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Prioritizing functional 
phosphorylation sites based on 
multiple feature integration
Qingyu Xiao1,2,*, Benpeng Miao1,2,*, Jie Bi2,3, Zhen Wang1 & Yixue Li1,4

Protein phosphorylation is an important type of post-translational modification that is involved in a 
variety of biological activities. Most phosphorylation events occur on serine, threonine and tyrosine 
residues in eukaryotes. In recent years, many phosphorylation sites have been identified as a result of 
advances in mass-spectrometric techniques. However, a large percentage of phosphorylation sites may 
be non-functional. Systematically prioritizing functional sites from a large number of phosphorylation 
sites will be increasingly important for the study of their biological roles. This study focused on 
exploring the intrinsic features of functional phosphorylation sites to predict whether a phosphosite is 
likely to be functional. We found significant differences in the distribution of evolutionary conservation, 
kinase association, disorder score, and secondary structure between known functional and background 
phosphorylation datasets. We built four different types of classifiers based on the most representative 
features and found that their performances were similar. We also prioritized 213,837 human 
phosphorylation sites from a variety of phosphorylation databases, which will be helpful for subsequent 
functional studies. All predicted results are available for query and download on our website (Predict 
Functional Phosphosites, PFP, http://pfp.biosino.org/).

Protein phosphorylation is an important type of post-translational modification that is involved in a variety of 
biological activities, including molecular association, protein degradation, enzymatic activation/inhibition and 
intracellular localization1–3. The phosphorylation events usually occur on serine (S), threonine (T), tyrosine (Y), 
histidine (H) and aspartic acid (D) residues in eukaryotes4,5, and we mainly focused on S, T and Y due to their 
prevalence in nature. A phosphate (PO4−) group can be either added by kinases or removed by phosphatases, 
resulting in a reversible molecular switch6. It has been reported that aberrant phosphorylation is associated with 
many human diseases such as Alzheimer’s disease, diabetes and cancer7–9.

A large number of phosphorylation sites (phosphosites) have been identified as a result of advances in mass 
spectrometric techniques in recent years, which provides great opportunities and challenges for functional stud-
ies10–12. However, only a small number of phosphosites have characterized functions, and the functional roles 
of many phosphosites remain unclear. Landry et al. studied the phosphoproteomes from an evolutionary per-
spective and suggested that a large percentage of phosphosites were non-functional (the estimated proportion 
was 65%)13,14. It was proposed that the non-functional phosphosites may result from the off-target recognition 
of kinases13. Phosphosites with important functions are of great value for both experimental and computational 
biology. However, conventional predictors concentrate on predicting whether a site is phosphorylated, and few 
make any prediction as to whether the site itself is functional15–17. Furthermore, with the high-throughput rate of 
mass spectrometric analyses of protein phosphorylation, there is likely a high proportion of non-functional sites 
and issues with localization accuracy18–20. Studies of non-functional sites are often unproductive or yield wholly 
misleading results. Therefore, the identification of functional phosphosites must be addressed.

Several studies have aimed to identify functional phosphosites using computational strategies. Niu et al. calcu-
lated both absolute and relative conservation scores to predict the most likely functional phosphosites21. However, 
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conservation alone is not sufficient for measuring the function of a site, as some functional phosphosites are not 
conserved at specific positions22,23. Beltrao et al. prioritized the functional relevance of post-translational modifi-
cations by predicting sites that were likely to be involved in cross-regulatory events, domain activity regulation, or 
protein-protein interactions24. Their study highlighted the importance of using multiple sources of information 
to characterize functional phosphosites. However, a systematic method of integrating and evaluating the features 
for functional phosphosite identification was not provided. The current study focused on evaluating the intrinsic 
characteristics of functional phosphosites and predicting whether a phosphosite is likely to be functional using 
multiple integrated characteristics. Features including conservation, kinase association and structure information 
were explored and compared in both known functional and background phosphosite datasets. The two datasets 
were classified by several trained classifiers based on feature integration. We also used the model to screen all 
human phosphosites collected from a variety of databases to provide the most likely candidates for further study.

