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Simple Summary: Rheumatoid arthritis (RA) is a complex disease resulting from multiple genetic
and environmental pathogenic factors. The genetic factors include single-nucleotide polymorphisms
(SNPs), which have been reported to be associated with RA, but their specific role in the pathogenesis
of RA remains unexplained. This study explains the potential role of RA risk-associated SNPs in its
pathogenesis in order to provide a basis for understanding the genetic complexity of RA. Several
roles of these SNPs are described in this study, and may also aid in the design of a therapeutic
strategy for RA. Furthermore, novel potential therapeutic sites have also been researched, resulting
in the identification of three novel therapeutic targets. The therapeutic strategies for the treatment of
RA include inflammatory pathway-targeting drugs, which alleviate inflammation in joints. There
is always a need for novel therapeutic targets that can play a role in alleviating inflammation in
autoimmune diseases including RA. Therefore, these novel therapeutic sites are very important, and
further experimental studies are required.

Abstract: Single-nucleotide polymorphisms (SNPs) are reported to be associated with many diseases,
including autoimmune diseases. In rheumatoid arthritis (RA), about 152 SNPs are reported to account for
~15% of its heritability. These SNPs may result in the alteration of gene expression and may also affect the
stability of mRNA, resulting in diseased protein. Therefore, in order to predict the underlying mechanism
of these SNPs and identify novel therapeutic sites for the treatment of RA, several bioinformatics tools
were used. The damaging effect of 23 non-synonymous SNPs on proteins using different tools suggested
four SNPs, including rs2476601 in PTPN22, rs5029941 and rs2230926 in TNFAIP3, and rs34536443 in TYK2,
to be the most damaging. In total, 42 of 76 RA-associated intronic SNPs were predicted to create or abolish
potential splice sites. Moreover, the analysis of 11 RA-associated UTR SNPs indicated that only one SNP,
rs1128334, located in 3′UTR of ETS1, caused functional pattern changes in BRD-BOX. For the identification
of novel therapeutics sites to treat RA, extensive gene–gene interaction network interactive pathways were
established, with the identification of 13 potential target sites for the development of RA drugs, including
three novel target genes. The anticipated effect of these findings on RA pathogenesis may be further
validated in both in vivo and in vitro studies.
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1. Introduction

Rheumatoid arthritis (RA) is a systemic autoimmune disease with approximately 1%
prevalence worldwide, and its presence carries the risk of irreparable functional disability
of inflamed joints due to articular damage [1]. Rheumatoid joints exhibit an inflammatory
environment that favors the activation of T cells, B cells, macrophages, osteoclasts, and
synovial fibroblasts [1]. These cells maintain crosstalk through the production of cytokines,
which upon activation induce the secretion of enzymes and other products that contribute
to the destruction of cartilage and bone tissues [2]. To date, the etiology of RA remains
obscure. However, some authors suggest that the over-reactive immune system in RA is due
to both genetic and environmental factors [3,4]. It has been estimated that the inheritability
of RA is around 65%, which underlines the importance of its genetics [5–7]. Among the
genetic factors, several genes have been associated with RA susceptibility [7–11]. Genetic
association studies based on different populations have identified more than 100 genomic
loci [10–12] which account for approximately 15% of the variance [12,13]. However, the
actual underlying genetic mechanism concerning SNPs has not been determined.

SNPs are genetic variations that account for ~0.1% differences in populations. The
coding region contains about 50% SNPs, with ~25% being missense and ~25% being silent
or synonymous [14,15]. Non-coding SNPs may change mRNA stability and promoter
activity by creating or disrupting the miRNA sites, causing an altered gene expression with
the consequent up-or down-regulation of a gene. The role of these variants in relation to
RA risk needs to be explored for the proper elucidation of the biological pathways involved.
Besides understanding the underlying disease mechanism, SNP analysis will help in the
development of new drugs against RA.

In this study, 152 RA-associated SNPs were characterized and their functional impor-
tance with regard to the respective genes and their products was examined in detail. In
addition, we investigated the gene–gene interaction patterns and suggested 13 potential
and highly significant target sites for the development of RA drugs.

2. Results
2.1. SNP Retrieval

The first step in this study involved mining the literature from PubMed and Web
of Science (Figure 1). We found 152 SNPs (located in 75 genes) in the literature which
were reported to be associated with RA (Table S1). Of these SNPs, 76 SNPs were intronic
(located in 51 genes), 40 SNPs were intergenic, 23 SNPs were missense (located in 18 genes),
11 SNPs were in the UTRs of 9 genes (6 SNPs in 3′UTR and 5 SNPs in 5′UTR), 1 SNP
was synonymous, and 1 belonged to the splice site (Figure 2). Details on all the SNPs are
provided in Table S1. The associations of these SNPs with the clinical characteristics of RA
patients are provided in Table S2.
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Figure 2. Distribution of SNPs associated with RA, represented in a pie chart. This figure was generated using Microsoft
Excel 2016.

2.2. Characterization of nsSNPs

The 23 nsSNPs that were retrieved from the literature and were found to be potentially
associated with RA were analyzed using different tools. These nsSNPs are listed in Table 1
along with amino acid residue change and global MAFs.
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Table 1. nsSNPs along with amino acid change and global MAFs associated with RA.

Gene SNP ID Amino Acid Change Global MAF *

PTPN22
rs33996649 R263Q T = 0.0110
rs2476601 R620W A = 0.0274

PADI4
rs11203366 G55S G = 0.4754
rs11203367 V82A T = 0.4667

CTLA4 rs231775 T17A G = 0.4273

TNFAIP3
rs5029941 A125V T = 0.0060
rs2230926 F127S G = 0.1396

FCGR2A rs1801274 H167R G = 0.4417
FCGR2B rs1050501 I232T C = 0.1859

IRAK1
rs1059703 S532L G = 0.4832
rs1059702 F196S A = 0.3711

IL6R rs2228145 D358A C = 0.2931
AIRE rs1800520 S278R G = 0.2282
TYK2 rs34536443 P1104A C = 0.0102

RTKN2 rs3125734 H462R T = 0.4111
PLD4 rs2841280 E34Q C = 0.4119

NFKBIE
rs2233434 V194A G = 0.0669
rs2233433 P175L A = 0.0529

SH2B3 rs3184504 W262R T = 0.1474
CD226 rs763361 S307G C = 0.4694
WDFY4 rs7097397 R1816Q A = 0.3586
YDJC rs2298428 A263T T = 0.2248

PRKCH rs2230500 V374I A = 0.0605
* MAF: minor allele frequency.

