–H). This 

correlation between proliferation and focal adhesion area in 

both serum- and adhesion-regulated growth suggested the pos-

sibility that FAK might be involved in both growth factor– and 

adhesion-mediated proliferation. To begin to explore this possi-

bility, we examined whether overexpression of FAK could over-

come the proliferation block caused by either low serum or 

low-density fi bronectin. G0-synchronized ECs were transduced 

with a recombinant adenovirus containing wild-type FAK, re-

sulting in FAK overexpression and constitutive autophosphory-

lation. FAK overexpression did not rescue the growth arrest 

caused by low serum and did not affect proliferation induced by 

high serum (Fig. 1, I and J). In contrast, cells plated on low-

density fi bronectin dramatically increased proliferation upon 

FAK overexpression (Fig. 1 K). These fi ndings suggest the pos-

sibility that FAK mediates the proliferative signals initiated by 

adhesion, but not by growth factors.

Cell adhesion involves many different steps, including 

integrin ligation and clustering and cell spreading and fl atten-

ing against the substrate (Chen et al., 1997). Decreasing fi bro-

nectin density not only decreased integrin clustering and focal 

adhesion formation, but also impaired cell spreading (Fig. 1 L). 

Because changes in cell spreading can directly regulate cell 

proliferation, despite the presence of excess extracellular 

matrix, we examined whether FAK is also involved in the regu-

lation of cell proliferation by changes in cell shape. To specifi -

cally modulate cell shape without altering fi bronectin density 

and integrin clustering, we used microcontact printing to gen-

erate micrometer-scale islands coated with a high density of 

fi bronectin, separated by nonadhesive regions such that the 

size of the islands dictated the degree of cell spreading. ECs 

seeded onto small, square islands (625 μm2) remained rela-

tively unspread, whereas ECs seeded onto uniformly coated 

surfaces spread to an average of 2,000 μm2 (Fig. 2, A and B). 

 Measurement of S phase entry under these conditions dem-

onstrated that the unspread cells could not proliferate (Fig. 

2 C). Substantially fewer and smaller focal adhesions formed 

in the growth-arrested unspread cells compared with spread 

controls (Fig. 2, D–F), suggesting the possibility that altera-

tions in focal adhesion architecture and/or signaling may also 

underlie proliferative regulation by cell spreading. To examine 

whether cell spreading specifi cally affected FAK activity, we 

measured FAK phosphorylation at tyrosine 397 in these cells. 

At early time points after replating, attachment, spreading, 

and FAK phosphorylation at Y397 was similar between spread 

and unspread cells (Fig. 2 G). At later time points, unspread 

cells showed progressively lower FAK phosphorylation while 

spread cells transiently increased FAK activation (Fig. 2 G). 

These data suggested the possibility that FAK signaling may 

be fundamentally different in spread versus unspread cells and 

that FAK may be directly involved in the proliferation response 

of cells to changes in cell spreading.

To explore this possibility, cells were transduced with 

wild-type FAK adenovirus and cultured on the micropatterned 

substrates. FAK overexpression increased proliferation as com-

pared with a GFP control (Fig. 2 H). Because FAK overexpres-

sion appears to rescue proliferation that was inhibited both by 

low-density fi bronectin and by reduced cell spreading, but not 

by low serum, FAK appears to be specifi cally involved in pro-

liferative signals mediated by adhesive cues. In physiologic 

settings, however, the primary mode of adhesion-mediated 

arrest in ECs is mediated by confl uence of the monolayer, not 

through changes in ligand density or cell area. To test whether 

FAK signaling is involved in confl uence-induced arrest, we 

expressed FAK in monolayer cultures. FAK overexpression 

increased proliferation in cells arrested by traditional contact 

inhibition (Fig. 2 I). Together these studies suggest that FAK 

may be involved in several of the means by which adhesion 

regulates proliferation.

Figure 2. FAK regulates shape-mediated proliferation. (A and B) F-actin 
(red) and DAPI (blue) stain of ECs cultured on surfaces uniformly coated 
with 25 μg/ml fi bronectin (Spread; A) or onto 625-μm2 islands of fi bro-
nectin (Unspread; B). (C) Graph of the percentage of spread versus un-
spread cells in S phase measured by the incorporation of BrdU. (D and E) 
Immunofl uorescence images of vinculin in cells cultured on surfaces uni-
formly coated with 25 μg/ml fi bronectin (D) or onto 625-μm2 islands of 
 fi bronectin (E). (F) Graph of the average focal adhesion area per spread 
versus unspread cell. (G) Western blot of phospho–Y397-FAK and total 
FAK in spread (S) versus unspread (U) cells at 30, 60, 90, 180, and 360 min 
after replating, and a graph showing phospho-FAK normalized to total 
FAK. (H and I) Graph of the percentage of GFP- or FAK-overexpressing ECs 
that enter S phase when cultured on 625-μm2 islands of fi bronectin (H) or 
in a monolayer (I). Data is expressed ± SEM for three independent 
 experiments. *, P < 0.05. Bar, 20 μm.
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Loss of FAK signaling causes constitutive 
cell proliferation
The stimulation of proliferation by FAK overexpression suggests 

at least two possible models for adhesion-regulated proliferation.