Results
Training set. The construction of training datasets is critical for machine learning analysis. In this study, 
known functional human phosphosites from the PhosphoSitePlus database (file name: Regulatory_sites, ver-
sion: 060415) were used as the positive dataset25. For the negative data, we first filtered all human phosphosites 
to high-quality data subsets according to the counts of low/high-throughput experiments (see Methods). It is 
difficult to conclude that a phosphosite is non-functional in practice. A feasible solution is to find “background 
phosphosites” that are polymorphic in the human population and are not associated with diseases (see Methods). 
We also removed phosphosites on redundant proteins (sequence identity > 30%) in both datasets to avoid pos-
sible bias. Finally, we preserved 3,557 and 1,943 phosphosites in the positive and negative datasets, respectively 
(see Methods; Supplementary Figure 1). To balance the two datasets, we removed the sites that overlapped with 
the NetworkIN training data. Then, we randomly chose 1,911 sites from each dataset while matching S/T/Y and 
the number of homologous peptides. As a result, for both the positive and the negative datasets, the proportion of 
S/T/Y phosphosites is 58.87%, 24.02% and 17.11%, respectively, and the distributions of the number of homolo-
gous proteins in humans for the two datasets are the same (Supplementary Figure 2).

We analyzed the constructed positive dataset to validate the rationality of the “polymorphic and not associated 
with diseases” rule. Among the 82,940 high-quality phosphosites, 3,103 sites were marked “negative” according 
to the rule, while 152 of 5,372 known functional sites were marked “negative”. We tested the two proportions, and 
the result revealed a significant difference (p-value =  0.001, Chi-squared test).

Evolutionary conservation. It was previously reported that phosphosites with known function are more 
likely to be conserved than those with no characterized function13,26–28. If some phosphosites were more con-
served in evolution, we could infer that these sites have potential function29. In this study, we investigated both 
the sequence and the status conservation of phosphosites24. The sequence conservation of a phosphosite was eval-
uated by its evolutionary rate across 14 eukaryotes. In general, the faster the evolutionary rate a phosphosite has, 
the less conserved it is. Although this method has been widely used to score conservation13,30,31, variation in the 
evolutionary rate was not taken into account. To avoid this problem, we divided the 14 species into three groups 
(mammal, vertebrate and eukaryote), which represented close, median and distant time scales in the evolution-
ary tree, respectively. We calculated the evolutionary rate for each group separately (see Methods). Although 
the three evolutionary rates differed among the groups (Supplementary Figure 3), they were all significantly 
lower in the positive dataset than in the negative dataset (mammal: p-value <  2.2e-16; vertebrate: p-value <  2.2e-
16; and eukaryote: p-value <  2.2e-16, t-test, Fig. 1A–C), suggesting they could be used for scoring functional 
phosphosites.

As most phosphosites are located in disordered regions with a fast evolutionary rate, some functional phos-
phosites may have poor sequence conservation13. In addition, the precise positions of phosphosites are not nec-
essary for the regulation of phosphorylation, particularly in disordered regions22–24,32,33. To account for this, we 
defined the status conservation of phosphosites, which only requires its homologous sites to be phosphorylated 
nearby24. As there are fewer phosphosites in other species than in humans, we investigated the status conser-
vation of phosphosites by comparing the homologous peptides only within the human genome. To select the 
proper parameters, we considered a wide range of homologous peptide lengths (5~14) and phosphosite positions 
(±1~10) (see Methods, Supplementary Tables 1 and 2). We found that a peptide length of 11 and a position of ±5 
were the best parameters to evaluate the status conservation because they led to the most significant differences 
between the positive and negative datasets (p-value =  4.74e-4, Chi-squared test, Fig. 1D). These results indicate 
that both the sequence and the status conservation could contribute to functional phosphosite screening.