2.3. Prediction of Damaging Effects of nsSNPs

The damaging effects of nsSNPs on proteins were predicted using five different in-
silico tools, which included PhD-SNP, SNPs&GO, PolyPhen2, PROVEAN, and SIFT. For
PhD-SNP and SNPs&GO, a threshold value of 0.5 was set and any prediction beyond this
value was considered deleterious. According to these tools, all the nsSNPs were found to
exhibit a neutral effect. PolyPhen2 predicted the nsSNPs to be probably damaging, possibly
damaging, and benign on a scale of 0–1, with 1 being the most damaging. According to
PolyPhen2, 5 out of 23 nsSNPs were predicted to be probably damaging. In the case of
PROVEAN, a threshold value of −2.5 was selected and any prediction below this value
was considered deleterious. Out of the total 23 nsSNPs, PROVEAN predicted four SNPs to
be deleterious. In SIFT, a tolerance index (TI) of 0.05 was selected and the predictions with
values less than this were considered deleterious. SIFT predicted three of the total nsSNPs
to be deleterious. Finally, four nsSNPs (corresponding to three genes) which were predicted
to be damaging or deleterious by at least two of the five in-silico tools were selected for
further analysis (Table 2). The selected nsSNPs were cross-checked for consistency using
the Ensembl genome browser (release 96), MetalR, Mutation Assessor, REVEL, and CADD.
The selected nsSNPs included PTPN22 rs2476601, TNFAIP3 rs5029941 and rs2230926, and
TYK2 rs34536443. Ensembl results for these four nsSNPs are listed in Table 3. These results
were in accordance with our prediction results, which confirmed the reliability of our
methodology. Results for all the nsSNPs are provided in Table S3.
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Table 2. SIFT, PROVEAN, PolyPhen2, SNP&GO, and PhD-SNP results for the selected nsSNPs.

Gene SNP ID

PhD-SNP SNP&GO PolyPhen-2 PROVEAN SIFT

Prediction

Score
(Thresh-

old
0.5)

Prediction

Score
(Thresh-

old
0.5)

Prediction Score
(0–1) Prediction

Score
(Thresh-

old
−2.5)

Prediction

TI Score
(Thresh-

old
0.05)

PTPN22 rs2476601 Neutral 0.473 Neutral 0.253 Benign 0.029 Deleterious −5.099 Deleterious 0.03

TNFAIP3
rs5029941 Neutral 0.242 Neutral 0.071 Probably

damaging 0.983 Neutral −2.147 Deleterious 0.006

rs2230926 Neutral 0.425 Neutral 0.222 Possibly
damaging 0.515 Deleterious −3.993 Tolerated 0.093

TYK2 rs34536443 Neutral 0.300 Neutral 0.094 Probably
damaging 1.00 Deleterious −6.755 Deleterious 0.007

Table 3. Ensembl results for the selected four nsSNPs.

Gene SNP CADD REVEL MetalR Mutation
Assessor

PTPN22 rs2476601 14 0.07 0.003 0.00

TNFAIP3
rs5029941 16 0.078 0.035 0.373
rs2230926 18 0.153 0.025 0.294

TYK2 rs34536443 26 0.586 0.336 0.36

2.4. Prediction of Stability, Functional, Structural Effects, and Conservation Profile of Proteins

I-Mutant was used to predict the effects of the nsSNPs on protein stability. This tool
predicted that 21 of the 23 nsSNPs would decrease protein stability, while two nsSNPs
(rs2233433 and rs5029941) showed the opposite results. For the structure-based predictions,
we used CUPSAT (released January 2018) (http://cupsat.tu-bs.de/, accessed on 2 February
2021) to cross-check the reliability of these predictions. The CUPSAT predicted eight
nsSNPs (34.78%) to be stabilizing as compared to I-Mutant (8.70%), while 15 nsSNPs
(65.22%) were predicted to be destabilizing as compared to I-Mutant (91.30%). This tool
also predicted changes in energy upon amino acid substitution (Table 4). The MutPred
server was used to predict different structural and functional effects, such as the creation of
glycosylation and catalytic sites, altered membrane proteins, the gain of intrinsic disorder,
the loss of allosteric sites, etc. Only one (rs2230926) of the 23 nsSNPs caused gain of
an intrinsic disorder and loss of an allosteric site, while all the remaining nsSNPs were
predicted to have no structural or functional effects on proteins. The ConSurf tool was
used to predict the evolutionary conservation profile of all the amino acids of a protein.
The protein FASTA sequences of each protein were submitted to ConSurf, which generated
the conservation profiles of each proteins (Figure S1). Interestingly, only 2 of the 23 nsSNPs
were located at buried amino acid sites and three were located at highly conserved and
functional residues, while all the remaining nsSNPs were present at the exposed residues.
The findings regarding the stability, functional and structural effects, and conservation
profile of proteins are listed in Table 5.

http://cupsat.tu-bs.de/
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Table 4. Prediction of protein stability upon introduction of the nsSNP.

Gene SNP ID Stability Torsion Predicted ∆∆G
(kcal/mol)

PTPN22
rs33996649 Destabilizing Unfavorable −0.116
rs2476601 Destabilizing Favorable −6.98

PADI4
rs11203366 Destabilizing Favorable −5.91
rs11203367 Destabilizing Unfavorable −0.46

CTLA4 rs231775 Destabilizing Favorable −1.04

TNFAIP3
rs5029941 Stabilizing Unfavorable 2.78
rs2230926 Destabilizing Unfavorable −4.58

FCGR2A rs1801274 Destabilizing Favorable −1.19
FCGR2B rs1050501 Destabilizing Favorable −0.91

IRAK1
rs1059703 Destabilizing Unfavorable −3.43
rs1059702 Stabilizing Unfavorable 0.16

IL6R rs2228145 Stabilizing Favorable 0.04
AIRE rs1800520 Destabilizing Favorable −0.16
TYK2 rs34536443 Stabilizing Favorable 6.73

RTKN2 rs3125734 Stabilizing Unfavorable 1.79
PLD4 rs2841280 Stabilizing Unfavorable 1.99

NFKBIE
rs2233434 Destabilizing Favorable −0.91
rs2233433 Destabilizing Favorable −1.79

SH2B3 rs3184504 Stabilizing Unfavorable 0.91
CD226 rs763361 Destabilizing Favorable −0.43

WDFY4 rs7097397 Destabilizing Unfavorable −0.09
YDJC rs2298428 Stabilizing Unfavorable 0.43

PRKCH rs2230500 Destabilizing Unfavorable −0.91

Table 5. Results predicted by I-Mutant, MutPred, and ConSurf for the important nsSNPs.

