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Abstract: Variation trends of dimensionless power density (PD) with a compression ratio and thermal
efficiency (TE) are discussed according to the irreversible Atkinson cycle (AC) model established
in previous literature. Then, for the fixed cycle temperature ratio, the maximum specific volume
ratios, the maximum pressure ratios, and the TEs corresponding to the maximum power output
(PO) and the maximum PD are compared. Finally, multi-objective optimization (MOO) of cycle
performance with dimensionless PO, TE, dimensionless PD, and dimensionless ecological function
(EF) as the optimization objectives and compression ratio as the optimization variable are performed
by applying the non-dominated sorting genetic algorithm-II (NSGA-II). The results show that there is
an optimal compression ratio which will maximize the dimensionless PD. The relation curve of the
dimensionless PD and compression ratio is a parabolic-like one, and the dimensionless PD and TE is
a loop-shaped one. The AC engine has smaller size and higher TE under the maximum PD condition
than those of under the maximum PO condition. With the increase of TE, the dimensionless PO will
decrease, the dimensionless PD will increase, and the dimensionless EF will first increase and then
decrease. There is no positive ideal point in Pareto frontier. The optimal solutions by using three
decision-making methods are compared. This paper analyzes the performance of the PD of the AC
with three losses, and performs MOO of dimensionless PO, TE, dimensionless PD, and dimensionless
EF. The new conclusions obtained have theoretical guideline value for the optimal design of actual
Atkinson heat engine.

Keywords: Atkinson cycle; power output; power density; thermal efficiency; ecological function;
finite time thermodynamics

1. Introduction

Finite time thermodynamics (FTT) [1–7] is an effective theoretical tool for performance analysis and
optimization of internal combustion engine cycles, and it has made great progress [8–10]. It includes
optimal performance research [11–14] and optimal configuration research [15–23]. Compared with the
Otto cycle, the Atkinson cycle (AC) has higher thermal efficiency (TE) and lower fuel consumption.
Some scholars have studied its performance by utilizing FTT. Hou [24] analyzed the relationship
between power output (PO) and TE of the endoreversible AC with only heat transfer loss (HTL).
Ge et al. [25–28] analyzed the PO and TE characteristics of the endoreversible [26] AC with HTL,
and irreversible [25,27,28] AC with HTL, friction loss (FL), and internal irreversibility loss (IIL)
considering the constant specific heat [25], variable specific heat with linear [26,27], and non-linear [28]
relations with the temperature of working fluid (WF). Gonca [29] analyzed the effective PO and effective
PD characteristics of the irreversible AC with incomplete combustion loss, FL, HTL, and exhaust output
loss considering the specific heat varied non-linearly with the WF’s temperature. Ebrahimi et al. [30]
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analyzed the relationship between the PO and TE of the irreversible AC with HTL, IIL, and FL
considering a variable specific heat ratio with non-linear relation with temperature of WF.

When power density (PD; ratio of PO to the maximum specific volume in the cycle) is taken as the
optimization goal, a heat engine can increase the TE and reduce the volume of the whole device at
the expense of a little decrease of the PO. Without any loss considered, Chen et al. [31] found that a
reversible TE of AC under the maximum PD condition was higher than that of under the maximum
PO condition, and the size of the engine under the maximum PD condition was smaller. Ust et al. [32]
discussed the PD characteristics of irreversible AC with IIL and compared the results with those in
Reference [31]. Al-Sarkhi et al. [33] studied the TE of the endoreversible AC when specific heat varied
linearly with the WF’s temperature under the maximum PD condition. With the PD as the objective,
Gonca [34] optimized the irreversible Dual–Atkinson cycle when specific heat varied non-linearly with
the WF’s temperature.