Structural environment. Protein properties and functions are highly correlated with their structure. 
Disordered regions often do not have well-folded persistent structures and are enriched for protein-protein inter-
actions because of their variability for flexible conformational change34–36. Due to their easier accessibility to 
kinases, most phosphosites occur in disordered regions, which are less conserved than ordered regions16,37. Thus, 
in such regions, the off-target effects of kinases may occur more frequently, which could result in a large number 
of non-functional phosphosites. In addition to the disorder state, the underlying secondary structure may also 
have a great impact on the function of a phosphosite38,39. In this study, for each phosphosite, we calculated the 
disorder score and the types of secondary structures, i.e., beta sheet, helix and coil.

To evaluate the predictive ability of each feature, we compared their distributions in the positive and negative 
datasets. In both datasets, the majority of phosphosites are located in the disordered region (Fig. 2A). However, 
more sites in the positive dataset have relatively lower disorder scores, indicating that more positive sites are 
located in ordered regions compared to negative sites. The score distributions in the two datasets are significantly 
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different (p-value <  2.2e-16, Wilcoxon rank sum test). This result is consistent with our expectation that back-
ground phosphosites occur more frequently in disordered regions, where more off-target events could arise.

We compared the distribution of secondary structures in the two datasets and found that they were also sig-
nificantly different (p-value =  2.29e-6, Chi-squared test). As shown in Fig. 2B, most of the phosphosites in both 
datasets prefer to locate in coils, but the proportion of sites in coil structures in the negative dataset is significantly 
higher than that in the positive dataset, which is in agreement with the distribution of disorder scores.

Association with kinase. Due to the off-target activity of kinases, we hypothesized that randomly phos-
phorylated sites tended to have weaker associations with kinases13. If a phosphosite is functional, it is more likely 
to match the kinase motif perfectly. Therefore, measuring the association between kinases and phosphosites may 
help identify those sites with critical functions. NetworkIN is a tool that integrates both protein-protein interac-
tion and phylogenetic tree information to predict kinase recognition, and it returns a NetworkIN score for each 
site in a probabilistic manner40. A larger NetworkIN score indicates a higher possibility of kinase recognition. We 
compared the distribution of NetworkIN scores in the two datasets (see Methods). As shown in Fig. 3, positive 
sites have significantly higher NetworkIN scores than negative sites (p-value <  2.2e-16, Wilcoxon rank sum test). 
This result indicates that kinase association is a good feature to distinguish positive sites from negative ones.

Different model performance. To find the most important and robust features for model building, we 
performed a 50-round feature selection procedure. For each round, we generated a randomly chosen balanced 
dataset and selected an optimal subset from the features investigated above using the attribute selection tools in 

Figure 1. The conservation of phosphosites. The distributions of sequence conservation for three different 
groups: (A) mammal group, (B) vertebrate group, and (C) eukaryote group. For each group, the distribution of 
the positive dataset is significantly different from the distribution of the negative dataset (p-value <  2.2e-16,  
t-test). (D) The distribution of status conservation. The positive and negative datasets exhibit significant 
differences in status conservation (p-value =  4.74e-4, chi-squared test). pos: positive dataset; neg: negative 
dataset; con: conserved phosphosites; no: non-conserved phosphosites.

Figure 2. The distribution of structural features in the positive and negative datasets. (A) Disorder 
score distribution (p-value <  2.2e-16, Wilcoxon rank sum test). (B) Secondary structure distribution 
(p-value =  2.29e-6, chi-squared test).
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Weka (see Methods)41. Among the features, some were very robust (e.g., kinase score was selected as the best 
feature in all 50 rounds). We counted the frequency of each feature as it appeared in the selected feature subset 
and chose the top 5 high-ranked features. Consequently, the final robust feature subset included the kinase score, 
sequence conservation in mammals and eukaryotes, disorder score, and beta-sheet state.