Gene SNP ID
I-Mutant
(Stability)

MutPred
ConSurf

Conservation ProfilePROSITE and
ELM Motifs

Molecular
Mechanisms

PTPN22
rs33996649 Decrease None None

Highly conserved,
exposed, and

functional residue

rs2476601 Decrease None None
Highly conserved,

exposed, and
functional residue

TNFAIP3 rs2230926 Decrease

ELME000053,
ELME000064,
ELME000106,
ELME000146,
ELME000220,
ELME000239,

1. Gain of intrinsic
disorder

2. Loss of allosteric
site at R123

Exposed

TYK2 rs34536443 Decrease None None
Highly conserved,

exposed, and
functional residue

2.5. Modeling of Proteins

The protein modeling was performed using comparative homology modeling with
MODELLER v9.22. For each of the proteins, NCBI BLAST was utilized and the source
database was set as the Protein Data Bank (pdb). The best-matching templates for each
of the proteins were selected for homology modeling. The templates, along with the
percentages of identity and coverage, are listed in Table 6. For each protein, the templates
were searched and their respective pdb files were downloaded from the RCSB Protein
Data Bank. Python script files were written according to the protocol by Andrej Sali
Laboratory (https://salilab.org/modeller/tutorial/, accessed on 3 February 2021). For
each homology model, the best models with the lowest DOPE value and highest GA341
score were selected for final modeling. The final models were viewed and studied using
Chimera v1.11 (https://www.cgl.ucsf.edu/chimera/, accessed on 3 February 2021) [13].

https://salilab.org/modeller/tutorial/
https://www.cgl.ucsf.edu/chimera/
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Mutant structures were modeled using Chimera v1.11 by mutating the residue of interest.
All the modeled structures along with mutated residues are given in Figure 3A–C. The
RMSD values for each of the mutant proteins were calculated using TM-align for every
nsSNP. Interestingly, the RMSD values for all the mutated structures were zero. To validate
our designed structures, Ramachandran plot assessment was used. The RAMPAGE values
for each modeled structure are listed in Table 7. All the modeled structures had outlier
region residues <10%.

Table 6. Percentage identity and coverage of the best-matching templates for query proteins.

Query
Protein Templates Identity

(%)
Coverage

(%)
Query
Protein Templates Identity

(%)
Coverage

(%)

PTPN22

3BRH 99.35 38

AIRE

2LRI 100 19
4J51 100 37 1XWH 96.88 19

3H2X 100 37 2KFT 100 17
2P6X 99.67 37 4ZQL 49.18 21

TNFAIP3

3DKB 100 46

RTKN

4XH3 22.28 56
5LRX 100 46 1UPQ 31.63 16
2VFJ 100 46 2Y7B 22.22 17
3ZJD 99.73 46 1WJM 31.58 9

TYK2

4OLI 98.57 53

PLD4

2ZE4 26.52 34
4PO6 100 47 4GGJ 26.32 22
3ZON 100 50 2ZE9 25.97 34
5C01 100 49 1BYR 24.70 30

CTLA4

2 × 44 94.44 72

NFKBIE

1K1A 45.74 44
1I85 94.44 72 1IKN 37.99 45
5XJ3 94.44 72 1NFI 40 45

3OSK 94.44 72 1OY3 38.05 37

FCGR2A

1FCG 99.43 54

SH2B3

5W3R 74.04 18
1H9V 99.42 54 2HDV 71.30 18
3D5O 99.42 53 1RQQ 69.23 18
3RY4 99.41 53 1RPY 68.27 18

FCGR2B

5OCC 100 56

CD226

6ISB 100 69
3WJJ 100 55 6ISA 53.39 65
2FCB 99.42 55 5B22 26.21 59
1H9V 99.19 55 4FQM 26.21 59

IRAK1

6BFN 99.71 47

PRKCH

3TXO 99.43 51
6EG9 34.74 45 4RA4 57.57 49
2NRY 34.74 45 3IW4 57.27 49
2NRU 34.24 45 2I0E 58.11 49

IL6R

1N26 100 69

PADI4

3APM 100 100
5FUC 99.06 54 4X8C 99.85 100
1P9M 100 42 4DKT 99.55 100
2ARW 100 26 3APN 99.55 100

WDFY4

1T77 46.72 11

YDJC 2I5I 37.23 40
1MI1 46.17 11
5A1U 23.70 6
6G6M 30.30 5
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Figure 3. Modeled structures using MODELER v9.22 for wild-type proteins along with a close-up of wild and mutated
amino acid residues. (A) Modeled structures for CTLA4, FCGR2A, CD226, AIRE, FCGR2B, IL6R, PLD4, and PRKCH. (B)
Modeled structures for RTKN2, YDJC, SH2B3, TYK2, WDFY4, and IRAK1. (C) Modeled structures for NFKBIE, PADI4,
PTPN22, and TNFAIP3. All the protein structures were visualized, and figures were generated using Chimera v1.11 software
(https://www.cgl.ucsf.edu/chimera/, accessed on 3 February 2021). The structures were then assembled and combined
using Microsoft PowerPoint 2016.

Table 7. Ramachandran plot analysis percentages of favored, allowed, and outlier residues for the
modeled structures.

Protein Favored
(%)

Allowed
(%)

Outlier
(%)

PTPN22 85 9.4 5.6
PADI4 91.8 5.1 3.0
CTLA4 96.5 2.9 0.6

TNFAIP3 84.3 8.5 7.2
FCGR2A 95.2 4.4 0.3
FCGR2B 93.8 4.5 1.6
IRAK1 93.7 3.5 2.8
IL6R 88.4 7.7 3.9
AIRE 84.9 9.6 5.4
TYK2 82.1 9.8 8.1

RTKN2 83.5 10.5 5.9
PLD4 90.8 4.9 4.3

NFKBIE 91.6 6.6 1.8
SH2B3 83.2 10.6 6.1
CD226 94.9 3.8 1.4

WDFY4 78.5 13.0 8.5
YDJC 78.5 13.0 8.5

PRKCH 88.0 8.4 3.7

https://www.cgl.ucsf.edu/chimera/
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2.6. Characterization of Intronic SNPs

The SNPs located in the intronic regions of different genes, which were reported to be
associated with RA, were compiled and subjected to characterization using ESEfinder3.0.
The DNA FASTA sequences for each of the SNPs were retrieved from dbSNP database and
are provided in Table S3. All the FASTA sequences, for both the wild-type and mutated
proteins, were submitted, and the exon splicing enhancer sites were predicted in both the
sequences separately. Of all the 76 intronic SNPs, 42 SNPs were predicted to change the
functional pattern and were noted accordingly (Table 8). Of the 42 SNPs, 22 SNPs (located
in 27 genes) were found to destroy potential splice sites, 16 SNPs created new splice sites,
and 4 SNPs created 1 and destroyed other potential splice sites.

Table 8. Intronic SNP effect on splicing site as predicted by ESEfinder 3.0.

