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Neural encoding of value-based stimuli is suggested to involve representations of summary statistics, includ-
ing risk and expected value (EV). A more complex, but ecologically more common, context is when multiple
risky options are evaluated together. However, it is unknown whether encoding related to option evaluation
in these situations involves similar principles. Here we employed fMRI during a task that parametrically ma-
nipulated EV and risk in two simultaneously presented lotteries, both of which contained either gains or
losses. We found representations of EV in medial prefrontal cortex and anterior insula, an encoding that
was dependent on which option was chosen (i.e. chosen and unchosen EV) and whether the choice was
over gains or losses. Parietal activity reflected whether the riskier or surer option was selected, whilst activity
in a network of regions that also included parietal cortex reflected both combined risk and difference in risk
for the two options. Our findings provide support for the idea that summary statistics underpin a represen-
tation of value-based stimuli, and further that these summary statistics undergo distinct forms of encoding.

© 2013 The Authors. Published by Elsevier Inc. Open access under CC BY license. 
Introduction

Decision-makers frequently have to choose betweenmultiple risky
options. For example, animals have to choose between foraging in
higher or lower risk patches, or humans whether to invest in higher
or lower risk stocks. Such value-based decision-making can be consid-
ered within a biologically-grounded, process-based account where a
choice evolves from option-evaluation through to action-selection
(Corrado et al., 2009). Regarding option-evaluation, recent studies ex-
amining the neural basis of risky economic choice have suggested two
competing accounts, one that involves a neural representation of out-
come distributions by “summary statistics”, such as expected value
(EV) and risk (Bossaerts, 2010; Preuschoff et al., 2006; Wright et al.,
2012), and another in which subjective value (SV) is determined by
the shape of a utility function, with risk-preference emerging as a
by-product of that shape (Rangel et al., 2008). Here we seek new evi-
dence for encoding of “summary statistics”, specifically investigating
the unknown question of how the summary statistics of multiple,
simultaneously evaluated, risky options may be encoded.

We used a task where each trial subject was simultaneously
presented with two risky options, one of which had to be selected.
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Risk is defined here as outcome variance (Bossaerts, 2010). Unlike
in a single option, with multiple options there are different ways in
which EV and risk may be represented. For both risk and EV we ask
whether encoding depends on which option is chosen (i.e. chosen and
unchosen EVs; chosen and unchosen risks) or alternatively whether
encoding is determined directly by the presented stimuli (e.g. sum or
difference in EV or risks). Furthermore, as choices are influenced by
whether potential outcomes entail gains or losses (i.e. their valence)
(Kahneman and Tversky, 1979) we also asked whether outcome va-
lence differentially affects encoding of EV and risk.

However, even if option-evaluation involved such summary statistics,
this does not address how risk, EV or valence influence action-selection.
Thus, as a second aim we investigated the choice process from the per-
spective of a choice architecture in which multiple interacting systems
influence action-selection (Dayan, 2008). In model-based systems,
stimulus features such as EV, risk or valencemay be incorporatedwithin
a unified subjective value (SV; utility) computed for each option and
where action-selection involves choosing the option with the highest
SV. Neurally, we test for encoding of SV. In contrast, in model-free
systems that invoke approach–avoidance processes, a key feature is
a contingency between stimulus properties and responsive action
(i.e. to approach appetitive and to avoid aversive stimulus properties).
For both risk and valence we previously found neural and reaction time
(RT) data reflecting such contingencies in a task where choices involved
a single risky option (Wright et al., 2012), and here asked whether
these would be similarly expressedwithmultiple risky options. A further
possibility, in line with choice resulting from multiple interacting sys-
tems, would be evidence relating to both: with model-based summary
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statistic encoding that may influence action-selection through com-
parator processes and/or approach–avoidance; as well as approach–
avoidance to stimulus properties such as valence not requiring model-
based processing.

Here we examined the neural basis of risky choice in a task where
each trial subjects had to select between two simultaneously presented
risky options. Regarding option-evaluation, we hypothesised that there
would be encoding of summary statistics representing these options;
and were agnostic as to whether these would depend on which option
is chosen, or alternatively whether encoding is determined directly by
the presented stimuli. Regarding action-selection, we tested for evi-
dence of unified SVs in addition to summary statistics, and for contin-
gencies consistent with approach–avoidance processes.

Methods

Participants

All participants, recruited through institutional mailing lists, were
healthy and provided informed consent. 25 right-handed participants
took part (age mean 24 years, range 19–36; 15 male), with one further
participant excluded due to artefacts during fMRI data acquisition. None
had taken part in our previous experiments with related tasks (Wright
et al., 2012). The University College London Ethics Committee approved
the study.

Task

The Selection task (Fig. 1) was identical to that used behaviourally
in Wright et al. (2012) except that all amounts were doubled for fMRI
scanning. There were 200 trials presented in a random order, of
which 100 were “gain trials” (all possible outcomes ≥0) and 100
were “loss trials” (all outcomes≤0). In each trial, individuals evaluat-
ed two lotteries and selected between them. Each trial began with a
fixation cross presented for 1–2 s (mean 1.5 s), followed by viewing
the options for 4020 ms; and finally a black square appeared to indi-
cate participants had 1500 ms to input their choice by button press
(the black square turned white when they chose). If participants did
not respond, they received £0 on a “gain trial” and the maximum loss
possible on a “loss trial” (£-24).
Fig. 1.Manipulating risk, expected value and valence. a) In each “gain trial” individuals were
select between. They viewed the options for 4 s, after which a black square appeared central
of 100 “gain trials” in which we parametrically and orthogonally manipulated the difference
(i.e. five levels of absolute difference for risk and EV, with these absolute differences used
lottery (rt–lt). c) Multiplying all “gain trial” amounts by −1 gave 100 “loss trials” with ide
Our decision-variables of interest were EV, risk and valence. We
generated a set of 100 “gain trials” (Fig. 1b and see below), in which
we parametrically and orthogonally manipulated the difference in
risk (10 levels of variance) and EV (10 levels) between two lotteries
(each with two possible outcomes, all ≥0), giving five levels of abso-
lute difference for risk and EV (these absolute differences henceforth
denoted byΔVar andΔEV). Tomanipulate valence,we simplymultiplied
all amounts by −1 to give 100 “loss trials”. This created a set of “gain
trials” and a set of “loss trials” that were perfectly matched in their para-
metric modulations of risk and EV.

Participants began the day with an endowment of £24. After the
experiment, one “gain trial” and one “loss trial” were picked at ran-
dom and their outcomes were added to the endowment to determine
final participant payment. Participants could receive between £0–48.
There was a low proportion of non-responses (4% ± s.d. 3% of trials).
The mean payment received was £23 (range £4–£42).