The fi rst, and predominantly accepted, model is that FAK 

 activity triggered by adhesion stimulates proliferation (Gilmore 

and Romer, 1996; Zhao et al., 1998). A second, equally plau-

sible model is that inactive FAK in cells with limited adhesion or 

spreading inhibits proliferation. To begin to address these pos-

sibilities, we examined the proliferative response of cells com-

pletely lacking FAK. G0-synchronized FAK−/− mouse embryo 

fi broblasts were seeded onto micropatterned islands of various 

sizes or onto unpatterned surfaces, where the cells ranged in 

size from 625 μm2 to fully spread (�2,500 μm2; Fig. 3 A). 

Well-spread FAK−/− cells proliferated maximally, as expected 

(Fig. 3 B). Surprisingly, unspread FAK−/− cells also prolifer-

ated (Fig. 3 B), indicating that loss of FAK may have eliminated 

adhesion-dependent proliferative control mechanisms. To address 

this, we examined the effect of reexpressing FAK on proliferation.

FAK reexpression to endogenous levels, which resulted in 

the rescue of the spreading-dependent FAK autophosphorylation 

seen in ECs (Fig. 3 C), inhibited proliferation only in unspread 

cells, rescued normal adhesion-dependent growth control, and 

confi rmed that the loss of growth control was specifi c to loss 

of FAK (Fig. 3 B). The constitutive proliferation in FAK−/− 

cells suggests that one important and previously undescribed 

func tion of FAK is to limit proliferation in low adhesive condi-

tions. However, although the micropatterned substrates provide 

a pre cise quantitative method to control adhesion, fi broblasts 

are typically adhesion-regulated in a 3D  microenvironment. 

In this context, we cultured the FAK−/− and FAK- reexpressing 

fi broblasts in 3D collagen gels, where cell proliferation is 

often  suppressed. Consistent with the micropatterning studies, 

FAK−/− cells continued to proliferate at higher levels in the 

collagen gel, whereas FAK reexpression rescued growth sup-

pression (Fig. 3 D). As with ECs, highly overexpressing FAK to 

severalfold above endogenous levels in the FAK-reexpressing

fi broblasts increased proliferation in unspread conditions 

(unpublished data). Thus, it appears that a delicate balance of 

FAK expression is needed for proliferative control.

Because the FAK−/− and FAK-reexpressing cell lines 

are immortalized, and known compensatory changes in sig-

naling pathways might have affected our interpretation of the 

proliferative effect, we next examined whether the same in-

hibitory role of FAK in proliferation might operate in normal 

nonimmortalized cells. To address this question, we generated 

recombinant adenoviruses to express the well-characterized 

dominant–negative FAK construct FRNK; consisting of amino 

acids 668–1,053 of wild-type FAK (Schaller et al., 1993), 

as well as a shorter C-terminal construct of FAK contain-

ing  only the focal adhesion–targeting (FAT) domain (amino 

acids 919–1,053; Prutzman et al., 2004). We also generated an 

 autophosphorylation-defective FAK mutant (FAK-Y397F) in 

adenovirus (Schaller et al., 1994). Infecting cells with the FAK 

adenovirus causes overexpression of FAK that is highly phos-

phorylated (Fig. 4 A), whereas expression of FRNK, FAT, and 

FAK-Y397F down-regulates endogenous FAK phosphorylation 

(Fig. 4 A). Previous studies have shown that FRNK and FAT 

displace endogenous FAK from adhesions (Richardson and 

 Parsons, 1996). We have confi rmed these fi ndings in our  system. 

Figure 3. FAK has a growth inhibitory role. (A and B) F-actin stain (A) and graph of the percentage of cells in S phase (B) for FAK−/− cells and FAK-
 reexpressing cells cultured on different-sized islands of fi bronectin. (C) Western blot of phospho–Y397-FAK and total FAK in FAK−/− and FAK-reexpressing 
cells in spread (substrates coated with 25 μg/ml fi bronectin; S) or unspread (substrates patterned with 625-μm2 islands of fi bronectin; U) conditions. 
(D) Graph of the percentage of FAK−/− and FAK-reexpressing cells in S phase when cultured in a 3D collagen gel. All data is expressed as ± SEM for 
three independent experiments. *, P < 0.05 between FAK−/− or FAK-reexpressing cells. Bar, 10 μm.
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Cells expressing GFP, FRNK, FAK, and FAK-Y397F were frac-

tionated into Triton X-100–soluble and –insoluble pools and 

blotted for FAK. FRNK decreased total FAK in the insoluble pool 

and phosphorylated FAK to nearly undetectable levels (Fig. 4 B). 

Similarly, FRNK expression also decreased the amount of 

 total FAK (and phosphorylated FAK) that coimmunoprecipi-

tated with paxillin (unpublished data). Because FRNK, FAT, 

and FAK-Y397F all contain the C-terminal FAT region, lack 

kinase activity, compete to displace endogenous full-length 

FAK from the focal adhesion, and thereby decrease endogenous 

FAK phosphorylation, we postulated that expression of these 

dominant–negative mutants might have the same proliferative 

effects as seen in the FAK−/− cells. To examine this possi-

bility, ECs were transduced with recombinant adenoviruses to 

express FRNK, FAT, or FAK-Y397F, cultured on small islands 

of fi bronectin, and assayed for proliferation by BrdU incorpora-

tion. As compared with GFP and FAK, as negative and positive 

controls, respectively, FRNK increased proliferation (Fig. 4 C). 