We trained four different types of machine learning models, including Bayesnet, Logistic regression, Random 
Forest and Multilayer Perceptron. We split the full datasets into 90% for the training set and 10% for the inde-
pendent test set. With the 10-fold cross-validation method performed on the training set (see Methods), we com-
pared the performance of the four models (Supplementary Figure 4). The results indicate that the performances 
of the constructed models are similar and robust. Figure 4A shows the ROC curve of the independent testing 
datasets for different models, and different models yield comparable results, which indicate that the prediction 
is independent of the model chosen. The detailed performance metrics of the independent test set including 
sensitivity, specificity, precision, F-measure, accuracy and the area under the ROC curve for the four models are 
compared in Fig. 4B. The performances on the test dataset are similar to the cross-validation results on the train-
ing dataset, indicating no overfitting of the model.

To evaluate the relative contribution of the features, we assigned the five selected features into 3 groups: kinase 
association (kinase score), sequence conservation (eukaryote conservation and mammal conservation), and 
structure (disorder score and beta-sheet state). We used each group alone to build the model with the Random 
Forest. Comparing the ROC curves of the 3 feature groups (Supplementary Figure 5), we found that kinase asso-
ciation played the most important role, and sequence conservation played the second most important role.

Prediction for the whole dataset. We applied all four models to the whole human phosphorylation data-
set collected from the PhosphositePlus, PhosphoELM, and dbPTM databases42,43. For each site predicted, the 
model yields a prediction score ranging from 0 to 1, indicating the extent of the prediction to be positive. As 
different thresholds of the prediction score would give different proportions of predicted positive/negative sites, 
we showed the relationship between the false-positive rate and the threshold, as well as the predicted proportion 
of positive sites for different models (Fig. 5A).

We predicted a total of 213,837 phosphosites on 19,247 proteins and compared the prediction results of the 
different models (false positive rate =  0.10) as shown in Fig. 5B and Supplementary Figure 6. Approximately 
68.7% of all phosphosites have the same prediction results for the four models, while 93.0% have consistent pre-
diction results for at least three models (Fig. 5B). When limited to the high-quality data, the above proportions 

Figure 3. NetworkIN score distribution. Violin plot for NetworkIN score with log-scaled x-axis. The figure 
shows the significant difference between positive and negative sites (p-value <  2.2e-16, Wilcoxon rank sum 
test).

Figure 4. Different model performance on the independent test set. (A) The ROC curve for different models. 
Different models yield comparable results. (B) Sensitivity, specificity, accuracy, precision, F-measure and the 
area under the ROC curve for five models. Sn: sensitivity; Sp: specificity; ACC: accuracy; PPV: precision; F1: 
F-measure; and ROC: the area under the ROC curve.
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become 71.3% and 93.1% for the four models and for at least three models, respectively (Supplementary Figure 6).  
These results show that the predictions of the different models are in good accordance and emphasize the value 
of combined use of the results of the different models as well as a proper threshold of prediction score for credible 
screening.

All data are available for query and download on our PFP website (Predict Functional Phosphosites, PFP, 
http://pfp.biosino.org/). Users can use the UniProt ID (or HGNC gene symbol) and the position information of 
the phosphosite to query whether the site is more likely to be functional for subsequent experimental validation. 
To make it easier for users to compare the different models and to select their own threshold, the prediction 
results and prediction scores for all four models are also available.

We also used the predicted results on high-quality phosphosites to validate whether the “polymorphic but 
not associated with diseases” rule for the negative sites was reasonable (Supplementary Table 3). Looking at 
the Random Forest prediction results (false positive rate =  0.1) as an example, for the predicted 13,883 posi-
tive sites, there were only 499 sites that passed the rule, and the proportion was significantly lower than that in 
all phosphosites (p-value =  1.12e-4, Chi-squared test). Similarly, the proportion is also significant for the other 
three models (Supplementary Table 3). The results suggest that the rule is reasonable for the negative dataset 
construction.