The NSGA-II has been widely used in FTT optimizations. Sadatsakkak et al. [35] optimized the
dimensionless PD and TE of endoreversible Braysson cycle by applying the NSGA-II, and compared
the optimization results obtained by using different decision-making ways. Dai et al. [36] carried
out multi-objective optimization (MOO) on PO, TE, and ecological performance coefficient of a
regenerative Stirling engine. Ahmadi et al. [37] carried out MOO on the PD, TE, ecological function
(EF) density, and exergy loss density of fuel cell-Braysson combined cycle. Ghasemkhani et al. [38]
carried out MOO on the PO, TE, exergy loss, and EF of two-stage endoreversible combined Carnot
cycle. Turgut et al. [39] performed MOO on the performance coefficient, exergy efficiency, ecological
performance coefficient, thermo-economic optimization, and thermo-ecological optimization functions
of irreversible simple air refrigerator. Abedinnezhad et al. [40] carried out MOO on the TE, ecological
performance coefficient and EF of irreversible Dual–Miller cycle. Tang et al. [41] and Chen et al. [42]
applied the NAGA-II algorithm to perform MOO on the three- and four-objective optimizations for
Brayton cycles. Zhang et al. [43] and Sun et al. [44] applied the NAGA-II algorithm to perform MOO
on the chemical reactors. Wu et al. [45] performed MOO on the entropy generation rate and total
pumping PO of a condenser in the ocean thermal energy conversion (OTEC) system based on the
constructal theory and NSGA-II algorithm.

On the basis of the irreversible AC model established in Reference [28], this paper will take the PD
as the objective to carry out FTT analysis and performance optimization for the irreversible AC model
with constant specific heat of WF, and perform the MOO on the dimensionless PO, TE, dimensionless
PD, and dimensionless EF by using the NSGA-II algorithm. The major differences between this paper
and References [31–34] are as followings. Firstly, this paper will consider the HTL, FL, and ILL, whereas
Reference [31] did not consider any loss and Reference [32] only considered IIL. Secondly, this paper
will consider the constant specific heat with temperature of WF, while References [33,34] considered the
variable specific heat with linear [33] and non-linear [34] relations with temperature of WF, respectively.
Thirdly, this paper will consider four-objective optimization, but References [31–34] did not consider
multi-objective optimization.

2. Irreversible AC Model

Figure 1 shows the temperature-entropy (T − S) diagram irreversible AC model [28]. 1→ 2 and
3→ 4 are irreversible adiabatic processes, and 1→ 2s and 3→ 4s are the corresponding isentropic
processes. 2→ 3 is an endothermic process with constant volume, and 4→ 1 is an exothermic process
with constant pressure.
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The WF’s heat absorption rate in the cycle is

.
Qin =

.
mCv(T3 − T2) (1)

The WF’s heat release rate in the cycle is

.
Qout =

.
mCp(T4 − T1) (2)

where Cv (Cp) is the specific heat of WF at constant volume (pressure) and
.

m is the molar flow rate of
the WF.

According to References [28,46,47], the compression and expansion efficiencies in two adiabatic
processes 1→ 2 and 3→ 4 are defined to represent the IIL of the cycle

ηc = (T2s − T1)/(T2 − T1) (3)

ηe = (T4 − T3)/(T4s − T3) (4)

The compression ratio γ and the maximum temperature ratio τ of the AC are defined as:

γ = V1/V2 (5)

τ = T3/T1 (6)

In additional, the entropy change of the working fluid equals zero after a cycle, one has:

∆S = Cv ln(T3/T2s) −Cp ln(T4s/T1) = 0 (7)

According to the property of isentropic process, one has:

T2s(T4s)
k = T3(T1)

k (8)

From Equations (3)–(8), one has:

T2 = [(γk−1
− 1)/ηc + 1]T1 (9)

T4 = T1[τ(1− ηe) + ηeτ
(1/k)γ(1/k−1)] (10)

For the actual AC, the HTL between cylinder wall and WF cannot be negligible. According to
Reference [48], the heat absorption rate in process 2→ 3 is

.
Qin = A− B[(T2 + T3)/2− T0] (11)
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where A and B are the heat released rate by fuel combustion and the HTL coefficient, respectively, and
T0 is ambient temperature.