Expressing the FAT construct also relieved the proliferation ar-

rest induced by restricted adhesion. Interestingly, FAK-Y397F 

did not induce cell proliferation. FAK or FRNK expression 

also released cells from growth arrest in monolayer cultures, but 

did not rescue proliferation in cells placed in suspension 

 (unpublished data). Although the various FAK constructs in-

creased proliferation relative to a GFP control in conditions of 

low adhesion, cell proliferation in a highly adhesive environment 

was not dramatically affected by expression of the FAK con-

structs (Fig. 4 D). Although the stimulatory effects of wild-type 

FAK expression on proliferation is consistent with previous 

studies (Gilmore and Romer, 1996; Zhao et al., 1998), the loss of 

 adhesion-dependent proliferative control in FAK−/−, FRNK-, 

or FAT-expressing cells suggests that, in addition,  inactive 

FAK might function to actively inhibit proliferation. FRNK and 

FAT may relieve this inhibition by displacing inactive FAK from 

the adhesion, whereas FAK phosphorylation might do so via a 

 different mechanism. In support of this hypothesis, overexpress-

ing the inactive FAK-Y397F in FAK−/− cells, like wild-type 

FAK, rescued adhesion-mediated growth control (Fig. 4 E). 

 Together, these results uncover a previously undescribed func-

tion of FAK as a negative growth regulator, and, in particular, 

support a model whereby inactive FAK within adhesions 

 inhibits proliferation.

As an initial characterization of the proliferative mecha-

nisms induced by FAK or FRNK, we examined the role of 

downstream MAPK and Src signaling pathways. Although most 

extracellular signals regulate proliferation through the regula-

tion of MAPK-dependent signals in the G1 phase of the cell cycle, 

others have been reported to occur at different levels (Brooks 

et al., 1997). Because FAK is known to have a very close asso-

ciation with the nonreceptor tyrosine kinase Src, which is 

 another important proliferative signaling protein, we also exam-

ined whether FAK- or FRNK-induced proliferation were 

Src dependent. G0-synchronized cells were transduced with 

 adenoviruses to express FAK, FRNK, or GFP, seeded onto 

625-μm2 islands of fi bronectin, and treated with 10 μM of the 

MEK inhibitor UO126, 25 μM JNK inhibitor I, 1 μM of the 

p38 inhibitor SB203580, or 1 μM of the Src inhibitor PP2. 

 Although inhibiting MEK or JNK activity completely blocked 

Figure 4. FRNK stimulates proliferation in low adhesive contexts. (A) Western blots of GFP-, FAK-, FRNK-, or FAK-Y397F-overexpressing ECs in spread 
(substrates coated with 25 μg/ml fi bronectin) or unspread (substrates patterned with 625-μm2 islands of fi bronectin) conditions and probed for phospho–
Y397-FAK, total FAK, or GAPDH. (B) Western blot of phospho–Y397-FAK and total FAK in the Triton X-100–insoluble fraction of unspread ECs expressing 
GFP (control), FRNK, FAK, or FAK-Y397F. β–actin is shown as a loading control. (C and D) Graph of the percentage of GFP-, FAK-, FRNK-, FAT-, or FAK-
Y397F–overexpressing ECs entering S phase when cultured on 625-μm2 islands of fi bronectin (C) or on substrates coated with 25 μg/ml fi bronectin (D). 
(E) Graph of the percentage of FAK−/− cells, FAK-reexpressing cells, and FAK−/− cells overexpressing FAK-Y397F in S phase when cultured in spread 
or unspread conditions. (F) Graph of the percentage of GFP-, FAK-, or FRNK-overexpressing ECs entering S phase when cultured on 625-μm2 islands of 
 fi bronectin and treated with either 10 μM UO126 or 1 μM PP2. All data is expressed as ± SEM for three independent experiments. *, P < 0.05 with GFP 
control or FAK−/− cells. #, P < 0.05 with untreated control.
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FAK- and FRNK-induced proliferation, the p38 inhibitor had 

no effect (Fig. 4 F and not depicted). Interestingly, FAK- and 

FRNK- expressing cells responded differently to PP2 treatment. 

The FAK-mediated increase in cell proliferation was blocked by 

inhibiting Src, but FRNK-mediated proliferation was not (Fig. 

4 F). These fi ndings suggest a divergence of signaling pathways 

between the proliferative effects mediated by FAK activation 

and those mediated by loss of FAK. Because the dysregulation 

of adhesion-dependent growth control by FAK down-regulation 

has not been previously described, we chose to further investi-

gate the molecular mechanisms underlying this process.

FAK regulates proliferation through RhoA
Our initial studies indicated that focal adhesions are signifi cantly 

larger in conditions that promoted proliferation than in those 

that arrested growth. Therefore, we explored whether the size of 

 focal adhesions in spread and unspread cells was also affected by 

the expression of FAK, FRNK, FAT, and FAK-Y397F. FRNK and 

FAT expression both dramatically increased focal adhesion area 

in unspread cells, but not in well-spread cells (Fig. 5, A and B),

mirroring their effects on proliferation. FAK and the Y397F 

mutant increased focal adhesion size, but to a lesser extent. Focal 

adhesion size has been shown to depend on RhoA signaling 

(Ridley and Hall, 1992; Nobes and Hall, 1995), suggesting 

that changes in FAK signaling may modulate RhoA activity. 