Stimulus set

We used the same set of 100 “gain trials” as in Wright et al. (2012)
but with all amounts doubled (Fig. 1b). We created this stimulus set
in two stages. First, we generated a list of every possible trial within
the following constraints: each trial consisted of two pie charts each
with two segments; outcomes were between £0 and £24; the smallest
allowable probability was 0.1; and the smallest allowable probability
increment was 0.05. Second, fromwithin this very large number of po-
tential trials, we selected our set of 100 trials that were the closest
match to our desired levels of difference in Var and EV between stimuli.
The difference in EV and variance between the optionswas up to amax-
imum ΔEV of 3.8 and maximum ΔVar of 73.

For a given lottery with N potential outcomes (m1, m2,… mN), with
probabilities p = p1, p2, … pN, we define the EV and variance (Var) of
the outcome distribution as follows:

EV ¼
XN

n¼1

mnpn ð1Þ

Var ¼
XN

n¼1

mn−EVð Þ2pn: ð2Þ
presented with two lotteries (each with 2 possible outcomes, both≥0) to consider and
ly and they had 1.5 s to input their choice by left or right button press. b) We created set
in risk (defined as outcome variance; 10 levels) and EV (10 levels) between the lotteries
in our analyses). For illustration here we plot each metric for the right minus the left
ntical parametric manipulations. All 200 trials were presented in random order.



Table 1
Correlations between stimulus aspects. By design there was no correlation between
ΔEV and ΔVariance, although due to a limit in the number of trials this was not possible
for all other stimulus aspects. In this table, r values are given and significant correla-
tions are denoted by *.

ΔVar ∑EV ∑Var

ΔEV 0.00 0.00 −0.06
ΔVar −0.56* 0.88*
∑EV −0.6*
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Statistical analysis

In our behavioural analyses, statistical tests were carried out using
paired or independent-samples t-tests, or mixed analyses of variance
(ANOVA) in SPSS 17.0 or 20; reported P-values are two-tailed.

Reaction time analysis

Wenormalised each individual's RTs by taking the natural logarithm,
mean-correcting and dividing by the standard deviation. However, we
note that our findings were the same irrespective of having used “raw”

or normalised RTs. Regression analysis on participants' RT data was
conducted using the glmfit function in Matlab.

Behavioural modelling

We assessed different utility functions that were identical to those
used previously (Wright et al., 2012). We fit data on an individual
participant basis. We modelled behaviour by estimating model parame-
ters using maximum likelihood analysis implemented in Matlab. We
compared models with different utility functions using Group Bayes
Factors, with the Bayesian Information Criterion (BIC) penalising model
complexity (Schwarz, 1978). To pre-empt our results we find the same
winning model (Mean–Variance–Valence model) as in our previous
datasets.

In all our models, on each trial the subjective values, or utilities
(U), of both options were computed using one of the utility functions
below. These values were then compared to generate a trial-by-trial
probability of each choice, using a softmax function with a free param-
eter β (constrained between 0 and 10) that allows for noise in action
selection.

Initially, we compared three models to ask if behaviour was bi-
assed by risk and valence. First, in a very simple Mean-Only model
(U = EV), individuals only cared about the mean of the options.
Second, we asked if choice was also biassed by risk, using a Mean–
variance model (U = EV + Var ∗ ρ), where risk is measured as vari-
ance and ρ is a free parameter reflecting an individual's preference
for variance (a risk-neutral individual has ρ = 0, risk-averse ρ b 0,
and risk-seeking ρ > 0). Third, we asked if both risk and valence
bias choice, using a Mean–variance–valence model in which there is
a ρgain parameter that reflects risk preference in gain trials and a
ρloss parameter reflecting risk preference in loss trials. We also
implemented an Expected Utility model (EUT), Prospect Theory and
Cumulative Prospect Theorymodels, all of which are described in detail
in Wright et al. (2012).

fMRI data acquisition

Thiswas identical to that previously reported inWright et al. (2012).
In a 3 T Allegra scanner (Siemens) each participant underwent one
functional run (515 volumes), acquired using a gradient-echo EPI
sequence (46 transverse slices; TR, 2.76 s; TE, 30 ms; 3 × 3 mm
in-plane resolution; 2 mm slice thickness; 1 mmgap between adjacent
slices; z-shim −0.4 mT/m; positive phase encoding direction; slice tilt
−30°) optimised for OFC and amygdala. We acquired a T1-weighted
anatomical scan and local field maps.

fMRI data analysis

Functional data were analysed using standard procedures in SPM8
(Statistical Parametric Mapping; www.fil.ion.ucl.ac.uk/spm). fMRI
time-series were regressed onto a composite general linear model
(GLM). The GLM contained boxcars for the length of time the lotteries
were displayed (5.5 s) to examine the decision-making process. Delta
functions were also included for button presses, lottery onset to ac-
count for visual stimulus presentation, and for trials in which subjects
failed to respond. In our main GLM, we modelled our neuroimaging
data using a 2 valence (gain, loss) by 2 choice (riskier, surer) design.
Additional parametric modulators were included, with the height of
the boxcar modulated by ΔEV and ΔVariance in each trial. The delta
functions and boxcarswere convolvedwith the canonical haemodynamic
response function. Movement regressors were included in the GLM.
This main GLM design was identical to that used previously in Wright
et al. (2012).

We report all activations at P b 0.05 that survive whole brain cor-
rection using family-wise error at the cluster level (Friston et al.,
1993), unless otherwise stated. Clusters were defined using a thresh-
old of P b 0.005. For presentation, images are displayed at P b 0.001
uncorrected. Unless otherwise stated, small volume correction
(P b 0.05) was for a sphere of 10 mm radius around stated coordinates.

Alternative parametric designs
We also estimated further GLMs using alternative parametric re-

gressors, described in the Results. Unlike in the basic GLM specified
above in which ΔEV and ΔVariance were orthogonal by design, due
to a limit in the number of trials this was not possible for all other
parametric regressors and there were correlations between some re-
gressors (Table 1). Note that similar correlations for choice-dependent
regressors (e.g. chosen SV or unchosen SV) will be contingent on indi-
vidual participants' choices. Unless otherwise stated, all these models
with alternative parametric regressors were based on the same 2 va-
lence (gain, loss) by 2 choice (riskier, surer) design with the same re-
gressors of no interest (e.g. button press). Further, unless otherwise
stated all were estimated without orthogonalisation, which enables us
to examine only neural activity that correlates with the unique compo-
nent of each regressor.