Equation (11) shows that the cycle heat absorption rate includes two parts. The total heat
absorption rate by WF is equal to the difference between the heat release rate by fuel combustion and
the HTL rate. Therefore, the HTL rate is:

.
Qleak = B1(T2 + T3 − 2T0) (12)

where T0 is the ambient temperature and B1 = B/2.
In the actual AC, the FL between the piston and cylinder wall should also be considered. According

to the treatment method of Otto cycle in Reference [49], the friction force is

fµ = −µv = −µdx/dt (13)

where µ and x are the friction coefficient and the displacement of piston, respectively.
The FL power is obtained

Pµ = dWµ/dt = −µ(dx/dt)2 = −µv2 (14)

The piston average speed v is used to replace the piston movement speed v,

v = (x1 − x2)/∆t12 = x2(γ− 1)/∆t12 (15)

where x1 is the position of the piston at the maximum volume, x2 is the position of the piston at the
minimum volume, and ∆t12 is the time consumed by the power stroke.

The cycle PO is obtained:

P =
.

Qin −
.

Qout − Pµ =
.

mCv[(T3 − T2) − k(T4 − T1)] − b(γ− 1)2 (16)

where b = µx2
2/(∆t12)

2.
The TE is written as:

η =
P

.
Qin +

.
Qleak

=

.
mCv[k(T1 − T4) + (T3 − T2)] − b(γ− 1)2

.
mCv(T3 − T2) + B1(T2 + T3 − 2T0)

(17)

According to Reference [31], the PD is defined as:

Pd = P/v4 (18)

According to the v1/v4 = T1/T4, one has:

Pd = P/[v1(T4/T1)] (19)

There are HTL, FL, and IIL in the actual irreversible AC. The entropy generation rate caused by
HTL and FL are, respectively:

σq = B1(T2 + T3 − 2T0)[1/T0 − 2/(T2 + T3)] (20)

σµ = Pµ/T0 = b(γ− 1)2/T0 (21)

The entropy generation rate due to the IIL is calculated by the entropy increase rates in processes
2s→ 2 and 4s→ 4

σ2s→2 =
.

mCv ln(T2/T2s) (22)
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σ4s→4 =
.

mCp ln(T4/T4s) (23)

After the power stroke, the WF is discharged to the environment in the exhaust stroke. The
entropy generation rate caused in this process is:

σpq =
.

m
∫ T4

T1

CpdT(1/T0 − 1/T) =
.

mk[Cv(T4 − T1)/T0 −Cv ln(T4/T1)] (24)

The total entropy generation rate of the AC is:

σ = σq + σµ + σ2s→2 + σ4s→4 + σpq (25)

According to the Reference [50], the EF is defined as:

E = P− T0σ (26)

According to the treatment method of reversible Atkinson cycle by Chen et al. [31],
the dimensionless PO, dimensionless PD, and dimensionless EF are defined as, respectively:

P = P/Pmax (27)

Pd = Pd/(Pd)max (28)

E = E/Emax (29)

when γ, T1, and τ are given, the temperatures at each state point can be solved, and then the numerical
solutions of P, η, Pd, and E can be obtained.

3. Power Density Analysis and Optimization

Based on References [26,27,32], the following parameters are determined: B = 2.2 W/K,
T0 = 300 K, T1 = 350 K,

.
m = 1 mol/s, Cv = 20.78 J/(mol ·K), k = 1.4, τ = 4.28− 6.28, and b = 20 W.

Figures 2 and 3 show the influence of the temperature ratio (τ) on dimensionless PD and
compression ratio (Pd −γ) and dimensionless PD and TE (Pd − η) characteristics, respectively. The shape
of the Pd − γ curve is parabolic-like one, and there is an optimal value γPd

which makes the Pd reach

the maximum value (Pd)max. The shape of the Pd − η curve is a loop-shape one back to the origin,
and there is another optimal value γη which makes the η reach the maximum value ηmax. With the
increase of τ, the γPd

and the ηPd
increase. The numerical calculations show that when τ increases from

5.78 to 6.78, the ηPd
increases from 0.4402 to 0.4684 and increase by 6.41%.