To test this possibility, we examined RhoA activity in FRNK-, 

FAK-, or FAK-Y397F–expressing ECs. Cells were transduced 

with recombinant adenoviruses, replated onto 625-μm2 square 

patterns or onto surfaces uniformly coated with fi bronectin, 

and lysed 6 h after replating. Using the RhoA pull-down assay 

to measure GTP-bound RhoA, we found that FRNK expres-

sion increased RhoA activity compared with GFP-expressing 

control cells both in spread and unspread conditions, whereas 

FAK or FAK-Y397F expression had little to no effect (Fig. 6 A). 

Likewise, the FAK−/− cells showed higher RhoA activity 

than FAK-reexpressing cells (Fig. 6 B). To address whether 

RhoA was directly involved in the dysregulation of proliferative 

control induced by loss of FAK signaling, we examined the ef-

fects of inhibiting the RhoA effector ROCK in FRNK-expressing 

cells. ROCK inhibition with 50 μM Y-27632 blocked the 

FRNK-induced increase in proliferation in unspread cells (Fig. 

6 C). This effect was specifi c to the release of growth inhibition 

by FRNK, as Y-27632 treatment did not inhibit proliferation 

rates in well-spread cells (Fig. 6 D). Similarly, FAK−/− cells 

treated with Y-27632 also regained adhesion-dependent growth 

control. That is, cell proliferation was low in unspread cells 

and high in spread cells in the presence of the ROCK inhibitor 

(Fig. 6, E and F). Collectively, these data suggest a signaling path-

way whereby lack of FAK or displacing endogenous FAK from 

focal adhesions causes an increase in RhoA activity, and this 

increase, in turn, is required for loss of the growth control nor-

mally observed in low adhesive conditions.

FAK regulates proliferation through RhoA-
mediated changes in cytoskeletal tension
To determine whether changes in RhoA signaling are suffi cient 

to directly affect proliferation, we overexpressed a constitu-

tively active form of RhoA (RhoA-V14) in unspread ECs. 

RhoA-V14 dramatically increased stress fi ber formation 

(Fig. 7 A) and was suffi cient to overcome the spreading-regulated 

Figure 5. FRNK and FAT induce focal adhesion growth in unspread cells. 
(A) Immunofl uorescence images of vinculin in GFP-, FAK-, FRNK-, FAT-, or 
FAK-Y397F–overexpressing ECs cultured for 24 h onto 625-μm2 islands of 
fi bronectin (Unspread) or surfaces uniformly coated with 25 μg/ml fi bro-
nectin (Spread). Graph of the average focal adhesion area of GFP-, FAK-, 
FRNK-, FAT-, or FAK-Y397F–expressing ECs when cultured in spread versus 
unspread conditions (B). Data is expressed ± SEM. Approximately 150 
cells were analyzed in each condition; *, P < 0.05 with GFP control; 
#, P < 0.05 as compared with FRNK or FAT conditions. Bar, 10 μm.
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block in proliferation (Fig. 7 B). High RhoA also released cells 

from proliferation arrest induced by confl uence (unpublished 

data). This effect was mediated through the RhoA effector 

ROCK, as treatment with Y-27632 abrogated the RhoA-V14–

induced proliferation (Fig. 7 B). This ROCK activity was not 

only necessary but also suffi cient to induce proliferation, as ex-

pression of a constitutively active ROCK (ROCK-∆3) also by-

passed the shape-dependent control mechanism (Fig. 7 D). As 

with RhoA-V14 overexpression, ROCK-∆3 overexpression had 

no effect in well-spread cells (Fig. 7, C and E).

One important consequence of RhoA and ROCK sig-

naling is in mediating changes in myosin-regulated cytoskeletal 

tension (Amano et al., 1996; Kimura et al., 1996; Ishizaki et al., 

1997). To address whether FRNK-induced signaling altered 

 focal adhesion structure and proliferation via RhoA-mediated 

changes in cytoskeletal tension, we assessed myosin phosphory-

lation in cells expressing FRNK. FRNK expression dramatically 

increased the amount of phosphomyosin compared with GFP 

controls (Fig. 7 F). Although this suggests that FRNK might be 

functioning to increase cytoskeletal tension in unspread cells, 

myosin phosphorylation is not always associated with the de-

velopment of tension. To directly measure the tension transmit-

ted across the focal adhesion onto the underlying substrate, we 

used a previously described microfabricated force sensor (Tan 

et al., 2003), consisting of an array of vertically placed elas-

tomeric microneedles. These microneedles report the traction 

force exerted by cells on the underlying substrate. Thus, we 

directly measured the tension generated in unspread cells ex-

pressing FAK, FRNK, FAK-Y397F, or a GFP control. Notably, 

only FRNK expression increased traction force (Fig. 7, G and H). 

FAK expression showed no differences in tension, whereas ex-

pression of FAK-Y397F decreased tension.  Collectively, these 

data support a novel role for FAK in growth control, in which 

loss of FAK signaling can induce RhoA-mediated cytoskeletal 

tension, leading to the loss of adhesion-dependent control of 

cell proliferation.