Gene SNP ID Potential Splicing Site Gene SNP ID Potential Splicing Site

PTPN22
rs3765598 SRFSF2→ No Site

AIRE
rs2075876 SRSF1, SRSF2, SRSF5→ No Site

rs1217414 SRSF2, SRSF5→ No Site rs933150 No Site→ SRSF2, SRSF6
FCRL3 rs3761959 SRSF5→ No Site TNFRSF14 rs3890745 No Site→ SRF5

TRAF1/C5
rs3761847 SRSF1, SRSF5→ No Site RUNX1 rs2268277 SRSF1→ No Site
rs2900180 No Site→ SRSF5 RASGRP1 rs8043085 SRSF1, SRSF2, SRSF5→ No Site

TNFAIP3
rs5029930 SRSF1, SRSF5→ No Site ILF3 rs147622113 SRSF1, SRSF2→ No Site
rs5029937 No Site→ SRSF2

COG6
rs9603612 SRSF1, SRSF2→ SRSF6

rs5029939 SRSF2→ No Site rs7993214 No Site→ SRSF6
STAT4 rs7574865 No Site→ SRSF2

UBASH3A
rs11203203 No Site→ SRSF5

IL2RB rs3218253 SRSF1→ SRSF5 rs3788013 No Site→ SRSF6

CD40
rs4810485 No Site→ SRSF5 TEC rs2089510 No Site→ SRSF2
rs1535045 SRSF1→ No Site SYNGR1 rs909685 No Site→ SRSF6
rs3765459 SRSF5→ No Site

RAD51B
rs3784099 SRSF2→ No Site

CD244 rs3766379 No Site→ SRSF5 rs911263 SRSF1, SRSF2, SRSF5→ No Site
TRAF6 rs540386 SRSF2, SRSF6→ No Site

PRKCH
rs912620 No Site→ SRSF2

rs13031237 SRSF6→ SRSF5 rs959728 SRSF5, SRSF6→ No Site
CD28 rs2140148 SRSF1, SRSF5→ No Site rs3783782 SRSF2→ No Site

ANKRD55
rs9295089 No Site→ SRSF1 SRSF2 PPIL4 rs9498368 SRSF1→ No Site
rs212402 SRSF2→ No Site PLCL2 rs4535211 No Site→ SRSF6

IL6R
rs4537545 SRSF1, SRSF2, SRSF5→ No Site MTF1 rs67704103 SRSF1, SRSF5→ No Site
rs4329505 No Site→ SRSF2 SRSF5 GATA3 rs3802604 SRSF5→ SRSF1

2.7. Characterization of Splice Site SNPs

The splice site SNP rs2004640, located in the IRF5 gene, was characterized to investi-
gate its potential functional effect on splicing using NetGene2 (http://www.cbs.dtu.dk/
services/NetGene2/, accessed on 20 February 2021), the Alternative Splice Site Predictor
(ASSP) (http://www.wangcomputing.com/assp/, accessed on 20 February 2021), ES-
Efinder release 3.0 (http://krainer01.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi, accessed
on 20 February 2021), and Human Splicing Finder v3.1 (HSF v3.1) (http://www.umd.be/
HSF3/, accessed on 20 February 2021). NetGene2 and ASSP did not predict any functional
effect of this SNP on the splicing mechanism. However, ESEfinder3.0 predicted one poten-
tial splice site to be broken at 4 bp upstream of the SNP position, where the human SRSF2
protein may react. The HSF3.1 used the HSF matrices and MaxEnt algorithms to predict
the creation of a new donor splice site. HSF3.1 predicted 1 potential splice site to be created,
1 enhancer SF2 motif to be broken, 3 silencer motifs (method of Sironi et al.) to be broken, 1
silencer motif to be created, and 1 silencer IIEs motif to be broken. The details of the results
of ESEfinder3.0 and HSF3.1 are listed in Table 9.

http://www.cbs.dtu.dk/services/NetGene2/
http://www.cbs.dtu.dk/services/NetGene2/
http://www.wangcomputing.com/assp/
http://krainer01.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi
http://www.umd.be/HSF3/
http://www.umd.be/HSF3/
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Table 9. ESEfinder3.0 and HSF3.1 prediction for SNP rs2004640 located in the IRF5 gene.

Method
Silencer/Enhancer

Protein
(Potential Splice Sites)

Motifs
ResultG Allele

(Value 0–100)
T Allele

(Value 0–100)

Human Splicing Finder 3.1
(Threshold 60)

- CGGgtgggt
(85.64)

New site
(position −4 bp)

Enhancer motifs
SF2/ASF (IgM-BRCA1) CGGGGGG (78.92) - Site broken at position −4 bp

Silencer motifs
(Sironi et al.)

Motif 2
CTCGGGG (60.84) - Site broken at position −7 bp

Motif 2
TCGGGGG (70.71) - Site broken at position −5 bp

Motif 2
GGGGGTG (67.64) - Site broken at position −1 bp

- Motif 2 TGGGTGC
(60.69)

New site
at SNP position

Silencer IIEs motifs
(Zhang et al.) CGGGGG - Site broken at −4 bp position

ESEfinder 3.0
(Threshold 1.867) SRSF2 (IgM-BRCA1) CGGGGGG (2.95482) - Site broken at position −4 bp

2.8. Characterization of UTR SNPs

The SNPs in the UTR region were studied using UTRScan, PolymiRTS Database, and
MicroSNiPer. The DNA FASTA sequences for both the 3′UTR and 5′UTR were submitted
to UTRScan, which analyzed the sequences without mutations. For this reason, the FASTA
sequences for both the wild-type and mutated sequences were submitted separately (pro-
vided in Text S1), and the changes in functional patterns due to the UTR SNPs were noted.
Of the 11 UTR SNPs (6 in 3′UTR and 5 in 5′UTR), only 1 SNP in the 3′UTR (rs1128334
located in ETS1 gene) was found to cause significant pattern changes, resulting in the
creation of BRD-BOX. All the other SNPs did not indicate any significant changes in the
expression pattern of the respective genes. The 3′UTR SNPs were further submitted to
PolymiRTS database to investigate if they could disrupt or create miRNA binding site. Of
the 6 SNPs in 3′UTR, 3 SNPs were predicted to create 3 miRNA binding sites and disrupt
6 miRNA binding sites. The potential effect of the UTR SNPs on destroying the possible
miRNA seed region in 3′UTR was investigated using MicroSNiPer. The results showed
that there were 5 SNPs in the 3′UTR which could possibly destroy 10 miRNA seed regions.
The results of UTRScan, PolymiRTS database, and MicroSNiPer are listed in Table 10.

Table 10. UTR SNPs associated with RA and their predictive regulatory role.