Figure 4 shows the characteristics relationship of Pd and γwith different ηc, ηe, and b. Curves 1
and 1′ show the effect of the IIL on Pd without FL. Curves 2 and 2′ show the effect of the IIL on Pd with
FL. The γpd

decreases with the increase of the IIL whether the FL is considered or not. Curves 1 and 2

show the effect of the FL on Pd without IIL. Curves 1′ and 2′ show the effect of the FL on Pd with IIL.
The γpd

decreases with the increase of the FL whether the IIL is considered or not.
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Figure 5 shows the influences of ηc, ηe, B, and b on Pd − η characteristics. The curve 1 reflects the
Pd − η characteristic when the cycle is completely reversible, and the shape of curve is a parabolic-like
one (ηPd

, 0 but (Pd)η = 0). The other curves reflect the Pd − η characteristics when one or more
irreversibility is considered, the shape of curve is a loop-shaped one back to the origin (both the ηPd

and

(Pd)η are not zero). Comparing curves 1 and 1′, 2 and 2′, 3 and 3′, as well as 4 and 4′ in Figure 5, one can
see that ηPd

increases with the decrease of IIL (ηc and ηe are increased). The numerical calculations
show that when B = 2.2 W/K and b = 20 W, and ηc and ηe increases from 0.94 to 1, ηPd

increases from
0.4551 to 0.5456, and increases by 19.89%. Comparing curves 1 and 2, 3 and 4, 1′ and 2′, as well as 3′

and 4′ in Figure 5, one can see that ηPd
decreases with the increase of FL. The numerical calculations

show that when ηc = ηe = 0.94 and B = 2.2 W/K, and b increases from 0 W to 20 W, and ηPd
decreases

from 0.5021 to 0.4551, and decreases by 9.36%. Comparing curves 1 and 3, 2 and 4, 1′ and 3′, as well
as 2′ and 4′ in Figure 5, one can be seen that ηPd

decreases with the increase of HTL. The numerical
calculations show that when ηc = ηe = 0.94 and b = 20 W, and B increases from 0 W/K to 2.2 W/K,
ηPd

decreases from 0.4970 to 0.4551, and decreases by 8.43%.

Entropy 2020, 22, x FOR PEER REVIEW 7 of 14 

 

show that when 0.94c eη η= =  and 20 Wb = , and B  increases from 0 W/K  to 2.2 W/K , 
dP

η  

decreases from 0.4970 to 0.4551, and decreases by 8.43%. 

 

Figure 5. Effects of cη , eη , B  and b  on dP  versus η . 

Under the conditions of maximum PO ( maxP ) and maximum PD ( max)dP( ), Figure 6 shows the 
relations of maximum specific volume ratio 4 1/v v  and τ . The 4 1( / )

dP
v v  is smaller than the 

4 1( / )Pv v  when τ  is a constant. The numerical calculations show that when 6.28τ = , 4 1( / )Pv v  is 
2.61 and 4 1( / )

dP
v v

 
is 2.32. Compared with 4 1( / )Pv v , 4 1( / )

dP
v v

 
decreases by 11.1%. The size of the 

AC engine is smaller under the condition of max)dP( . 

 
Figure 6. Variations of the maximum specific volume ratio 4 1/v v  with the maximum cycle 
temperature ratio τ . 

Under conditions of maxP  and max)dP( , Figure 7 shows the relations of maximum pressure ratio 

3 1/p p  and τ . It can be seen that 3 1( / )Pp p  is always smaller than 3 1( / )
dP

p p  when τ  is a constant. 

It means that the decrease of the AC engine size is accompanied by the increase of maximum pressure 
ratio in the cycle. 