Discussion
In this study, we demonstrate that FAK plays a key role in the 

regulation of proliferation by cell adhesion, whether modulated 

by ECM density, cell spreading, confl uence, or 3D culture. FAK 

overexpression has been shown to increase proliferation in pre-

vious studies (Gilmore and Romer, 1996; Zhao et al., 1998). We 

fi nd that FAK exerts not only stimulatory but also inhibitory ef-

fects on proliferation. The inhibitory function of FAK is lost 

in FAK−/− cells and, importantly, rescued when FAK is 

 reexpressed. Interestingly, expressing the C-terminal fragments 

of FAK (FRNK or FAT) also dysregulated the inhibitory func-

tion of FAK, whereas the full-length, kinase-dead mutant (FAK-

Y397F) could rescue growth inhibition. These data suggest that 

the inhibitory function of FAK lies in its N-terminal domain. 

Given that we and others fi nd that FRNK and FAT displace 

 endogenous full-length FAK from focal adhesions (Richardson 

and Parsons, 1996), these C-terminal constructs might interfere 

with FAK function by competitively inhibiting the targeting of 

cellular FAK to the focal adhesion, suggesting the interesting 

possibility that a pool of inactive FAK may normally function to 

inhibit proliferation through these interactions, and suggests 

a model whereby FAK acts within adhesions as a graded sensor 

that transduces  adhesive signals to regulate the cell cycle (Fig. 8). 

Figure 6. FRNK expression increases RhoA activity. (A) RhoA-GTP and 
total RhoA levels in GFP-, FRNK-, FAK-, or FAK-Y397F–expressing ECs. 
(B) RhoA-GTP and total RhoA levels in FAK−/− or FAK-reexpressing cells. 
(C and D) Graph of the percentage of GFP- or FRNK-overexpressing ECs 
that enter S phase when cultured on 625-μm2 islands of fi bronectin (C) 
or on surfaces coated with 25 μg/ml fi bronectin (D) and either untreated 
or treated with 50 μM Y-27632. (E and F) Graph of the percentage of 
FAK−/− or FAK-reexpressing cells that enter S phase when cultured on 
625-μm2 islands of fi bronectin (E), or on surfaces coated with 25 μg/ml 
fi bronectin (F) and either untreated or treated with 50 μM Y-27632. Data 
is expressed ± SEM for three independent experiments. +, P < 0.08 com-
pared with control; ++, P < 0.06 compared with control; *, P < 0.05 
between FRNK-overexpressing condition versus GFP control, or FAK−/− 
versus FAK-reexpressing cells; #, P < 0.05 between FRNK-induced prolifer-
ation or FAK−/− proliferation in untreated versus drug-treated samples.
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High FAK activation caused by high adhesion or by high 

FAK expression stimulates proliferation, whereas minimal 

 adhesion prevents FAK activation and yields inactive com-

plexes that inhibit proliferation. Interestingly, Moissoglu and 

Gelman (2003) observed an unexpected enhancement of soft 

agar colony formation in v-Src–transformed cells lacking FAK 

that was subsequently prevented by FAK reexpression, suggesting 

the possibility that FAK may play a negative regulatory role 

in transformation. Notably, this occurred in a low adhesive 

 environment. An alternative model for the proliferative response 

to both up- and down-regulation of FAK is the possibility that 

dynamic cycling of FAK activation and deactivation is required 

for growth inhibition. Repeated cycles of FAK phosphorylation 

and dephosphorylation appear to be important for cell migra-

tion, as both decreasing and increasing FAK activity reduce 

 migration (Yu et al., 1998; Angers-Loustau et al., 1999). Thus, 

both stimulatory and inhibitory roles for FAK may be an inher-

ent feature of its function in numerous cellular processes.

RhoA is a critical regulator of focal adhesion formation 

(Ridley and Hall, 1992; Nobes and Hall, 1995). Our results also 

demonstrate that RhoA plays a role in the dysregulation of 

growth control in cells lacking FAK. Both FRNK-expressing 

cells and FAK−/− cells exhibit high RhoA activity that appears 

to be both necessary and suffi cient for the observed proliferative 

effect (Fig. 8), supporting studies suggesting that RhoA pro-

motes cell cycle progression (Olson et al., 1998). Although we 

show that the RhoA effector ROCK is important in our system, 

RhoA-mediated mDia signaling also appears to be suffi cient to 

induce proliferation (Mammoto et al., 2004), suggesting that 

numerous RhoA signals may regulate growth. The mechanism 

by which FRNK and loss of FAK might up-regulate RhoA re-

mains to be defi ned, although a simple mechanism may be that 

FRNK opposes the suppression of RhoA activity by endoge-

nous FAK. The ability of FAK to down-regulate RhoA activity 

is well documented (Ren et al., 2000), and it has been shown 

that FAK may interact with the Rho GTPase-activating protein 

(GAP) GRAF (Hildebrand et al., 1996) and phosphorylate 

p190RhoGAP (Holinstat et al., 2006). It is possible that under 

different adhesive contexts, such as high or low ECM ligand 

density or high or low cell spreading, FAK may alter its interac-

tion with Rho GAPs or Rho GEFs and, thus, modulate RhoA 

activity and proliferation.