Gene SNPs UTRScan PolymiRTS Database MicroSNiPer

PTPN22 rs3811021 - hsa-miR-4275→
hsa-miR-548ad hsa-miR-4275

TAGAP rs4709267 - - hsa-miR-4696, hsa-miR-548u

IRF5
rs2070197 - hsa-miR-3136-3p,

hsa-miR-7155-3p→ no site
hsa-miR-3136-3p,
hsa-miR-1295b-5p

rs10954213 - -

hsa-miR-181b-5p,
hsa-miR-181d,

hsa-miR-181a-5p,
hsa-miR-181c-5p

ETS1 rs1128334 No site→ BRD-BOX

hsa-miR-300,
hsa-miR-381-3p,

hsa-miR-6882-5p→
hsa-miR-382-5p,
hsa-miR-495-5p

hsa-miR-4528
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2.9. Gene–Gene Interactions of RA Associated Genes

STRING and GeneMANIA were used to analyze the gene–gene interactions of all the
75 genes with potential RA-associated SNPs. Both the tools were fed with gene symbols
and the outcomes were recorded. The cutoff value used for both the tools was 0.1. The
score ranged on a scale of 0 to 1, with 1 being the best. STRING predicted a total of
365 interactions between 60 genes (shown in Figure 4) and the details are provided in
Table S4. The remaining 15 genes were not predicted to have any interaction with any of
the investigated genes. A total of 18 genes were predicted to be core region genes, including
IL2RB, STAT4, CTLA4, PTPN22, TYK2, BLK, GATA3, TNFAIP3, IRF4, EOMES, IL6R, IRAK1,
TRAF6, CD28, CD40, TRAF1, PTPRC, and IL2RA. The GeneMANIA predictions included
co-expression (71.46%), co-localization (12.75%), physical interactions (7.83%), predicted
theoretical interactions (3.21%), shared protein domains (1.82%), pathways (1.66%), and
genetic interactions (1.27%) (Figure 5). Additional genes which were predicted to have role
in the pathogenesis of RA were IL2RB, CD3D, CD28, CD2, CD226, CD244, CCL21, CCR6,
REL, BLK, IRAK1, TYK2, STAT4, TRAF1, TRAF6, PTPRC, CD247, TNFAIP3, CD83, ITK, IL6R,
EOMES, ETS1, and IL2RA (Figure 6).
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3. Discussion

SNPs hold a significant role in the pathogenesis of a disease. In-silico characterization
underlines the possible functional significance of SNPs in both the coding and non-coding
regions of a gene, for example through alteration of mRNA stability, promoter activity, and
miRNA sites [14–16]. However, the actual underlying genetic mechanism concerning the
SNPs has not been determined. This is similarly the case in RA-associated SNPs. Previously,
some studies were carried out to identify the association of SNPs with RA [14–17], but
in-silico characterizations of these SNPs are scarce.

In our study, we characterized 152 RA-associated SNPs. Of these SNPs, 76 (50%)
were intronic, 40 (26.31%) were intergenic, 23 (15.13%) were missense, 6 (3.94%) were in
the 3′UTR, 5 (3.28%) were in the 5′UTR, and 1 (0.67%) each belonged to the splice site
and coding region, respectively. From these observations, we concluded that RA has a
significant association with intronic SNPs (50%), although a large number (26.31%) of SNPs
were also observed in intergenic regions. Besides, the role of SNPs in regulation of genes
may be less significant (7.24%, 3′ + 5′UTRs SNPs).

nsSNPs are sometimes damaging and have a significant impact on disease pathogene-
sis [18]. They also contribute to altered drug responses when occurring in the active site of
the drug’s target [19]. In our study, PhD-SNP and SNPs&GO predicted none of the nsSNPs
to be damaging, while PolyPhen2, PROVEAN, and SIFT predicted 5 (21.74%), 4 (17.39%),
and 3 (13.04%) of the nsSNPs, respectively, to be damaging (Table S3). The nsSNP TYK2
rs34536443 had the most damaging effect, with a SIFT score of 0.007, a PROVEAN score of
−6.755, and a PolyPhen2 score of 1.00. The nsSNPs which were predicted to be damaging
by at least two of the five tools were cross-checked for consistency using the Ensembl
genome browser, MetalR, Mutation Assessor, REVEL, and CADD. The selected nsSNPs
included PTPN22 rs2476601, TNFAIP3 rs5029941 and rs2230926, and TYK2 rs34536443.
Notably, among these SNPs, TYK2 rs34536443 was predicted to be the most damaging,
with a CADD score of 26, a REVEL score of 0.586 (0.5 threshold), a MetalR score of 0.336
(0.5 threshold), and a Mutation Assessor score of 0.36 (0.5 threshold). CADD scores of 10,
20, and 30 corresponded to 10%, 1%, and 0.1% of the most damaging SNPs, respectively.
This result shows that out of 23 nsSNPs, the TYK2 rs34536443 might be the most significant
in terms of functional impairment. According to I-Mutant predictions, all the nsSNPs had
a deteriorating effect on protein stability, except for two SNPs (rs2233433 and rs5029941). It
should be noted that the predictions of I-Mutant were based on the sequence of proteins
and not on their structure. Among the predicted destabilizing nsSNPs, PTPN22 rs2476601
had the highest change in energy at −6.98 kcal/mol, followed by PADI4 rs11203366 and
TNFAIP3 rs2230926, with energy change values of −5.91 kcal/mol and −4.58 kcal/mol,
respectively. TYK2 rs34536443, which was found to have a significant damaging effect
on protein function, was not only predicted as stabilizing but also had very high energy
change of 6.73 kcal/mol. MutPred predicted only one nsSNP (TNFAIP3 rs2230926) to have
functional effects. Changes were shown in eukaryotic linear motif (ELM) sites, with in a
gain in intrinsic disorder and the loss of the allosteric site at position R123 in the TNFAIP3
protein. The ELM motif is a resource database which is dedicated to short linear motifs
(SLiMs) [15]. These are small proteins, considered as functional modules, which play an
important role in the modifications of protein sequences and protein–protein interactions
(PPI) [16,17]. Many important cellular processes, such as cell signaling, protein stabil-
ity, trafficking, molecular mechanism switching, and cell cycle progression are mediated
by SLiMs [17–20]. Six different ELM motifs were predicted to be affected by TNFAIP3
rs2230926, including ELME000053 (GSK3 phosphorylation site), ELME000064 (CK2 phos-
phorylation site), ELME000106 (cyclin docking motif), ELME000146 (PCSK cleavage site),
ELME000220 (FHA phosphopeptide ligands), and ELME000239 (USP7 binding motif).
None of the other nsSNPs was predicted to cause any functional effect on the ELM motifs
or gain or loss of any other site. ConSurf was then used to generate the conservation profiles
of all the proteins, where nsSNPs were located (Figure S1). ConSurf uses solvent accessi-
bility along with evolutionary conservation data to predict the functional and structural
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effect of nsSNPs that may cause human health problems [21]. Only two nsSNPs, FCGR2B
rs1050501 and TNFAIP3 rs5029941, were predicted to be located at buried residues, while
three nsSNPs (PTPN22 rs33996649 and rs2476601 and TYK2 rs34536443) were predicted to
be located at highly exposed structural and functional residues. All the other nsSNPs were
predicted to be exposed. This explains that most of the RA-associated nsSNPs (91.30%) are
located at exposed residues. In order to model the protein structures and study amino acid
residue changes resulting from these nsSNPs, the comparative homology modeling tool
MODELER v9.22 was used. MODELLER is the most widely used tool for the comparative
homology modeling of proteins. We first searched for the highest identical templates with
the maximum coverage percentages. For all the proteins, the templates had >30% identity,
except for PLD4, where the templates 2ZE4, 4GGJ, 2ZE9, and 1BYR had identity values
of 26.52%, 26.32%, 25.97%, and 24.70%, respectively. For all the proteins, many templates
were available as a result of the NCBI BLAST search. Of these, only four templates with the
highest identity and maximum coverage were selected, except for YDJC, for which only
one template (2I5I with 37.23%) was selected. MODELLER v9.22 predicted five structures
for each of the proteins, with slight differences. The structure with the lowest discrete
optimized protein energy (DOPE) value and highest GA341 score was selected. DOPE
calculates the energy of proteins. It is based upon the non-interacting atoms of the modeled
protein, with the radius dependent on the template [22]. GA341 scores are calculated on
the basis of template and modeled structure identity percentages. Scores range from 0 to 1,
where 1 shows the best-modeled structure [23]. The structures modeled with MODELLER
v9.22 were then viewed and studied in Chimera v1.11, and mutant protein structures were
developed. Root-mean-square deviation (RMSD) values were calculated for each of the
mutant structures. RMSD values are used for the calculation of differences between the
alpha-carbon backbone of wild-type and mutant protein structures [24,25]. For all the
wild-type proteins, the RMSD values were 0.00, meaning that these nsSNPs may not have
significant effect on any alteration in the protein’s carbon backbone. For the validation
of the protein structures, Ramachandran plot analysis was carried out using RAMPAGE,
which predicted all the structures to be valid. For the PLD4 protein, the templates had
<30% similarities, but its modeled structure had only 4.3% outlier residues, which validated
its structure.