Figure 5. Effects of ηc, ηe, B and b on Pd versus η.

Under the conditions of maximum PO (Pmax) and maximum PD ((Pd)max), Figure 6 shows the
relations of maximum specific volume ratio v4/v1 and τ. The (v4/v1)Pd

is smaller than the (v4/v1)P
when τ is a constant. The numerical calculations show that when τ = 6.28, (v4/v1)P is 2.61 and
(v4/v1)Pd

is 2.32. Compared with (v4/v1)P, (v4/v1)Pd
decreases by 11.1%. The size of the AC engine is

smaller under the condition of (Pd)max.
Under conditions of Pmax and (Pd)max, Figure 7 shows the relations of maximum pressure ratio

p3/p1 and τ. It can be seen that (p3/p1)P is always smaller than (p3/p1)Pd
when τ is a constant. It means

that the decrease of the AC engine size is accompanied by the increase of maximum pressure ratio in
the cycle.

Figure 8 shows the relations of the η and τ. One can see that when there are three losses, ηPd

is larger than ηP. When τ = 6.28, ηP is 0.4389 and ηPd is 0.4549. Compared with ηP, ηPd increases
by 3.65%.
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Figures 6 and 8 show that when there are three losses, compared with the maximum PO condition,
ηPd at the maximum PD condition increases by 3.65%, while (v4/v1)Pd

at the maximum PD condition
decreases by 11.1%. The results show that the TE is larger and the size of the heat engine is smaller
when the (Pd)max is taken as the objective.

4. Four Objective Optimization and Decision-Making Based on NSGA-II Algorithm

The NSGA-II algorithm [51] is a MOO algorithm based on genetic algorithm, which is based on
Pareto optimal solution. When the γ is used as the optimization variable, the dimensionless PO, TE,
dimensionless PD, and dimensionless EF cannot be optimized at the same time. Pareto put forward the
concept of Pareto domination in 1986. It is impossible to optimize the solution for any objective without
making other objectives worse. Since there is no optimal solution to make multiple objectives reach the
optimal at the same time, the MOO algorithm gives a series of non-inferior solutions. Compared with
other solutions, these non-inferior solutions have the least conflict of objectives, which can provide
a better choice space for decision makers. These solution sets are called the optimal Pareto solution
sets, and the corresponding objective functions are called the Pareto frontier. The specific algorithm
flow chart is shown in Figure 9. There are multiple feasible optimal solutions in Pareto frontier.
The decision-making methods such as linear programming technique for multidimensional analysis
of preference (LINMAP), technique for order preferences by similarity to ideal solution (TOPSIS)
and Shannon entropy are used to select the suitable solution from Pareto frontier. According to
Reference [51], the deviation index D is introduced to select the most suitable method.
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In order to obtain the optimization design variable of the cycle, the program is conducted by using
the “gamultiobj” function of MATLAB. Setting the population “populationsize” as 500 and the algebra
“generations” as 1000, the Pareto frontier corresponding to the MOO and the optimal solutions by using
three decision-making methods are obtained, as shown in Figure 10. The color on the Pareto frontier
edge indicates the size of Pd. The positive triangle represents the positive ideal point, the inverted
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triangle represents the negative ideal point, and the square represents the point corresponding to
the LINMAP and TOPSIS decision-making method (the optimal points are the same); the diamond
represents the point corresponding to the Shannon entropy decision-making method. According to
Figure 10, one can see that, with the increase of TE, the dimensionless PO decreases, the dimensionless
PD increases, and the dimensionless EF first increases and then decreases. There is no point on the
Pareto frontier which will make the dimensionless PO, TE, dimensionless PD, and dimensionless
EF reach the maximum values at the same time, i.e., the Pareto frontier does not include positive
ideal point.
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Table 1 shows the comparisons of the optimal solutions gained by using the MOO to optimize
the performance of the irreversible AC model with P, η, Pd, and E as the optimization objectives.
It can be seen, from Table 1, that the results gained by using LINMAP and TOPSIS decision-making
methods are the same. Compared with results gained by using Shannon entropy decision-making
method, the optimal compression ratios gained by using LINMAP and TOPSIS decision-making
methods are smaller. The D by using Shannon entropy decision-making method is the largest. In the
actual decision-making process, the optimal decision-making method should be selected according to
different design requirements.