It has long been known that changes in cell shape and 

the associated changes in cytoskeletal tension are required for 

Figure 7. RhoA-mediated contractility rescues proliferation in unspread 
cells. (A) F-actin stain of GFP-, or RhoA-V14–overexpressing ECs cultured 
on 625-μm2 islands of fi bronectin. (B and C) Graph of the percentage of 
GFP- or RhoA-V14–overexpressing ECs that enter S phase when cultured 
on 625-μm2 islands of fi bronectin (B), or on surfaces uniformly coated with 
25 μg/ml fi bronectin (C) and either untreated or treated with 50 μM 
Y-27632. (D and E) Graph of the percentage of GFP- or ROCK-∆3–over-
expressing ECs that enter S phase when cultured on 625-μm2 islands of 
 fi bronectin (D), or on surfaces that were uniformly coated with 25 μg/ml 
 fi bronectin (E), and either untreated or treated with 50 μM Y-27632. 

(F) Western blot and graph of phosphorylated myosin light chain in GFP- 
versus FRNK-expressing ECs, normalized to GAPDH. (G) A representative 
GFP-expressing EC cultured on the mPAD force sensors (red, fi bronectin; 
green, GFP; blue, nucleus) and accompanying vector plot (green arrows 
indicate magnitude and the direction of force exerted on each underlying 
post). (H) Distribution plot of the magnitude of traction forces exerted by 
GFP-, FAK-, FRNK-, or FAK-Y397F–expressing ECs on mPADs. Data is ex-
pressed ± SEM for at least three independent experiments for proliferation 
and myosin phosphorylation data. For proliferation graphs, * denotes P < 
0.05 between RhoA-V14 or ROCK-∆3 versus GFP control and # denotes 
P < 0.05 between RhoA-V14 or ROCK-∆3–induced proliferation in un-
treated versus drug-treated samples. For force distribution plot, * denotes 
P < 0.05 between adenovirus condition as compared with GFP control. 
Bars, 10 μm.
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proliferation (Folkman and Moscona, 1978; Ingber, 1990; Chen 

et al., 1997; Huang et al., 1998). We show that FAK transduces 

cell shape into proliferative signals. Interestingly, although 

FAK has been implicated as a mechanosensor where increasing 

tension leads to FAK activation (Wang et al., 2001), we show 

that FAK also alters the cytoskeletal tension and forces experi-

enced at the adhesion. Expression of FRNK, through its effects 

on RhoA, increases myosin-based cytoskeletal tension, con-

fi rming earlier suggestions from the Parsons group that FRNK 

might increase cellular contractility (Martin et al., 2002). It has 

been previously observed that FRNK also increases focal adhe-

sion size (Giannone et al., 2002). Our fi ndings would suggest 

that these changes in focal adhesions are actually mediated by 

increased cytoskeletal tension, as focal adhesion maturation is 

induced by mechanical stress (Choquet et al., 1997; Balaban 

et al., 2001; Riveline et al., 2001). Thus, it appears that FAK 

both responds to and causes changes in mechanical force, and 

the latter links changes in cell adhesion to changes in cell me-

chanics and proliferation. These two reciprocal functions likely 

provide the mechanochemical feedback that is required for 

tightly integrating the mechanical and biochemical dynamics 

of cell adhesion.

The role of FAK in cell proliferation has implications for 

human physiology and pathology, where FAK protein over-

expression has been found in invasive human tumors (Owens 

et al., 1995; Kornberg, 1998). This has led to the suggestion that 

targeting FAK might reduce cancer proliferation, migration, 

and invasion. However, it is now clear that the model whereby 

FAK is strictly a stimulatory molecule for proliferation is over-

simplifi ed. In fact, FAK down-regulation can increase tumor cell 

motility, invasion, and metastasis (Ayaki et al., 2001; Lu et al., 

2001), and we speculate that it may also extend to include in-

creased proliferation. Thus, simply eliminating FAK function in 

cancer settings may be detrimental, and recognizing these addi-

tional layers in FAK function may reveal how cells can interpret 

complex adhesive contexts into a well-adapted response.

For many adherent cell types, both integrin ligation and 

cell spreading are required to support proliferation. Because fo-

cal adhesion architecture and, likely, the focal adhesion char-

acter are different in spread and unspread cells, it is probable 

that focal adhesions formed under these various adhesive or 

mechanical contexts transmit different signals, leading to po-

tentially divergent cellular behaviors. Importantly, FAK appears 

to be a central regulator of adhesion-mediated proliferation, 

whether signaled by spreading, confl uence, ligand density, or 

3D matrix architecture, where it can transduce both stimula-

tory and inhibitory proliferative signals. Understanding how 

this single molecule can play such a central role in many com-

plex interactions will uncover important insights into how cells 

navigate and respond to their adhesive and mechanical environ-

ments in physiologically meaningful ways.