Discussion
Finding functional phosphosites from a large number of candidates will be more and more important for the 
study of their biological function. In this study, we systematically evaluated and integrated multiple features for 
functional phosphosite identification. We investigated the sequence conservation, status conservation, kinase 
association, disorder score and secondary structure of phosphosites. We found that all these features show signif-
icant differences between functional and background phosphosites. We selected the most representative features 
to build classifiers based on different algorithms, and different models performed comparably. The predicted 
results, along with the corresponding prediction scores, are available on our website. These results improve our 
understanding of the mechanism of phosphorylation and will be helpful for subsequent functional studies.

Among our optimal features, the kinase score played the most important role. The functional phosphosites 
have significantly stronger associations with corresponding kinases than the background sites, which provides 
evidence for the hypothesis that non-functional phosphosites may result from the off-target recognition of 
kinases13. In protein interactomes, there are many “noisy interactions” with no apparent functional meaning44. 
Similarly, random phosphorylation events resulting from misrecognition of kinases were suggested to be com-
mon in kinase-substrate networks14.

The evolutionary rate has widely been used to score conservation for evaluating the functional importance of 
phosphosites13,21,24. However, the fact that the evolutionary rate was variable in evolution was not accounted for. 
In this study, we considered the variation in the evolutionary rate by assigning the species into different groups. 
The sequence conservations of both eukaryotes and mammals were chosen as the optimal features, suggesting 
that it was reasonable to incorporate different levels of conservation for function evaluation.

Our results indicated that both the disorder score and the secondary structure contributed to prioritization of 
the functional phosphosites. Phosphosites were enriched in disordered regions for more efficient kinase recogni-
tion13,16,38. However, our study found the proportion of background phosphosites in disordered regions is higher 
than that of functional ones in disordered regions. This may result from the possibility that the off-target events 
of kinases are more likely to occur in disordered regions. Similarly, more functional sites are located in helix and 
beta-sheet structures, which are well folded compared with coils.

Figure 5. Evaluation of the prediction results of the different models. (A) The upper half of the figure shows 
the relationship between the threshold of prediction score and false-positive rate (FPR). The lower half of the 
figure shows the relationship between the proportion of predicted positive sites and FPR. The results indicate 
that a larger threshold of prediction score is often associated with a lower false-positive rate and proportion of 
predicted positive sites. (B) The Venn diagram of the prediction results of the different models (FPR =  0.1) for 
all human phosphosites (213,837). The results of the different models show good accordance.

http://pfp.biosino.org/
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Although plausible in theory, non-functional phosphosites are hard to validate in practice, which is the main 
challenge for the construction of the negative dataset. In this study, we defined the negative dataset as the “back-
ground phosphosites” that satisfy the rule “sites with polymorphism but not associated with diseases”. Although 
phosphosites with SNPs are not always non-functional, their toleration in the population often implies that they 
are not important for key functions. In addition, our results demonstrated that the proportion of phosphosites 
passing the rule in the positive dataset (and predicted positive dataset) was significantly lower than that in the 
whole phosphosite dataset, which provided statistical evidence for the rationality and effectiveness of our method. 
However, there are still false-negative phosphosites that may affect the performance of our prediction. A better 
solution would be to find phosphosites with high-frequency polymorphisms in the human population, but these 
are limited due to the lack of frequency information of current SNP data. Further extension of SNP frequency 
information may improve the prediction ability.