Results

Choice behaviour

In our Selection task both risk and valence influenced choice,
replicating our previous findings (Wright et al., 2012). With respect
to risk, a simple metric of risk preference is given by the proportion
of riskier choices made overall (PropRisk; risk-neutral = 0.5; risk-averse
b0.5; risk-seeking >0.5). Here, in the Selection task individuals
were risk-averse (PropRiskall 0.40 ± s.d. 0.12; one-sample t-test ver-
sus risk-neutral, t(24) = −3.94, P = 0.0006; Fig. 2). This was similar
to our previous fMRI experiment using an Accept/Reject task where
individuals accepted or rejected a lottery relative to a sure option
(Wright et al., 2012) (independent samples t-test PropRiskall here
versus PropRiskall in previous Accept/Reject fMRI dataset t(45) = 0.07,
P > 0.9).

To examine an influence of valence on choice, a simplemetric is given
by the difference in riskier choices in each domain (ImpValence =
PropRiskgain − PropRiskloss). We first showed that individuals were sensi-
tive to valence (ImpValence −0.15 ± 0.22; one-sample t-test versus no
effect of valence, t(24) = −3.31, P = 0.003; Fig. 2), and to a similar de-
gree to that seen in our previous fMRI study using the Accept/Reject
task (independent samples t-test for modulus of ImpValence here versus
previous Accept/Reject fMRI dataset t(45) = 0.07. P > 0.7). However,
secondly, in contrast to our previous finding in the Accept/Reject task,

http://www.fil.ion.ucl.ac.uk/spm


Fig. 2. Risk and valence influence choice behaviour. To facilitate direct comparison, we
present data from a) our previous fMRI study using the Accept/Reject task (Wright et al.,
2012) and b) the current fMRI dataset. The paradigms were carefully matched (e.g. very
similar parametric manipulations of ΔEV and ΔVar), except that in the Accept/Reject
task in each trial individuals accepted or rejected a lottery relative to a sure option. In
both experiments, risk preference is reflected by the proportion of riskier choices made
(PropRisk; risk-averse b 0.5; risk-neutral = 0.5; risk-seeking > 0.5). Regarding risk,
both paradigms revealed the same degree of risk aversion overall (independent
t-test PropRiskall here versus PropRiskall in previous Accept/Reject fMRI dataset
t(45) = 0.07. P > 0.9). Regarding valence, a simple metric for the impact of valence
on choice is given by the difference in riskier choices in each domain (ImpValence =
PropRiskgain − PropRiskloss). Individualswere sensitive to valence here, and themagnitude
of this valence effect was the same as in our previous fMRI experiment using the Accept/
Reject task (independent t-test for modulus of ImpValence here versus previous Accept/
Reject fMRI dataset t(45) = 0.07. P > 0.7). However, in contrast to the Accept/Reject
task, here valence caused the reverse effect such that individuals gambled more for loss
compared to gain outcomes. Error bars show s.e.m., **P b 0.005, ***P b 0.00005.
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we now find that valence caused a reverse effect such that individuals
gambledmore with loss (PropRiskloss 0.48 ± s.d. 0.20) than gain out-
comes (PropRiskgain 0.33 ± s.d. 0.12; t(24) = −3.31, P = 0.003).
Thus, individuals were risk averse with gains (PropRiskgain one-sample
t-test versus risk-neutral t(24) = −7.14, P = 2.2 × 10−7) and risk
neutral with losses (PropRiskloss one-sample t-test versus risk-neutral
t(24) = −0.54, P = 0.6).

Finally, we note a considerable heterogeneity between different
individuals' preferences related to risk (PropRiskall mean 0.40, range
0.11 to 0.61) and valence (ImpValence mean −0.15, range −0.63 to
0.27). In previous datasets an individual's sensitivity to risk and va-
lence were unrelated (Wright et al., 2012) but here these were corre-
lated (PropRiskall correlated with ImpValence r = −0.48, P = 0.014,
d.f. = 23), but here this correlation was not robust to removal of
the two participants with the most extreme PropRiskall (r = −0.38,
P = 0.074, d.f. = 21).
Behavioural modelling: EV, risk and valence influence choice

Behavioural modelling confirmed that EV, risk and valence influenced
choice, with the same winning model here as in our multiple datasets
reported previously inWright et al. (2012). The effects of EV, risk and va-
lence are seen clearly by comparing three related “summary statistic”
models. A Mean-Only model where individuals care only about the EV
of the options correctly predicted 64% ± s.d. 7% of an individual's choices
(summed BIC = 6145). The model is improved by adding the influence
of risk in theMean–Variancemodel (BIC = 5635), which in turn is great-
ly improved by also accounting for valence in our Mean–Variance–
Valence model (BIC = 5322) where there are separate risk parame-
ters for each valence. This winning Mean–Variance–Valence model
outperformed more standard Expected Utility, simple Prospect Theory
and more complex Cumulative Prospect Theory models. Furthermore,
in absolute terms, the winningMean–Variance–Valencemodel correct-
ly predicted 75% ± s.d. 7% of an individual's choices (range 61% to 89%).
The risk-related parameters (ρ) from this winning model and the sim-
pler metric described above (PropRisk) were highly correlated for
individuals in the gain trials (r = 0.72, P = 5.5 × 10−5, d.f. = 23)
and in the loss trials (r = 0.78, P = 5.0 × 10−6, d.f. = 23). All models
have been detailed previously (Wright et al., 2012).

Reaction time data suggesting risk and valence can influence
action-selection through approach–avoidance processes

Reaction time (RT) data are consistent with the predictions of a
model-free approach–avoidance hypothesis, replicating previous
behavioural findings (Wright et al., 2012). Individuals are slower to
approach aversive stimuli and are faster to approach appetitive stim-
uli (Guitart-Masip et al., 2011), which makes simple RT predictions.
Regarding valence, individuals will be slower to approach (choose)
options containing losses than gains, and this was the case (gains
542 ± 118 msec; losses 654 ± 147; t(24) = 8.17, P b 1 × 10−6). Re-
garding risk, whether stimulus feature is aversive, neutral or appetitive
depends on an individual's risk preference. Thus, we predicted that
risk-averse individuals would be significantly slower to approach risk;
risk-neutral would show no RT bias and risk-seeking subjects would be
faster to approach risk. Note as effects of risk depend on individuals' sub-
jective preferences we examined between subjects. Here, individuals'
risk preference with gains (PropRiskgain) strongly predicted an RT bias
when approaching (choosing) the riskier relative to the surer option
(RTriskier − RTsurer) with gains (r = −0.71, P = 8 × 10−5, d.f. = 23);
and risk preference for losses (PropRiskloss) strongly predicted the RT
bias with losses (r = −0.84, P = b1 × 10−6, d.f. = 23) (Fig. 3).