Materials and methods
Cell culture and reagents
Bovine pulmonary artery ECs (VEC Technologies, Inc.) were cultured in 
low glucose DME containing 2 mM glutamine, 100 units/ml penicillin, 
100 μg/ml streptomycin, and 5% bovine serum (all from Invitrogen). ECs 
were maintained in a humidifi ed 10% CO2 incubator. FAK−/− and FAK-
reexpressing mouse embryo fi broblasts were a gift from S. Hanks (Vanderbilt 
University, Nashville, TN) and were cultured in DME containing 4,500 mg 
of D-glucose/ml, 2 mM glutamine, 100 units/ml penicillin, 100 μg/ml 
streptomycin, 0.25 μg of amphotericin B/ml (all from Invitrogen), and 
10% fetal bovine serum (Atlanta Biologicals) and were maintained at 37°C 
in a humidifi ed 5% CO2 incubator. The following reagents were pur-
chased from the given suppliers: human fi bronectin (Invitrogen); Y-27632 
 (Calbiochem), PP2 (Calbiochem), JNK inhibitor I, UO126 (Calbiochem), 
anti-vinculin clone hVin-1 (Sigma-Aldrich), TRITC-conjugated phalloidin 
(Sigma-Aldrich), anti-RhoA (Santa Cruz Biotechnology, Inc.), phospho-
Y397-FAK antibody (BioSource International), total FAK antibody (Cell Sig-
naling Technology), phospho-S18/S19 MLC antibody (Cell Signaling 
Technology), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
antibody (Abcam).

Immunocytochemistry, image analysis, and quantitative analysis 
of focal adhesions
For F-actin stains, cells were fi xed with 4% paraformaldehyde in PBS. 
F-actin was visualized by incubating samples with fl uorophore-conjugated 

Figure 8. Model for FAK modulation of 
 adhesion-regulated proliferation. (1) In con-
ditions that activate FAK (green FAK circles), 
such as high adhesive contexts or FAK over-
expression, FAK plays a stimulatory role in 
proliferation. (2) Endogenous FAK in low 
adhesive contexts, including low cell spread-
ing, low fi bronectin density, and 3D gels, is 
largely inactive (black FAK circles) and inhibits 
proliferation. When inactive full-length FAK is 
displaced by FRNK or FAT (3), or is eliminated 
as in FAK−/− cells (4), RhoA is activated, 
leading to ROCK activation and the develop-
ment of cytoskeletal tension, creating a condi-
tion that is permissive for proliferation even in 
low adhesive  conditions. (5) The dominant–
 negative FAK-Y397F (black FAK circles with F) 
is suffi cient to rescue the inhibitory function of 
FAK, but not its stimulatory role, in prolifera-
tion. Expression of constitutively active RhoA 
or ROCK (6) alone can induce proliferation in 
low adhesive contexts.
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phalloidin (Invitrogen). Quantitative analysis of focal adhesions was per-
formed as previously described (Nelson et al., 2004). In brief, cells were 
incubated for 1 min in ice-cold cytoskeleton buffer (50 mM NaCl, 150 mM 
sucrose, 3 mM MgCl2, 1 μg/ml aprotinin, 1 μg/ml leupeptin, 1 μg/ml 
pepstatin, and 2 mM PMSF), followed by 1 min in cytoskeleton buffer sup-
plemented with 0.5% Triton X-100. Detergent-extracted cells were fi xed in 
4% paraformaldehyde in PBS, washed, and incubated with a primary anti-
body to vinculin (Sigma-Aldrich). After incubation with Alexa Fluor 594–
conjugated secondary antibodies (Invitrogen), quantitative microscopy of 
focal adhesion proteins was performed using a charge-coupled device 
camera (Orca; Hamamatsu) attached to an inverted microscope (model 
TE2000; Nikon) using a 100×, 1.4 NA, oil immersion objective with a 
400-ms exposure time at RT. Images were obtained and processed using 
IPLab software (Scanalytics); original images were fi ltered and binarized 
to subtract background fl uorescence, and then segmented with a threshold 
of 0.25 μm2 to quantify the area of individual adhesions. Approximately 
100–150 cells were analyzed per experimental condition.

Cell fractionation
Triton X-100 soluble and insoluble pools were generated by washing cells 
with ice-cold TBS, followed by a 5-min wash with Triton extraction buffer 
(50 mM NaCl, 150 mM sucrose, 3 mM MgCl2, 0.5% Triton X-100, 1 μg/ml 
aprotinin, 1 μg/ml leupeptin, 1 μg/ml pepstatin, and 2 mM PMSF). The 
soluble fraction was collected, mixed with Laemmli sample buffer, and 
boiled. The remaining Triton-insoluble fraction was collected by scraping 
directly into 1× Laemmli sample buffer and then boiled. Soluble and insol-
uble fractions were run on SDS-PAGE gels and blotted.

Culture and proliferation measurement of cells in collagen gel
3D collagen I gels were prepared by mixing M199 (Invitrogen), NaHCO3 
(0.035% wt/vol; Sigma-Aldrich), 10 mM Hepes buffer (Invitrogen), rat tail 
collagen I (BD Biosciences), and distilled water with the pH adjusted to 
7.4. Synchronized FAK−/− and FAK-reexpressing cells were seeded into 
a 2.4-mg/ml collagen gel at a concentration of 16,000 cells/ml followed 
by gelation at 37°C for 30 min. Cells were incubated for 22 h in the pres-
ence of radiolabeled thymidine (MP Biomedicals), after which the cells 
were lysed and DNA was precipitated with 16 M NaOH containing 
0.25% Triton X-100. Radioactivity counts were measured using a scintilla-
tion counter (Beckman Coulter). Blank collagen gels were used to measure 
background residual thymidine.