Methods
Data collection. We downloaded all human phosphosites and regulatory phosphosites from the 
PhosphoSitePlus database (version: 060415)25. Additionally, phosphosites from dbPTM, which integrated 
Phospho.ELM (release 9.0), UniProtKB (release 2015-08), HPRD (release 9.0) and SysPTM (release 2.0), were 
also collected to build a comprehensive human phosphosite database42,43,45–47. The PhosphositePlus database pro-
vided a file named ‘Regulatory_sites.gz’ (http://www.phosphosite.org/downloads/Regulatory_sites.gz), which 
listed the functional annotations for phosphosites as “on known function”, “on process”, “on protein interaction” 
and “on other interactions”. In our study, a phosphosite is considered “known functional” if it has functional 
annotations in this file. In total, we retrieved 213,837 human phosphosites, which included 5,389 known func-
tional phosphosites as the positive dataset. For negative data, we do not have a dataset that is directly ready for 
use. A feasible solution is to find “background phosphosites” that are polymorphic in the human population and 
are not associated with diseases. Taking data quality into consideration, we obtained high-quality phosphosites 
based on experimental data with the following rules: a site must (1) have low throughput experimental evidence; 
or (2) be supported by at least 2 mass spectrometry experiments. After this filtering step, we obtained 82,940 
high-quality phosphosites. Next, the CD-hit software was used to remove homologous proteins with sequence 
identity greater than 30%48. After the phosphosites lying in redundant proteins were removed, we preserved 3,557 
and 50,258 phosphosites in the positive and negative datasets, respectively.

Next, for the negative sites, we annotated human SNPs from dbSNP138 using ANNOVAR (version: 20150619, 
hg19), and we mapped all high-quality and non-redundant human phosphosites to the results49. From these over-
lapping sites, we removed those associated with disease in the ClinVar database (35 sites), COSMIC deleterious 
somatic mutations (496 sites), SNPs in the GWAS Catalog (0 sites), and disease-associated sites provided in the 
PhosphoSitePlus database (7 sites)50–52. Previous studies have indicated that SNPs influencing phosphorylation 
might have some functional implications53,54; therefore, we further filtered the phosphorylated SNP sites defined 
by PhosSNPs that may have potential functional roles (312 sites removed)55. After removing sites that overlapped 
with the positive dataset (70 sites), we obtained a negative dataset containing 1,943 background phosphosites. The 
overview of the data processing workflow is shown in Supplementary Figure 1.

At the following feature evaluation step, we used the NetworkIN score to evaluate the associations between 
phosphosites and their kinases. To avoid possible prediction bias caused by overlap of the training data, we 
removed the NetworkIN training sites from our positive datasets (980 sites removed, ~27.6%). This step resulted 
in a final positive dataset containing 2,577 phosphosites.

Because any differences between the positive and negative datasets will be detected by the machine learning 
model, it is important to balance some fundamental characteristics in the two datasets, such as the number of 
phosphosites, S/T/Y comparability, and the number of hit peptides when blasted in the human phosphoproteome 
(important for analysis of “status conservation” in the following part). Taking all these factors into consideration, 
we randomly chose 1,911 balanced phosphosites from both datasets to avoid possible bias in subsequent model 
construction.

Conservation score. The conservation of phosphosites was analyzed by sequence conservation across dif-
ferent species and status conservation within the human proteome24. For sequence conservation, we first divided 
the 14 species into three groups: mammal (H. sapiens, P. troglodytes, B. taurus, R. norvergicus, and M. musculus), 
vertebrate (H. sapiens, P. troglodytes, B. taurus, G. gallus, X. tropicalis, D. rerio, R. norvergicus, and M. musculus) 
and eukaryote (H. sapiens, P. troglodytes, B. taurus, G. gallus, X. tropicalis, D. rerio, R. norvergicus, M. musculus, 
A. thaliana, O. sativa, S. cerevisiae, S. pombe, D. melanogaster, and C. elegans). Then, we found the orthologous 
proteins of these species in each group with human proteins, and we performed a multiple sequence alignment 
with Clustal-omega56. Finally, we used the rate4site software to calculate the evolutionary rate of each human 
phosphosite in the three groups, respectively57.

For status conservation, all the human phosphorylated proteins were used as a library. Here, we considered 
the influence of two parameters: length of query peptide and window of aligned positions. We extracted 5~14 
residues on each side of human phosphosites as the query peptide to perform a blast against the library58. For 
a phosphosite, if its corresponding homologous peptide was also phosphorylated within a window around the 
aligned positions, it was considered to have status conservation, regardless of the type of residues phosphoryl-
ated24. Here, we considered a wide range of window size (± 1~10). By evaluating the differences in the positive 
and negative datasets, we chose 11 as the query peptide length and ± 5 around aligned positions to calculate the 
status conservation (Supplementary Tables 1 and 2).