In-silico characterization of the nsSNPs suggested that the SNPs rs33996649 and
rs2476601 (PTPN22), rs5029941 and rs2230926 (TNFAIP3), and rs34536443 (TYK2) have
prominent functional effects on the protein structure and function. We cross-checked
these five nsSNPs with the literature and found evidence for only two nsSNPs (TNFAIP3
rs2230926 and TYK2 rs34536443). A recent study showed that TNFAIP3 rs2230926 decreased
the activity of NF-κB by two-fold [26], but the exact molecular mechanism of how this
decrease happened was unknown. For TYK2 rs34536443, both in-silico and in vivo studies
have shown a decrease in the enzymatic activity of tyrosine kinase 2 (TYK2) due to this
SNP [27–29]. For the two SNPs (TNFAIP3 rs2230926 and TYK2 rs34536443), our predictions
are in agreement with the previous studies [26–29], while there was no literature-based
evidence for the other three nsSNPs (PTPN22 rs33996649 and rs2476601 and TNFAIP3
rs5029941).

The only known functional effect of the SNPs located in the intronic regions on the
gene or its product is the effect of these intronic SNPs on the splicing phenomenon. Intronic
SNPs may create or abolish the interaction sites for human SR proteins. The creation of
a new site for a human SR protein with higher value may result in alternative splicing,
which causes the alteration of the protein. Human SR protein family members, including
SRSF1, SRSF2, SRSF5, and SRSF6, have been found to have an important role in splicing
mechanisms [30–33]. The binding of the U1 snRNP to the 5′ splice site and the binding of
U2 snRNP to the 3′ splice site are promoted by these SR proteins, as well as the events in
pre-spliceosome, and mature spliceosome are also linked with these SR proteins [34–37].
Of the 76 investigated intronic SNPs, 42 (55.26%) SNPs were predicted to cause functional
changes in human SR protein binding. A total of 26 SNPs (34.21%) were predicted to
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demolish the SR protein binding site, while 20 SNPs (26.31%) were predicted to create a
new SR protein binding site. Our results predicted 55.26% of the RA-associated intronic
SNPs to cause changes in the SR protein binding sites, which may explain their functional
significance in the pathogenesis of RA. However, upon a literature survey, we did not
find any evidence of the characterization of any of these SNPs in-silico, in vivo, or in vitro.
In vivo and in vitro studies are needed for the characterization of the functional importance
of these SNPs and the association mechanism with RA and other autoimmune diseases.

The splice site SNP rs2004640 (IRF5) was investigated using different tools for its
potential effect on the splicing mechanism. As it is located at the splice site, it has a prime
importance in splicing of IRF5. Many studies have demonstrated that rs2004640 increases
IRF5 mRNA to a level ~2-fold higher than the wild-type allele [38,39]. Clark and co-workers
showed that this polymorphism decreased 1C and 1D exon usage but did not alter mRNA
stability [38]. Hence, it is evident that this splice site SNP may cause alternative splicing of
IRF5 mRNA and may lead to increased IRF5 production. Our predicted results are also
in accordance with the literature. The creation of a potential splice site 4 bp upstream
of rs2004640 was predicted by both ESEfinder3.0 and HSF3.1, with high values of 85.64
(threshold 60) and 2.9 (threshold 1.867), respectively. Both the tools predicted the same
enhancer motif SRSF2 (IgM-BRCA1) to be broken, with scores of 78.92 and 2.95 by HSF3.1
and ESEfinder3.0, respectively. Therefore, our findings support the previous studies and
provide an insight into the mechanism of splicing alteration, which may be caused as a
result of this SNP.

Different hereditary diseases such as immune deficiency syndromes and cancer have
been linked to mutations in the UTRs of the genes, which have been reported to have vital
roles in the stability, translational efficiency, and localization of mRNA [40]. Both the 5′UTR
and 3′UTR have key functions in mRNA stability and its expression. The processing and
translation of mature mRNA can be severely affected by mutations in the UTR regions of the
genes, which can lead to the changes in gene expression patterns [41]. The SNPs located in
the 5′UTR are associated with the changes in mRNA stability, binding capacity to ribosomes,
and translational regulation, affecting the RNA half-life. The localization, translational
efficiency, polyadenylation, stability, and binding specificity of miRNA (microRNA) may
be altered by SNPs in the 3′UTR, which effects the expression patterns of genes [15]. In
our study, we analyzed 11 UTR SNPs, including six 3′UTR SNPs and five 5′UTR SNPs
using UTRScan, the PolymiRTS database, and MicroSNiPer. UTRScan predicted only one
SNP, rs1128334, located in 3′UTR of ETS1, to cause functional pattern changes in BRD-
BOX. BRD-BOX is a seven-nucleotide motif, which, upon presence in the 3′UTR, controls
the activation of gene. When it is lost from the UTR, it results in the hyper-activation of
gene [42]. Our study suggested that the creation of BRD-BOX by rs1128334 (ETS1) would
be protective against disease. Similarly, it has been shown that the presence of this SNP
reduces susceptibility to autoimmune diseases [43,44]. The PolymiRTS database predicted
that three 3′UTR SNPs (rs3811021 (PTPN22), rs2070197 (IRF5), and rs1128334 (ETS1)) might
affect miRNAs by creating or abolishing the miRNA target sites, therefore contributing to
the up- and down-regulation of genes. Similarly, MicroSNiPer predicted five 3′UTR SNPs
(Table 8) which affected the miRNA target sites by changing the seed length. However,
none of the 5′UTR SNPs was found to have potential role in the pathogenesis of RA, while
the five 3′UTR SNPs have been proven to change the functional expression pattern of genes
by various means, including destroying or creating miRNA binding sites and creating
BRD-BOX.