Table 1. Comparison of multi-objective optimal solutions of the model with P, η, Pd, and E as
optimization objectives.

Optimization
Methods

Decision
Methods

Optimization
Variables Optimization Objectives Deviation

Index

γ P η Pd
¯
E D

Four-objective
optimization

LINMAP 6.296 0.984 0.453 0.987 0.999 0.135

TOPSIS 6.296 0.984 0.453 0.987 0.999 0.135

Shannon
Entropy 7.709 0.949 0.455 1.000 0.924 0.543

Positive ideal point —— 0.999 0.455 1.000 0.999 ——

Negative ideal point —— 0.949 0.438 0.938 0.884 ——

5. Conclusions

Based on the irreversible AC model with constant specific heat established in Reference [28],
the effects of cycle temperature ratio, HTL, FL, and IIL on PD were analyzed, and the optimization
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results under maximum PO and maximum PD were compared. By using the NSGA-II algorithm and
taking γ as the optimization variable, the corresponding Pareto frontiers with the dimensionless PO,
TE, dimensionless PD, and dimensionless EF as the optimization objectives were obtained. The results
show that:

(1) The relationship curve of cycle Pd − γ is parabolic-like one. There is an optimal γ which can
maximize the PD. With the decrease of τ and the increases of FL and IIL, the PD of cycle decreases.

(2) The relationship curve of cycle Pd − η is loop-shaped one. With the decrease of γ and the increases
of three losses, the corresponding TE at the maximum PD decreases.

(3) The efficiency ηPd
under the condition of (Pd)max is larger than the efficiency ηP under the

condition of Pmax, and the corresponding (v4/v1)Pd
is smaller than (v4/v1)P. The AC engine

designed under the condition of (Pd)max has smaller size and higher TE.
(4) For the results by using MOO, with the increase of TE, the dimensionless PO decreases,

the dimensionless PD increases, and the dimensionless EF first increases and then decreases.
There is no point on the Pareto frontier which will maximize P, η, Pd and E, i.e., the positive ideal
point is not on Pareto frontier.

(5) The suitable solution can be gained by using LINMAP, TOPSIS, and Shannon entropy
decision-making methods from Pareto frontier.
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Nomenclature

A Heat released rate by fuel (W)
B Heat transfer loss coefficient (W/K)
Cp Specific heat at constant pressure (J/(mol ·K))
Cv Specific heat at constant volume (J/(mol ·K))
E Ecological function (W)
k Specific heat ratio
.

m Molar flow rate (mol/s)
P Power output (W)
Pd Power density (W/m3)
Q Quantity of heat transfer rate (W)
T Temperature (K)
Greek symbol
γ Compression ratio (-)
τ Temperature ratio (-)
η Thermal efficiency (-)
ηe Expansion efficiency (-)
ηc Compression efficiency (-)
µ Friction coefficient (kg/s)
σ Entropy generation rate (W/K)
Subscripts
in Input
leak Heat leak
max Maximum value
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out Output
P Max power output condition
Pd Max power density condition
pq Influence of working fluid exhausting to environment
q Influence of heat transfer loss
µ Influence of friction Loss
η Max thermal efficiency condition
0 Environment
1− 4,2s,4s Cycle state points
Superscripts
— Dimensionless

Abbreviations

AC Atkinson cycle
EF Ecological function
FL Friction loss
FTT Finite time thermodynamics
HTL Heat transfer loss
IIL Internal irreversibility loss
MOO Multi-objective optimization
PD Power density
PO Power output
TE Thermal efficiency
WF Working fluid
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