Disorder score and secondary structure. The VSL2 software integrates 26 sequence-based features to 
predict intrinsically disordered regions on given protein sequences59. It calculates the disorder score (between 0 
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and 1) for each amino acid. The higher the disorder score, the more likely the corresponding amino acid lies in 
a disordered region. SSpro/ACCpro (release 5.1) software is widely used for predicting the secondary structure 
of given proteins60. SSpro predicts 3 classes of secondary structures, including beta sheet, helix and coil. In this 
study, we separately coded these 3 classes by “001”, “010” and “100”. To effectively run the software, we extracted 
40 amino acids around each phosphosite (i.e., peptide length =  81).

NetworkIN score. NetworkIN is a convenient tool that predicts the most likely kinase that catalyzes the 
given phosphosites40. NetworkIN uses various types of experimental data, such as position-specific scoring 
matrices (PSSMs) generated by peptide array experiments and in vivo phosphatase interactions. Moreover, rela-
tionships between individual kinases and their specific downstream phospho-proteins were manually curated 
from the literature, where the specificity of the relationships has been carefully tested and validated40. The algo-
rithm integrates STRING-derived proximity scores and NetPhorest probabilities as the final NetworkIN score, 
which represents how likely the phosphorylation interaction is to occur40. Because of the probabilistic manner of 
the NetworkIN score, we can directly compare predictions from different kinases without normalization40. For 
each phosphosite, we set the maximum NetworkIN score as the “NetworkIN feature”, indicating the association 
strength between a specific phosphosite and its corresponding kinases.

Feature selection. We used the attribute evaluator CfsSubsetEval in Weka (version 3.6)41 and set the search 
method as BestFirst. CfsSubsetEval takes the predictive ability of each feature and the redundancy among differ-
ent features into consideration, and it selects the best subsets of features that have high correlations with the class 
and low correlations among the features. The BestFirst method combines a greedy hill-climbing algorithm with 
a backtracking facility.

To evaluate the robustness of the selected features, we randomly chose the balanced datasets for 50 rounds. 
For each round, we used a 10-fold cross-validation method during feature selection, and we selected the feature 
subsets that could best classify the two datasets. The most robust features in 50 rounds were selected as our final 
feature subset and were used in the following model construction.

Training and prediction. Weka integrates many different types of machine learning methods41. We used 
four representative classifiers (Bayesnet, Logistic, Random Forest and Multilayer Perceptron) to build mod-
els, and we compared their performance. For each model, we performed parameter optimization using Weka’s 
meta-classifier CVParameterSelection, which searches for the best parameter settings in a given range41. To 
address missing values, which are not allowed in some models, we replaced them with the means for numeric 
attributes (or modes for nominal attributes) from the training data. We split the full dataset into 90% for the train-
ing set and 10% for the independent test set (keeping S/T/Y and the numbers of homologous proteins balanced), 
and we repeated the training and prediction step 10 times using balanced cross-validation on the training data to 
evaluate model performance and robustness.

Model evaluation. We used the 10% independent test dataset to evaluate model performance. The defini-
tions of the performance metrics are as follows:

=
+

Sn sensitivity TP
TP FN

( )
(1)

=
+

Sp specificity TN
TN FP

( )
(2)

=
+

PPV precision TP
TP FP

( )
(3)

− =
+ +

F measure TP
TP FP FN

2
2 (4)

=
+

+ + +
ACC accuracy TP TN

TP TN FN FP
( )

(5)

=
+

FPR false positive rate FP
FP TN

( )
(6)

where TP, TN, FP, and FN represent the number of true positives, true negatives, false positives and false nega-
tives, respectively. We also used receiver operating characteristic (ROC) curves to visualize the performance and 
compare the different models.
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