Gene–gene interaction is an important phenomenon with a key role in the pathogenesis
of multi-gene hereditary diseases. There are many genes that have been reported to have
significant associations with RA, with known and unknown pathogenesis patterns. We
used STRING and GeneMANIA for the prediction of different gene–gene interaction
mechanisms. From STRING predictions, we found that 18 of the total 76 genes were in the
core region (Figure 4), while GeneMANIA predicted type-specific interactions in which
24 genes were found to be interactive in pathways. Thirteen genes were common to both
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core-region genes and interactive pathway genes, including IL2RB, STAT4, TYK2, BLK,
TNFAIP3, EOMES, IL6R, IRAK1, TRAF6, CD28, TRAF1, PTPRC, and IL2RA. These genes
are important in the pathogenesis of RA and may be considered as potential targets for
drug development. Previously, 10 genes out of these 13 were suggested for drug targeting
in RA patients, as reviewed by Yamamoto and co-workers in 2015 [2]. Three genes (BLK,
EOMES, and TRAF1) are predicted to be novel as potential drug targets.

The BLK gene encodes a nonreceptor tyrosine-kinase of the src family of proto-
oncogenes that are typically involved in cell proliferation and differentiation. The protein
has a role in B-cell receptor signaling and B-cell development. The BLK risk haplotype was
found to be associated with enhanced activation of BCR-stimulated B cells with an increase
in T cell–B cell collaboration, at least in part due to differential up-regulation of CD86, and
with attendant effects on the isotype distribution of the switched memory B cell repertoire.
This is likely to reflect a common mechanism for BLK-mediated genetic risk in autoimmune
diseases associated with BLK [45]. The EOMES gene belongs to the TBR1 (T-box brain
protein 1) sub-family of T-box genes that share the common DNA-binding T-box domain.
The encoded protein is a transcription factor which is crucial for embryonic development of
the mesoderm and the central nervous system in vertebrates. The protein may also be nec-
essary for the differentiation of effector CD8+ T cells which are involved in defense against
viral infections. The protein expression of EOMES was increased in T cells from healthy
donors homozygous for the PTPN22 risk allele and correlated with a decreased number of
naïve CD4+ T cells [46]. An accumulation of EOMES+CD4+ T cells was also observed in the
synovial fluid of RA patients with a more pronounced production of perforin-1 in PTPN22
risk allele carriers. The protein encoded by this TRAF1 is a member of the TNF receptor
(TNFR)-associated factor (TRAF) protein family. TRAF proteins associate with and mediate
the signal transduction from various receptors of the TNFR superfamily. Genome-wide
association studies have identified an association between SNPs in the 5′ untranslated
region of the TRAF1 gene, with increased incidence and severity of rheumatoid arthritis
and other rheumatic diseases. The loss of TRAF1 from chronically stimulated CD8 T cells
results in desensitization of the 4-1BB signaling pathway, thereby contributing to T cell
exhaustion during chronic infection. These apparently opposing roles of TRAF1 as both
a positive and negative regulator of immune signaling have led to some confusion in the
literature. Thus, through gene–gene interactions, we suggested 13 potential drug target
sites, of which 3 were novel target genes.

All of our statements are based on evidence from the literature combined with predic-
tive results of the in-silico tools, which used different algorithms and statistical formulas
for their predictions. Our study provides a detailed insight into the mechanism of effects
of different SNPs belonging to different SNP categories and associated with RA. In order
to further validate the effects of these SNPs as predicted by our study, in vitro and in vivo
studies are needed. Model organisms with wild-type and mutated alleles, separately, are
needed to be studied for further understanding.

4. Methodology

A workflow for the complete methodology is given in Figure 1.

4.1. SNP Retrieval

RA-associated SNPs were searched in PubMed and Web of Science. The data were
mined from original research articles published in indexed journals. Retrieved SNPs
were divided into four categories; intronic SNPs, non-synonymous SNPs, UTR SNPs,
and intergenic SNPs. Information related to the mined SNPs, such as their global minor
allele frequencies (MAF), nucleotide change, amino acid residual change for nsSNPs,
FASTA sequences, etc., were retrieved for each SNP from NCBI dbSNP (accessed on 2
January 2021).
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4.2. Characterization of nsSNPs

The RA-associated nsSNPs were characterized as below:

4.2.1. Most Damaging Prediction

Five different in-silico tools were used to predict the effect of nsSNPs on respective
proteins. These tools included: Protein Variation Effect Analyzer (PROVEAN) (http:
//provean.jcvi.org/seq_submit.php, accessed on 5 January 2021) [47], Sorting Intolerant
from Tolerant (SIFT) (https://sift.bii.a-star.edu.sg/www/SIFT_seq_submit2.html, accessed
on 5 January 2021) [48,49], SNPs&GO (http://snps.biofold.org/snps-and-go/snps-and-go.
html, accessed on 5 January 2021) [50], Predictor of Human Deleterious SNP (PhD-SNP)
(http://snps.biofold.org/phd-snp/phd-snp.html, accessed on 5 January 2021) [51], and
Polymorphism Phenotyping 2.0 (PolyPhen 2.0) (http://genetics.bwh.harvard.edu/pph2/,
accessed on 5 January 2021) [52]. The FASTA sequences of the respective proteins along
with their amino acid residue changes were submitted for each nsSNP.

4.2.2. Protein Stability, Structural and Functional Effects, and Conservation
Profile Prediction

To predict the effect of nsSNPs on the stability of protein, I-Mutant 2.0 (http://folding.
biofold.org/i-mutant/i-mutant2.0.html, accessed on 8 January 2021) was used [53]. The
predictions were made for the stability of mutated protein along with the reliability index
(RI) on a scale of 0–10, where 0 and showed the minimum and maximum reliability index,
respectively. The structural and functional effects of nsSNPs on protein were predicted
using MutPred 1.2 (http://mutpred.mutdb.org/, accessed on 9 January 2021) [54]. This
predicted the effect of substituted amino acids on proteins, with p values of <0.05 and <0.01
being considered as confident and very confident, respectively. The conservation profile of
each protein was predicted with the help of the ConSurf tool (http://consurf.tau.ac.il/20
16/, accessed on 15 January 2021) [55] using 50 different homologous sequences.