Finally, we asked whether there was a facilitatory effect of in-
creased EV on RTs, where we predicted that a larger sum of EVs
(∑EV) in a trial would be related to faster RTs. However, we note
that as the EV of two options becomes closer (ΔEV) that choice diffi-
culty (and thus RT) will also increase, and that (∑EV) here correlates
with variance related stimulus aspects (∑Var, ΔVar; Table 1) which
must be accounted for in the analysis. We tested for a facilitatory
effect of ∑EV by regressing RTs for each individual subject against
a model containing all four regressors (∑EV, ΔEV, ∑Var, ΔVar) to
identify correlations between individual's RT data with the unique
components of each regressor. Next we brought the regression coeffi-
cients from all individuals up to the group level where they are treat-
ed as a new response variable (analogous to group analysis in SPM;
(Friston, 2004)). As predicted, the group mean regression coefficient
for ∑EV was negatively signed (i.e. faster with greater ∑EV), as
were those for ΔEV and ΔVar (i.e. slower with smaller differences),
and was positively signed for (∑Var) as might be expected given
overall risk-aversion. One-sample t-tests showed that these regression
coefficients were significantly different to zero (P ≤ 0.003 for all four
regressors).

Factorial fMRI analyses suggesting valence and risk can influence
action-selection through approach-avoidance processes

In a simple factorial analysis, for both valence and risk we previ-
ously found neural data reflecting contingencies between those stim-
ulus properties and responsive actions in the Accept/Reject task
(Wright et al., 2012). As those behavioural contingencies were selec-
tively altered in the current task, we asked if this was reflected neurally
by implementing the same 2 valence (gain, loss) by 2 choice (riskier,
surer) factorial analysis (details of this main GLM in Methods). Activity
is whole-brain cluster-level corrected unless otherwise stated.

Regarding valence there were two main behavioural findings.
Firstly, valence influenced choice here to the same degree as in the
Accept/Reject task. Secondly, the nature of this valence effect was al-
tered (here increased riskier choices for losses than gains, the reverse
was seen in the Accept/Reject task; Fig. 2). Both these effects were
reflected neurally. Firstly, consistent with previous data there was
enhanced activity for losses > gains in anterior insula (bilateral here:
−3323 4, Z = 3.7, 89 vox, SVC; 33 26 4, Z = 4.1, 65 vox, SVC), a region

image of Fig.�2


Fig. 3. Loss and risk bias reaction times as predicted by approach–avoidance mechanisms. a) Valence biassed RTs as predicted by an approach–avoidance mechanism, with individ-
uals slower to choose (approach) options with losses than with gains. We show the four possible stimulus-action pairs (Gainriskier, Gainsurer Lossriskier Losssurer). RTs were normalised
per subject. Error bars show s.e.m. b) Risk biassed RTs as predicted by an approach–avoidance mechanism. As the effect of risk depends on individuals' subjective preference we
looked between subjects. An individual's risk preference with gains (i.e. PropRiskgain) strongly predicted their RT bias (RTriskier − RTsurer) with gains; and their risk preference
with losses strongly predicted their RT bias with losses. We observe our predicted pattern, where: risk slowed approach when risk was aversive; risk induced no RT bias when
risk was neutral; and risk speeded approach when risk was appetitive (panel c is a cartoon of these predictions). Regression lines are shown, which are not constrained in any
way. Grey lines show risk-neutrality in choice (i.e. PropRisk = 0.5) and no RT bias (i.e. RTriskier − RTsurer = 0). Gains are in blue, losses in red.
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implicated in aversive representations (Calder et al., 2001) as well as
here also in SMA (whole-brain corrected; Table 2). We again found
greater activity for gains > losses in value-related regions including
OFC, vmPFC, dorsal and ventral striatum (Table 2), consistent with
what we observed previously (greater activity here for gains > losses
SVC around the OFC/vmPFC cluster peaks reported previously (Table 1
in Wright et al., 2012), in the striatal cluster reported previously and
in ventral striatum for positive stimuli in O'Doherty et al. (2004)).

We next asked whether the second finding of the altered nature of
the valence effect between tasks was also mirrored at the neural level.
In the Accept/Reject task the least preferred valence-action pair
behaviourally (Lossrisky; Fig. 2a here) was the only one associated
with increased anterior insula activity (Fig. 4a here). In contrast, be-
haviour suggested that in the current study there was equal aversive-
ness in both actions with losses (i.e. risk-neutral choices and equally
slowed RTs with losses here; Fig. 2b), and this was reflected here in
a similar degree of enhanced bilateral anterior insula and SMA activ-
ity when approaching either option with losses (Fig. 4d; no activity
for Lossriskier > Losssurer or the reverse in 10 mm spheres centred on
the peaks in these regions for losses > gains here or for the interac-
tion in the Accept/Reject task). Further, this did not simply reflect a
lack of choice-related activity in these regions, as behaviour across
subjects showed that aversion to risk with gains was reflected neural-
ly by increased activity for choosing the riskier than surer option with
gains (i.e. Gainriskier > Gainsurer) in right AI and SMA (10 mm spheres
as above, SVC; Fig. 4).

Regarding risk, across subjects there was equivalent aversion to
risk overall (i.e. collapsed across valence) as in our previous task
(Fig. 2). This similarity was reflected neurally, as we again observed
increased activity for approaching (choosing) the riskier, relative to the
surer, option in multiple regions (right parietal cortex, mid-cingulate/
dmPFC, right anterior insula/IFG) but nothing in the reverse contrast
(i.e. chose surer > riskier; Table 2). Furthermore, consistent with an ap-
proach–avoidance hypothesis, where here as previously themore averse
an individual was to risk (i.e. lower PropRiskall) the greater the activity
evokedwhen approaching (choosing) the riskier option in bilateral ante-
rior insula, dmPFC/SMA, bilateral parietal cortex and thalamus/caudate
(Fig. 4). Analysing each valence separately showed similarly asymmetric
patterns across and between subjects (Supplementary results).

Finally, we asked if these findings were specific to valence and risk,
or were instead related more generally to choosing options containing
less preferred stimulus aspects (e.g. lower EV or lower SV). No such
activity was seen either in an alternative factorial design using EV to de-
fine choice (i.e. 2 valence [gain, loss] by 2 choice [higher EV, lower EV]),
or in a further alternative GLM that used subject-specific SVs from the
winning behavioural model to define choice (i.e. chose higher SV or
lower SV). Further, our findings related to approaching risk and loss
above were still evident even after removing activity related to choos-
ing either lower/higher EV or lower/higher SV (details in Supplementa-
ry materials).

Parametric analyses of EV and variance encoding

We next used parametric analyses to examine EV and risk encoding
inmultiple risky options. The difference in EV and risk between the two
options in each trial (ΔEV and ΔVar) were used as parametric modula-
tors in the main GLM above, and corresponded to the manipulations of
ΔEV and ΔVar in the stimulus set (Fig. 1b). In our previous Accept/
Reject task the parametric regressors for EV and risk also represented
ΔEV and ΔVar (Wright et al., 2012). As previously there was a positive
correlation with ΔVar, although here in left anterior insula and medial
PFC rather than in posterior parietal cortex seen before, and again no
correlation with EV (Table S2).