Micropatterned substrates
To generate stamps for microcontact printing of proteins, a prepolymer of 
poly(dimethylsiloxane) (PDMS; Sylgard 184; Dow Corning) was poured 
over a photolithographically generated master, as previously described 
(Chen et al., 1997). Stamps were immersed for 1 h in 50 μg/ml fi bronectin, 
washed three times in water, and blown dry under nitrogen. Coated 
stamps were placed in conformal contact with a surface-oxidized PDMS-
coated glass coverslip. Stamped coverslips were immersed in 0.2% 
 Pluronic F127 (BASF) in PBS for 1 h and washed.

Adenovirus production
FAK, FRNK, FAT, FAK-Y397F, RhoA-V14, ROCK-∆3, and GFP recombinant 
adenoviruses were constructed using the AdEasy XL system (Stratagene) 
according to manufacturer’s instructions. RhoA cDNAs were obtained from 
M. Philips (New York University Medical Center, New York, NY) and 
P. Burbelo (Georgetown University, Washington, DC). ROCK cDNAs were 
obtained from S. Narumiya (Kyoto University, Kyoto, Japan). In brief, 
cDNAs were subcloned into the pShuttle-IRES-GFP1 vector, and then cotrans-
formed with the pADEASY1 plasmid. After homologous recombination, 
plasmids were used to transfect human embryonic kidney 293 cells. High 
titer preparations of recombinant adenovirus were generated by CsCl2 
density gradient centrifugation. In viral infection experiments, viral MOI re-
sulting in a transduction effi ciency of at least 80% was added to cells.

Proliferation assays
ECs were G0 synchronized by holding the cells at confl uence for 2 d. 
FAK−/− and FAK-reexpressing cells were synchronized by 60-h serum 
starvation. Cells were then trypsinized and replated in the presence of 
BrdU (GE Healthcare). Cells were fi xed at 22 h and stained for BrdU 
incorporation using a monoclonal antibody directed against BrdU (GE 
 Healthcare). Cells were counterstained with Hoechst 33342 (Invitrogen).

RhoA activity assays
RhoA-GTP levels were measured by pull-down assay (Ren and Schwartz, 
2000). In brief, cells were washed with cold TBS, scraped into lysis buffer 

(25 mM Hepes, pH 7.5, 15 mM NaCl, 1% Igepal CA-630, 5 mM MgCl2, 
1 mM EDTA, 10% glycerol, 10 μg/ml aprotinin, 10 μg/ml leupeptin, 
10 μg/ml pepstatin, and 2 mM PMSF). Cleared lysates were incubated with 
30 μg GST–rhotekin-binding domain–agarose beads (Upstate Biotechnology) 
for 45 min at 4°C, centrifuged, washed, and eluted by boiling in 
SDS-PAGE buffer containing 5% β-mercaptoethanol for 5 min. RhoA was 
detected by Western blotting using a monoclonal antibody to RhoA (Santa 
Cruz Biotechnology, Inc.). The level of RhoA activity in different samples 
was determined by normalizing the amount of rhotekin-binding domain–
bound RhoA to the total amount of RhoA in cell lysates.

Western blots
Cells were washed in TBS and lysed in cold modifi ed RIPA buffer (50 mM 
Tris-HCl, pH 7.4, 1% Igepal CA-630, 0.25% deoxycholate, 150 mM 
NaCl, 1 mM EDTA, 1 mM PMSF, 1 mM orthovanadate, 1 mM NaF, and 
1 μg/ml each aprotinin, leupeptin, and pepstatin). Proteins were sepa-
rated by denaturing SDS-PAGE electroblotted onto PVDF, blocked with 5% 
milk in TBS, immunoblotted with specifi c primary antibodies, and detected 
using horseradish peroxidase–conjugated secondary antibodies (Jackson 
ImmunoResearch Laboratories) and SuperSignal West Dura (Pierce Chemi-
cal Co.) as a chemiluminescent substrate. Densitometric analysis was per-
formed using a VersaDoc imaging system with QuantityOne software 
( Bio-Rad Laboratories).

Microfabricated post array detectors
Microfabricated post array detectors (mPADs) were fabricated as previ-
ously described (Lemmon et al., 2005; Tan et al., 2003). mPADs used in 
these studies were 11 μm tall and 3 μm in diameter, with 9 μm center–
center spacing. To control cell spreading on microneedle tips, the tips 
were stamped with fi bronectin using microcontact printing (Tan et al., 
2003), and nonstamped regions were blocked with 0.2% Pluronic F127 
(BASF). ECs expressing either GFP, FRNK, FAK, or FAK-Y397F were cul-
tured on the mPADs for 22 h, after which the samples were fi xed with 4% 
paraformaldehyde in PBS. Fibronectin was stained with goat anti-fi bro-
nectin antibody (ICN Biomedicals) and the nuclei were stained with 
Hoechst 33342. The samples were imaged using an Axiovert 200M 
(Carl Zeiss MicroImaging, Inc.) with the Apotome module, equipped with 
63× Plan-Apochromat, 1.4 NA, oil immersion objective, an Axiocam 
camera, and Axiovision software (Carl Zeiss MicroImaging, Inc.). A Mat-
lab program (The MathWorks) was used to obtain tractional force from 
the acquired images. At least six cells were used in force measurements 
in each condition.
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