4.3. Protein Modeling

Protein modeling was done using MODELLER v9.22 [56]. The templates for each
protein to be modeled were searched using NCBI BLAST, and those with higher percentage
identity and coverage were finally chosen. These templates were later downloaded from the
RCSB Protein Data Bank (http://www.rcsb.org/, accessed on 2 February 2021). Command
files for each of the protein modeling were prepared separately. For the mutants, the
protein structures were modeled using the in-built feature in Chimera v1.11 and the amino
acid residual changes were made manually and individually in their respective protein
structures. After protein modeling, TM-align (https://zhanglab.ccmb.med.umich.edu/
TM-align/, accessed on 5 February 2021) was used to calculate the root-mean-square
deviation (RMSD) values for each mutant and wild-type protein. The RMSD values are
associated with the functional effect of nsSNP on protein, therefore showing their role in
pathogenesis. The higher the RMSD values, the greater the effect of nsSNPs on protein.
Later on, the protein structures were validated using Ramachandran plot assessment
(http://mordred.bioc.cam.ac.uk/~rapper/rampage.php, accessed on 14 February 2021).
This plot showed the percentages of favored and allowed residues, as well as outlier regions,
where the structures with residues less than 10% in the outlier regions were considered as
good structures.

4.4. Characterization of Intronic SNPs

The effect of intronic SNPs could be detected either by demolishing or creating the
splice site in respective genes. For this purpose, we used ESEfinder 3.0 (http://krainer0
1.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi, accessed on 16 February 2021) [57]. The
FASTA sequences of all the intronic SNPs were retrieved from the dbSNP database. The
FASTA sequences for wild-type and mutated sequences were submitted to ESEfinder 3.0,
separately, for all the SNPs. ESEfinder3.0 predicted the potential exonic splicing enhancer
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(ESE) sites that could react with any of the 4 human SR proteins, which are SF1, SF2, SF5,
and SF6.

4.5. Characterization of Splice Site SNP

Only 1 splice site SNP rs2004640, located in the IRF5 gene, was reported to be associ-
ated with rheumatoid arthritis in Norwegian patients [58]. The characterization of this SNP
was performed to investigate its possible effect in splicing. Four different tools were used
for this purpose, which included NetGene2 (http://www.cbs.dtu.dk/services/NetGene2/,
accessed on 20 February 2021) [59], the Alternative Splice Site Predictor (ASSP) (http:
//www.wangcomputing.com/assp/, accessed on 20 February 2021) [60], ESEfinder release
3.0 (http://krainer01.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi, accessed on 20 February
2021) [57], and Human Splicing Finder v3.1 (HSF v3.1) (http://www.umd.be/HSF3/,
accessed on 20 February 2021) [61]. Default conditions were used in all the tools and
DNA FASTA sequences were submitted to all the tools. Among these tools, HSF3.1 is the
most advanced, as it not only predicts potential splice sites but also the exon splicing and
silencing enhancers.

4.6. Characterization of UTR SNPs

SNPs in UTR regions have many important effects on mRNA stability and expression.
To characterize 3′UTR and 5′UTR SNPs, UTRScan (http://itbtools.ba.itb.cnr.it/utrscan,
accessed on 23 February 2021), the PolymiRTS Database 3.0 (http://compbio.uthsc.edu/
miRSNP/, accessed on 23 February 2021) and MicroSNiPer (http://vm24141.virt.gwdg.de/
services/microsniper/, accessed on 23 February 2021) were used. UTRScan used nucleotide
sequences to identify the pattern motif in UTR regions. The DNA FASTA sequences with
and without SNPs were submitted individually and the changes in the functional pattern
were noted. The PolymiRTS database and MicroSNiPer identified the effect of 3′UTR SNPs
on the miRNA seed region and the target site. A list of the SNPs IDs was submitted to both
the tools and their effects were recorded.

4.7. Gene–Gene Interaction of RA Associated Genes

The interaction of all the genes selected for this study was investigated using STRING
(https://string-db.org/, accessed on 25 February 2021) and GeneMANIA (https://genemania.
org/, accessed on 25 February 2021) [62,63]. STRING predictions were based on co-expression,
co-occurrence, gene fusion, biochemical and experimental data, while predictions by Gen-
eMANIA were based on co-expression, similarity of protein domains, co-localization, and
pathways. A gene list containing the official symbols of all the genes was uploaded and the
results were analyzed to find the core region genes.

5. Conclusions

From our study, it was concluded that RA risk-associated SNPs play an important
role in the pathogenesis of RA. They contribute to about 15% of RA heredity. Different
types of SNPs have their own respective roles in RA. Missense SNPs are found to cause
deleterious effect on proteins, thus leading to diseased protein. We analyzed all the RA-
associated nsSNPs, and their role in RA pathogenesis was evaluated using several in-silico
tools. Of the 23 nsSNPs, 4 nsSNPs (PTPN22 rs2476601, TNFAIP3 rs5029941 and rs2230926,
and TYK2 rs34536443) were found to be deleterious, 21 nsSNPs were reported to decrease
protein stability, 1 nsSNP (TNFAIP3 rs2230926) was reported to have functional importance
(affecting ELM motifs and causing a loss of allosteric sites and a gain of intrinsic disorder),
and 3 nsSNPs (PTPN22 rs33996649 and rs2476601 and TYK2 rs34536443) were reported
to be located at highly conserved, functionally important, and exposed residues. Intronic
SNPs represented 50% of the SNPs that are associated with RA, and our results showed
that 42 of 76 intronic SNPs resulted in the alteration of human SR protein binding sites,
which may contribute to the splicing mechanism. One splice site SNP (IRF5 rs2004640) was
analyzed and found to be splice site donor. Five UTR SNPs (PTPN22 rs3811021, TAGAP
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rs4709267, IRF5 rs2070197 and rs10954213, and ETS1 rs1128334) were found to alter miRNA
binding site. One SNP ETS1 rs1128334 was found to create BRD-BOX, which may down
regulate gene expression. Besides SNP characterization, we also predicted gene–gene
interactions to predict RA pathogenesis and identified core region genes that may act
as potential targets for the development of RA drugs. Importantly, we found 13 core
region genes, including IL2RB, STAT4, TYK2, BLK, TNFAIP3, EOMES, IL6R, IRAK1, TRAF6,
CD28, TRAF1, PTPRC, and IL2RA. These core region genes could be used as potential
therapeutic sites for the treatment of RA. Although our study was in detail and provided a
comprehensive analysis of all the SNPs, experimental studies are needed for validation.
Mouse models carrying any of these SNPs would be ideal for such experiments.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biology10060501/s1, Figure S1: ConSurf results for all the proteins with missense RA-
associated SNPs. These figures were downloaded as a PDF file from the ConSurf web server
(https://consurf.tau.ac.il/, accessed on 15 January 2021). Figure S2: Guidelines for the in-depth
understanding of STRING results. Table S1: List of SNPs associated with rheumatoid rrthritis. Table
S2: Clinical associations of reported SNPs with RA patients.
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