However, a problem for any paradigm in which choices involve
only one risky option (including our previous study) is that a ΔVar re-
gressor is identical to a regressor reflecting the sum or mean of the
risk (∑Var). Such activity may be predicted for a region simulta-
neously encoding both options. If a fixed sure option is used between
trials, regressors for ΔEV and ∑EV are also identical. Importantly, in
the current task with two risky options these are not identical. Indeed
a modified GLM instead using ∑EV and ∑Var revealed more wide-
spread risk-related activity with∑Var, that included bilateral posterior
parietal cortex consistent with our previous study (and also dmPFC,
bilateral anterior insula, bilateral dorsal striatum, left MTG, left MFG;
no correlation with ∑EV; Table S2).

However, although regions correlatingwith∑Var andΔVar in these
separate GLMs only partially overlapped, these regressorswere correlat-
ed (Table 1). Thus, to identify an activity uniquely attributable to each
regressor (i.e. not with their shared components) in a new GLMwe in-
cluded all four parametric regressors without orthogonalisation (∑EV,
ΔEV,∑Var,ΔVar). Here the activity strongly correlatedwith the unique
components of∑Var (positive correlation in left posterior parietal cor-
tex, left and right IFG/MFG, cerebellum and right sensorimotor cortex)
and ΔVar (positive correlation in ventromedial PFC/subgenual ACC;
and negative correlation in right and left MFG and occipito-temporal
cortex; Table 3). No activity correlated with∑EV or ΔEV.

Whilst EV encodingwas not revealed by thesemodels an alternative
is that EV encoding is determined by which option is chosen. Such
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Table 2
fMRI factorial analysis. This table shows all activity from our main GLM surviving
cluster level correction across the whole brain (P b 0.05 FWE corrected; voxel thresh-
old of P b 0.005 used to define the clusters) for the specified contrasts. Panel a) shows
results across subjects for the main effects of valence (gain versus loss) and choice
(riskier versus surer) and their interactions. In addition to these whole brain
corrected results, the contrast of losses > gains also revealed bilateral anterior insula
activity (details in Results). Panel b) shows results between subjects using the second
level covariates for risk (PropRiskall) or valence (ImpValence) for all main effects and
interactions in our factorial design, and within each valence. For each cluster is
shown: the three constituent peaks (>8 mm apart) with the highest Z-scores; the
number of voxels at P b 0.005 (unc.); and the P-value of the cluster after FWE correc-
tion across the whole brain (IFG = Inferior Frontal Gyrus: SMA = Supplementary
Motor Area; dmPFC = dorsomedial PFC).

a) Across subjects

Region L/R x y z Z #vox p

Gain > loss
IFG (p. Orb) L −36 32 −14 6.5 5106 0

Mid. orbital gyr. L/R −6 50 −11 6.2
Amygdala L −21 −4 −11 5.8

Postr. cingulate cortex L/R −3 −49 19 5.5 528 b1E-05
−6 −49 31 5.1

9 −40 31 4.1
Angular gyr. L −45 −73 31 4.4 274 0.001

Mid. temporal gyr. −45 −58 22 3.6
−36 −49 22 3

Angular gyr. R 51 −64 25 3.9 148 0.033
48 −64 34 3.6
39 −61 34 3.1

Inf. parietal lobule R 51 −34 55 3.8 205 0.007
Supramarginal gyr. 63 −19 28 3.6

Postcentral gyr. 57 −25 49 3.6
Mid. temporal gyr. R 57 −58 −2 3.7 156 0.026

63 −46 −8 3.6
Infr. temporal gyr. 48 −46 −5 3.2

Loss > gain
SMA R 6 11 49 4.6 302 b1E-03

−3 11 49 4.5
Mid. frontal gyr. −27 −1 55 3.7

Riskier > surer
Precuneus R 21 −73 40 4.2 615 b1E-05

Supr. parietal lobule 21 −55 55 4.1
Angular gyr. 42 −70 37 4

MCC L/R −6 17 37 4.2 1038 b1E-08
dmPFC 15 62 22 4.1

9 50 31 3.9
Antr. insula/IFG R 51 17 1 4.1 284 0.001

42 23 1 3.8
Mid. temporal gyr. 54 2 −23 3.3

Cerebellum L/R 3 −49 −8 4.1 1831 b1E-13
Mid. orbital gyr. L −48 −79 7 3.9

Infr. temporal gyr. R 51 −58 −5 3.8
Cerebellum R 12 −61 −47 4.6 153 0.033

6 −55 −41 4.5
−6 −49 −44 3.7

Cerebellum L −27 −58 −44 4.3 225 0.005
−30 −67 −38 3.9
−30 −46 −38 3.7

b) Between subjects

Region L/R x y z Z #vox p

PropRiskall (neg. correl.) on riskier > surer
Antr. insula R 9 26 46 5.3 2035 b1E-15

30 20 10 4.9
45 17 −2 4.7

IFG (p. Orb.) L −42 47 −11 4.7 855 b1E-07
IFG (p. Oper.) −51 14 4 4.4
Antr. insula −27 26 1 4.4

Postr. parietal cortex R 33 −43 40 5.0 4158 0
Occipital gyr. L/R −42 −82 −5 4.9

15 −73 7 4.8
Thalamus R 15 −25 4 4.6 336 b1E-03

9 −13 10 4.2
9 5 1 3.9

Table 2 (continued)

a) Across subjects

Region L/R x y z Z #vox p

PropRiskgain (neg. correl.) on riskier > surer in gains
Mid. frontal gyr. R 30 8 61 4.1 263 0.003

SMA 6 14 52 3.8
18 8 49 3.6

Antr. insula R 42 20 1 4.8 437 b1E-04
30 23 −2 4.2

Mid. frontal gyr. 48 41 19 3.7
Postr. parietal lobule R 30 −49 37 4.4 348 b1E-03

30 −58 43 4.2
39 −40 40 3.7

Postr. parietal lobule L −48 −40 43 4.0 732 b1E-06
Occipital gyr. −36 −85 −8 4.7

−24 −67 34 4.2

PropRiskloss (neg. correl.) on riskier > surer in losses
preSMA L/R 9 20 49 4.7 467 b1E-04

SMA 9 11 55 4.2
ACC 9 23 25 4.4

Antr. insula R 33 20 10 4.3 377 b1E-03
36 17 −11 4.1
27 17 16 3.8

Antr. insula L −27 29 1 4.7 535 b1E-05
−33 14 10 4.0

Mid. frontal gyr. −39 47 19 3.8
Postr. parietal lobule L −48 −49 43 3.9 338 b1E-03

−33 −43 34 3.9
−24 −61 49 3.8

Infr. parietal lobule R 36 −43 37 3.8 161 0.029
48 −43 46 3.5

b) Between subjects
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choice-determined encoding has been suggested for SV (FitzGerald
et al., 2009), and is shown for risk in the factorial analyses above
where greater activity is seen when the chosen option is riskier than
the surer option (Table 2). We tested for such choice-determined
encoding of EV, and also asked if parametric analysis revealed additional
choice-determined activity for risk, in a new GLMwith four regressors:
EVchosen, EVunchosen, Varchosen, Varunchosen. For risk, the only additional
choice-determined activity revealed by this parametric analysis was a
positive correlationwith the unique component of Varchosen in right pos-
terior parietal cortex, an area also seen in the stimulus-determined
model above (peak coordinates for Varchosen also showed activity for
∑Var in the stimulus-determined model). However, as predicted, for
EV the choice-determined model revealed extensive activity, and
furthermore this was in the directions to be expected for chosen and
unchosen values. The unique component of EVchosen positively correlat-
ed with activity in precuneus (whole brain corrected) and in OFC previ-
ously strongly associated with value (3 44–20, Z = 4.0, 55 vox, SVC),
and no regions negatively correlated with EVchosen. The unique compo-
nent of EVunchosen negatively correlated with activity in left premotor
cortex, hippocampus and cerebellum (whole brain corrected) and OFC
(−6 44–14 Z = 3.5, 64 vox, SVC), and no regions positively correlated.

Finally, we asked if EV and risk encoding differs when potential
outcomes entail gains or losses. In the choice-determined model im-
mediately above that revealed EV-related activity (i.e. with EVchosen,
EVunchosen, Varchosen, Varunchosen), we also observed extensive activity
for the interaction of encoding in gains versus encoding in losses with
both EVchosen and EVunchosen (Table 3; Table S3 reports a similar pat-
tern in the stimulus-determined model). Further, this effect of va-
lence on EV encoding was strikingly asymmetric: the chosen option
was more positively correlated in gains than losses (EVchosen in
gains > EVchosen in losses: dmPFC/ACC, left anterior insula/IFG, left
posterior parietal and bilateral MTG) with nothing for the reverse;
whilst the unchosen option was more positively correlated in losses
than gains (EVunchosen in losses > EVunchosen in gains: pre-SMA/
SMA/MCC, right anterior insula/IFG and right posterior parietal)
with nothing seen for the reverse. In both cases the interaction
resulted from divergent effects in both gains and losses, with activity



Fig. 4. Approaching risk and loss: neural data. Valence and risk may affect action-selection by influencing the disposition to approach economic stimuli, as suggested by fMRI data
from the Accept/Reject task (previously reported in Wright et al., 2012) (panels a-b) and new data from the Selection task (panels c-f). a) Regarding valence, in the Accept/Reject
task bilateral anterior insula/IFG showed increased activity when approaching (choosing) the lottery with losses (Lossrisky), the specific stimulus-action pair to which individuals
were most averse of the four possible in the task (Gainrisky, Gainsure Lossrisky Losssure) (data from the peak for the choice-by-valence interaction in that task, 30 26–8). However,
in the Selection task during loss trials individuals had to approach a lottery with losses, and now bilateral anterior insula activity was raised equally for both options — shown
by the main effect for losses > gains (panel c) and no difference in activity between choosing riskier or surer option with losses (panel d, taken from the peak for losses > gains
here). Regarding risk, the more averse an individual was to risk (i.e. lower PropRisk), the greater the activity when approaching riskier relative to the surer option, in the gain trials
(PropRiskgain vs. riskier > surer in gains, plotted in blue) and loss trials (PropRiskloss and riskier > surer in losses, in red). In anterior insula for contrasts across subjects that were
distinct from the contrasts on which the between subjects plot is based (Accept/Reject peak for choice by valence interaction in panel b; Selection task peak for losses > gains in
panels e and f). Error bars indicate s.e.m.. *b0.05, **b0.005, ***b0.001.
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for EVchosen at the highest peak in each region driven by a positive
correlation with gains and negative with losses, with the reverse pat-
tern at the peaks seen for EVunchosen. Note that with gains there is a
positive correlation with chosen EV (e.g. higher for an EV of £14
than £10; where £10 is the lower EV and has lower activity), and
with losses there is a negative correlation with chosen EV (e.g. higher
with £-14 than £-10; where £-14 is the lower EV and has higher activ-
ity), so activity here does not just positively correlate with chosen EV.
In contrast, for risk there was no interaction between encoding in
gains versus encoding in losses for any of the risk-related regressors,
in the stimulus-determined (∑Var, ΔVar) or choice-determined
(Varchosen, Varunchosen) models. We observe correlations with ∑Var
in both gains (left IFG, left caudate) and losses (incl. right MFG/IFG,
left IFG) and a conjunction between activity correlating with ∑Var
in both gains and losses (positive correlation in left IFG pars. triang.
and operc., −48 44–8, Z = 3.78, 62 vox, SVC P = 0.007).

Subjective value

Finally, we tested for encoding of subject-specific SVs from our win-
ning behaviouralmodel in both a choice-determinedmodel (with para-
metric regressors of SVchosen and SVunchosen) and a stimulus-determined
model (with ∑SV, ΔSV). The choice-determined model revealed
extensive activity, and furthermore this was in the directions to be
expected for chosen and unchosen values (Table S4). The unique com-
ponent of SVchosen positively correlated with activity in SMA, posterior
insula/operculum and bilateral sensorimotor cortex, and no regions
negatively correlatedwith SVchosen. The unique component of SVunchosen

negatively correlated with activity in OFC, right amygdala and left
hippocampus, and no regions positively correlated. In contrast, in the
stimulus-determined model there were no correlations with either
∑SV or ΔSV.

We can also ask if these SVchosen and SVunchosen regressors better
capture activity than EVchosen and EVunchosen in a comparable model
containing only those two regressors. These models with SV and EV
models revealed similar regions (Table S4), although interestingly
the negative correlation with SVunchosen in OFC and right amygdala sur-
vivedwhole brain correction,whilst activity for EVunchosen in these same
areas was neither as widespread nor significant (Fig. S1).

Discussion

Value-based decision-making can be considered within a process-
based account of choice that evolves from option-evaluation to action-
selection (Corrado et al., 2009). Regarding option-evaluation, studies
examining the neural basis of risky economic choice have suggested
two main competing accounts: one involves “summary statistics” that
describe the distribution of possible outcomes from a risky choice
(Bossaerts, 2010; Preuschoff et al., 2006); the other posits a subjective
value (SV) determined by the shape of a utility function, with risk-
preference emerging as a by-product of that shape (Rangel et al.,
2008). Herewe provide further evidence for encoding of “summary sta-
tistics”, and by using multiple risky options and manipulating valence
we highlight a new characterisation of such encoding. In contrast to
these data, there was no clear evidence for encoding of SV in addition
to EV.

Risk encoding was seen for both∑Var and ΔVar in distinct neural
regions. These two risk-related metrics are identical when a choice
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Table 3
fMRI parametric analysis. This table shows all activity surviving cluster level correction
across the whole brain (P b 0.05 FWE corrected; voxel threshold of P b 0.005 used to de-
fine the clusters) for the specified contrasts. Panel a) We test for stimulus-determined
encoding in a new GLM with four parametric regressors: ∑EV, ΔEV, ∑Var, ΔVar. Panel
b)We test choice-determined encoding in a further GLMwith four parametric regressors:
EVchosen, EVunchosen, Varchosen, Varunchosen. In both newGLMswe do not orthogonalise these
parametric regressors, which enable us to examine activity uniquely attributable to each
regressor (i.e. not activity correlating with their shared components). Panel c) We test if
encoding is valence-dependent by directly contrasting the parametric modulators in
gains versus losses (and vice versa), shown here for all four parametric regressors in the
choice-determined model (a similar pattern was seen in the stimulus determined
model, Table S3). Note that for one subject who was very risk averse (i.e. few riskier
choices) neither model could be estimated and thus for these models n = 24. For each
cluster is shown: the three constituent peaks (>8 mm apart) with the highest Z-scores;
the number of voxels at P b 0.005 (unc.); and the P-value of the cluster after FWE correc-
tion across the whole brain (IFG = Inferior Frontal Gyrus: SMA = Supplementary Motor
Area; dmPFC = dorsomedial PF; vmPFC = ventromedial PFC; ACC = Anterior Cingulate
Cortex).

a) Stimulus-determined

Region L/R x y z Z #vox p

ΣVar (pos. correl.)
Infr. parietal lobule R 51 −34 52 4.27 186 0.008

36 −43 55 3.48
30 −49 55 3.25

Infr. parietal lobule L −33 −67 40 4.18 132 0.041
Supr. parietal lobule −21 −73 49 3.17
IFG (p. Orb.) L −48 47 −8 4.69 695 b1E-07

−51 38 −5 4.69
IFG (p. Tri.) −36 29 22 4.50
IFG (p. Tri.) R 54 20 16 4.21 713 b1E-07

51 29 31 4.14
Mid. frontal gyr. 45 35 22 4.09
Cerebellum L −12 −82 −35 5.09 1540 b1E-13
Fusiform gyr. R 27 −82 −14 4.88
Infr. temporal gyr. L −48 −58 −5 4.68

ΔVar (pos. correl.)
vmPFC/subgenual ACC L/R 15 47 1 4.76 341 b1E-03

−12 47 −2 4.70
9 44 7 4.60

ΔVar (neg. correl.)
IFG (p. Tri.) R 57 23 22 4.02 348 b1E-03

48 29 25 4.00
51 38 16 3.50

IFG (p. Tri.) L −36 26 22 3.64 151 0.04
−54 17 28 4.05

IFG (p. Oper.) −45 11 28 3.48
Fusiform gyr. R 27 −79 −14 4.31 1572 b1E-11
Cerebellum 18 −76 −41 4.14
Calcarine gyr. 30 −64 7 4.09

b) Choice-determined

Region L/R x y z Z #vox p

VarChosen (pos. correl.)
Mid. occipital gyr. R 30 −67 37 3.75 232 0.011
Angular gyr. 30 −64 46 3.54
Supr. parietal gyr. 24 −76 49 3.11

EVchosen (pos. correl.)
Precuneus L −12 −52 64 3.78 154 0.024

−18 −46 55 3.54
−24 −43 46 3.49

EVunchosen (neg. correl.)
Supr. temporal gyr. L −63 −22 7 4.04 161 0.035
Postcentral gyr. −63 −7 19 3.95
Supr. temporal gyr. −63 −10 1 3.68
Hippoc./parahippoc. L −30 −28 −17 4.46 174 0.025
Fusiform gyr. −30 −43 −20 4.26
Cerebellum −30 −52 −29 3.58
Cerebellum L −12 −58 −23 4.58 174 0.025

3 −58 −29 3.37
−15 −55 −38 3.05

Table 3 (continued)

a) Stimulus-determined

Region L/R x y z Z #vox p

EVchosen (gain > loss)
dmPFC L/R 0 38 37 5.04 1795 b1E-12
ACC −3 50 10 4.86
Supr. frontal gyr. R 21 56 34 4.77
Antr. insula L −48 26 4 4.02 217 0.008

−33 11 −2 3.73
−27 20 −14 3.58

Angular gyr. L −45 −64 40 4.52 225 0.006
Infer. parietal lobule −57 −58 37 3.99
Angular gyr. −42 −55 34 3.62
Mid. temporal gyr. L −60 −25 −8 5.32 367 b1E-03

−48 5 −32 4.17
−57 −16 −23 4.10

Mid. temporal gyr. R 63 −22 −14 5.04 369 b1E-03
Infer. temporal gyr. 57 −19 −23 4.37

42 2 −35 4.04

EVunchosen (loss > gain)
pre-SMA/SMA L/R 9 8 49 4.07 391 b1E-04

0 11 52 3.82
Mid. cingulate cortex R 15 20 37 3.77
Antr. insula/IFG R 42 26 25 3.91 224 0.002

33 23 10 3.53
Putamen 30 8 13 3.48
Insula L −24 −31 22 5.25 134 0.038

−21 −16 28 3.69
−33 14 13 3.40

Supramarginal gyr. R 63 −25 19 3.30 135 0.036
Rolandic operculum 57 −19 16 3.28
Supramarginal gyr. 51 −22 25 3.25
Occipital L/R 6 −64 16 4.54 1536 b1E-13

−33 −76 28 4.11
Supr. parietal lobule R 24 −64 55 4.02

c) Choice-determined (interactions with valence)
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involves only one risky option, as in our previous work (Wright et al.,
2012). Activity related to ∑Var might be expected in regions simul-
taneously encoding risk in both options, and here we observed corre-
lations with the unique component of ∑Var in regions that included
parietal cortex. Such parietal activity replicates our previous data
with a single risky option in the Accept/Reject task (Wright et al.,
2012), and concurs with single unit and fMRI data showing enhanced
activity in a similar region during risky decision-making (Huettel et al.,
2005; Mohr et al., 2010; Platt and Glimcher, 1999). The difference in
risk between options (ΔVar) correlated with activity in vmPFC, a region
strongly associated with value difference (Rushworth et al., 2011),
althoughwe note thismay not simply reflect a subjective value represen-
tation as this would also be expected to differ between individuals
depending on their individual risk-preference. In addition to demonstrat-
ing this risk encoding determineddirectly by the two stimuli presented in
each trial (i.e. ∑Var and ΔVar), we also found choice-determined risk
encoding expressed in greater activity when the chosen option was risk-
ier than the surer option, as discussed further below. More broadly, the
likelihood that multiple different aspects of risk are tracked within the
brain during value-based choice is consistent with the phylogenetically
ancient nature of risk sensitivity (Kacelnik and Bateson, 1996; Real
et al., 1982) and its importance in decision-making (D' Acremont and
Bossaerts, 2008).

With respect to EV, we found that encoding depends on which op-
tion was chosen (i.e. encoding of chosen and unchosen EVs), consistent
with previous data reporting such encoding for SVs (FitzGerald et al.,
2009; Rushworth et al., 2011). We observed this EV encoding in
expected directions, with positive correlations for EVchosen and negative
correlations for EVunchosen (Rushworth et al., 2011). We note that as
well as identifying encoding in OFC, a region commonly associated
with value (FitzGerald et al., 2009), we also observed activity in hippo-
campus, a region identified with reward processing in a meta-analysis
of value-based choice (Liu et al., 2011), as well as in precuneus (Viard
et al., 2011) a regions also implicated in goal-directed behaviour
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(Cavanna and Trimble, 2006). Further, because we report activity
uniquely correlating with EV, we note that such EV encoding may be
even more widespread as suggested by the marked activity seen in
OFC, bilateral striatum and posterior cingulate for the contrast of gain
relative to loss trials, where gain trials involve higher values.

EV encoding also depended uponwhether outcomes were gains or
losses. As here individuals must evaluate and select between two risky
options of the samevalence, our data suggest that valencemay exert sep-
arable effects on chosen and unchosen values. Indeed, the pattern of this
valence-dependent encoding highlights the importance of both chosen
and unchosen values in shaping behaviour. We acknowledge that deci-
sions are made in the context of only gains or losses in each trial, and fu-
turework could usefully examine situationswhere this was not the case,
for example bymixing gains and losses. The greater activity seen here for
gains relative to losses shows a striking commonality in striatum and
vmPFC/OFC to that observed previously in a related task (Wright et al.,
2012), consistent with the striatal expected value encoding seen in
experiments using a mean–variance approach (Tobler et al., 2009).

In contrast to the highly robust neural data for summary statistic
encoding, we did not find similarly clear evidence for encoding of SV
over that of EV. However, we note that absence of evidence is not evi-
dence of absence. Further, the large difference in value between the
gain trials and loss trialsmay have led tomore noise in valuation signals,
which could have reduced the necessary sensitivity to identify paramet-
ric differences in EV or SV within trial types. With respect to reconciling
our findings with those reporting integrated utility representations
(Kable and Glimcher, 2007; Rangel et al., 2008), this raises a number
of issues. Firstly, if choice is the product of multiple interacting decision
systems, it may be that different tasks differentially involve different
processes, such that some tasks inducemodel-based valuations approx-
imating a unified utility signal, whilst others will not. Second, previous
workmay not always have conducted contrasts necessary to show neu-
ral data consistent with additional processes. For example with respect
to valence, an interaction of choice and valence consistent with ap-
proach–avoidance was a central finding in DeMartino et al. (2006) as
well as our previous dataset (Wright et al., 2012); but such a contrast
was not reported in Tom et al. (2007) (see Wright et al., 2012 for more
extensive discussion). Third, we note here that a recent study showing
that SV representations of more complex multi-attribute stimuli may
have a distributed representation, and may only be detectable using
multivariate but not standard mass univariate analysis (Kahnt et al.,
2011). Fourth, we note that EV representations here may in fact reflect
model-based values, with the additional influence on action-selection
from valence through distinct approach–avoidance processes that is
not integrated within a unified utility signal.

Finally, how our manipulations of risk, valence and EV influence
action-selection can be viewed from a perspective where choice is
the product of multiple interacting decision systems that each influ-
ence action-selection, including both reflexive model-free systems,
and more sophisticated model-based systems (Dayan, 2008). As in
our previous Accept/Reject task (Wright et al., 2012) we find robust
patterns of RTs and neural activity consistent with the hypothesis
that risk and valence may, at least in part, influence action-selection
through model-free approach–avoidance processes. Importantly, in
model-free approach–avoidance processes the key feature is a contin-
gency between stimulus properties and responsive actions — and we
show these behavioural contingencies are selectively altered here in
the Selection task relative to our previous Accept/Reject (Fig. 2), and
that these selective changes are reflected in RT and neural data
(Fig. 4). The RT findings here are explored and discussed in more de-
tail in a series of previous related experiments (Wright et al., 2012).
We note that whilst our design here precluded risk-related RT find-
ings being explained by a motor habit (the side on which the riskier
option appeared was random), future work could examine the possibil-
ity that they may relate to a higher level type of “habit” by dissociating
the number of riskier choices from risk preference. Again, anterior
insula is implicated here and this is a region known to be involved in
representing aversive stimuli (Calder et al., 2001; Seymour et al.,
2007), but has also been related to interoception (Critchley et al.,
2004) and decision-making and addiction (Naqvi and Bechara, 2010).
In model-based systems, stimulus features may be incorporated within
a unified SV computed for each option, and action-selection involves
choosing the option with the highest SV. We may not find clear evi-
dence for unified SV encoding in addition to that for EV, but note that
EV encoding itself may reflect a model-based computation and indeed
that EV may influence action-selection through comparison of such
model-based values.

Together these data are consistent with a biologically-based ac-
count of choice (Wright et al., 2012), where choice is a process in-
volving both option-evaluation and action-selection (Corrado et al.,
2009), and is likely to reflect the influence of multiple interacting
decision systems (Dayan, 2008). Specifically, option evaluation may
involve summary statistics. Action-selection may involve both model-
based integration of summary statistics (EV and risk) that influence
action-selection through comparator processes, and also model-free
approach–avoidance responses to stimulus properties such as valence
not requiring model-based processing.

In conclusion, our data support the suggestion that “summary sta-
tistics” describe the distribution of possible outcomes from a risky
choice. Our data also show that in keeping with the importance of
risk in decision-making, multiple aspects of risk are encoded during
value-based choice, including both the sum and difference in risk be-
tween two risky options. Instead, neural data here suggested that EV
encoding reflected chosen and unchosen EVs, and was also crucially
dependent on outcome valence. Our data thus support a hypothesis
that the brain encodes “summary statistics” describing the distribution
of potential outcomes during risky choice, and highlight differences be-
tween the encoding of these summary statistics.
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