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Abstract: Cylindrospermopsin (CYN) is a ubiquitous cyanotoxin showing increasing incidence
worldwide. CYN has been classified as a cytotoxin and, among its toxic effects, its immunotoxicity is
scarcely studied. This work investigates for the first time the influence of oral CYN exposure (18.75;
37.5 and 75 µg/kg b.w./day, for 28 days) on the mRNA expression of selected interleukin (IL) genes
(IL-1β, IL-2, IL-6, Tumor Necrosis Factor alpha (TNF-α), Interferon gamma (IFN-γ)) in the thymus
and the spleen of male and female rats, by quantitative real-time polymerase chain reaction (RT-
qPCR). Moreover, their serum levels were also measured by a multiplex-bead-based immunoassay,
and a histopathological study was performed. CYN produced immunomodulation mainly in the
thymus of rats exposed to 75 µg CYN/kg b.w./day in both sexes. However, in the spleen only IL-1β
and IL-2 (males), and TNF-α and IFN-γ (females) expression was modified after CYN exposure. Only
female rats exposed to 18.75 µg CYN/kg b.w./day showed a significant decrease in TNF-α serum
levels. There were no significant differences in the weight or histopathology in the organs studied.
Further research is needed to obtain a deeper view of the molecular mechanisms involved in CYN
immunotoxicity and its consequences on long-term exposures.

Keywords: cylindrospermopsin; immunotoxicity; mRNA expression; thymus; spleen; rats

Key Contribution: Cylindrospermopsin causes immunotoxicity in rats after oral exposure for 28 days.
Alterations in gene expression of specific cytokines were observed in thymus.

1. Introduction

Cylindrospermopsin (CYN) is currently the most studied cyanotoxin worldwide after
microcystins (MCs) [1,2]. CYN has garnered increasing scientific interest because of its
wide occurrence, bioaccumulation, and toxicity [3]. This alkaloid is mainly produced by
Cylindrospermopsis raciborskii and Chrysosporum ovalisporum [4], and it is a stable tricyclic
guanidine moiety connected by a hydroxylated bridging carbon to an uracil—the uracil
moiety needed for its toxicity [5].

The occurrence of CYN and/or CYN-producing species has been reported worldwide,
including temperate zones, and there is increasing concern that this toxin will represent
serious human, as well as environmental, health risks across many countries [6]. Human
exposure to CYN may occur by different pathways, the ingestion of drinking water being
the most likely exposure route. Moreover, recreational activities in lakes with cyanobacterial
blooms may also expose individuals intermittently to high concentrations of CYNs [5]. It
has been demonstrated that cyanobacterial toxins, including CYN, are able to accumulate
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through the food chain [7]. To protect consumers from the adverse effects of CYN, provi-
sional guideline values (GVs) in waters for CYN (lifetime drinking water GV, 0.7 µg/L;
short term drinking water GV, 3 µg/L; and recreational exposure, 6 µg/L) have been
recently proposed [5].

Inhibition of protein and glutathione synthesis are its best-known mechanisms of
action [8,9], together with induction of oxidative stress [10,11] and genotoxicity [12]. Taking
in to account the available studies, the liver, kidneys, and erythrocytes can be important
target organs of CYN toxicity [5]. Even though other studies suggest that it is distributed to
all major organs [13], including the lymphoid organs thymus and spleen, among those that
may be affected [14–16].

Immunotoxicity can be defined as “any adverse effect on the immune system that
can result from exposure to a range of environmental agents, including chemicals”, and it
includes studies of different immune pathologies, such as immune dysregulation (suppres-
sion or enhancement), among others [17].

The immune system is specialized in defence against pathogens, and it is made up
of cells and tissues dispersed throughout the body [18]. The organs which constitute the
immune system and/or contribute to immune function consist of the bone marrow, the
spleen, the thymus, and the lymph nodes, a network of lymphoid tissues along secretory
surfaces and the skin [19]. The thymus and the bone marrow are the primary lymphoid
organs, and the spleen and the lymph nodes, amongst others, constitute the secondary
lymphoid organs [20]. The thymus is a significantly important organ to the immune system,
which serves as the body’s defence mechanism, supplying surveillance and protection
against diverse pathogens, tumours, antigens, and mediators of tissue damage [21]. The
spleen is the biggest secondary lymphoid organ in the body and is the place of immune
responses to blood-borne infections, which removes senescent cells and microbial particles
from the blood [18,22].

The thymus produces hormones and cytokines that regulate immune function [23].
Cytokines have essential roles in the control of immune responses and their main function
is to modulate inflammation, playing an important role in regulating the immune response,
existing proinflammatory and anti-inflammatory cytokines [23,24]. Among cytokines, IL-
1β, IL-6, TNF-α, and IFN-γ are considered as proinflammatory cytokines [25,26], while
IL-2 is considered as anti-inflammatory [27]. IL-1β, together with IL-6 and TNF-α, act on
distant target cells to initiate the acute phase response [18].

In recent years, the number of studies about the immunotoxic effects caused by cyan-
otoxins have grown significantly, mainly in the case of MCs. There is growing evidence that
cyanotoxins may induce immunotoxicity, which should be considered due to the numer-
ous negative changes that these disorders of immune functions may cause in organisms,
including carcinogenesis [28]. However, although some authors have shown that CYN can
possibly alter cells of the immune system and their functions, these studies are very scarce,
as it has been recently reviewed by different authors [29,30]. Some studies have demon-
strated necrosis and atrophy of the thymus and the spleen in rodents [14,15,31], followed
by the first reports about the alteration of the human innate immune response in vitro due
to the action of CYN [32–34]. Nonetheless, further in vivo studies with mammals with real-
istic exposure scenarios are required for a better understanding of the immunomodulation
induced by CYN. Besides, the study of cytokine production and transcriptional factors
would be useful to elucidate the molecular mechanisms underlying CYN immunotoxicity.
In this sense, gene expression of cytokines by quantitative real-time polymerase chain
reaction (RT-qPCR) is a frequently investigated parameter in most animal models, showing
a dualistic response (immune-stimulative or immunosuppressive) after MCs exposure [30],
but its investigation is still very scarce in the case of CYN, and limited to fish and murine
cells [35,36].

Taking this into account, the aim of this work was to study for the first time the toxicity
of pure CYN in the thymus and the spleen of male and female Sprague Dawley rats, orally
exposed to different doses of CYN daily for 28 days, according to the Organisation for
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Economic Co-operation and Development (OECD) 407 guideline [37]. Alterations in gene
expression of cytokines, such as interleukins (IL: IL-1β, IL-2, IL-6), tumour necrosis factor-
alpha (TNF-α), and interferon-gamma (IFN-γ) in the thymus and the spleen, and their
serum levels were investigated by RT-qPCR and multiplex assay, respectively. Moreover,
organ weights and histopathological changes were recorded with the objective to complete
the immunotoxicology profile of CYN.

2. Results and Discussion

Although the effects of CYN on the immune system have been scarcely studied, it is
known that it can cause immunotoxic effects in in vitro and in vivo models [2,29,30]. In
this study we show for the first time the immunotoxic effects that pure CYN can cause
in male and female rats orally exposed by repeated doses for 28 days to 18.75, 37.5, or
75 µg CYN/kg b.w./day, following the OECD 407 guideline [37].

2.1. Gene Expression Analysis of ILs by RT-qPCR

Results from the relative gene expression of the studied genes in the thymus and the
spleen of rats exposed to CYN are represented in Figures 1 and 2, respectively.

No alterations were observed in the gene expression of IL-1β (Figure 1a) in the thymus
of females after repeated exposure to CYN at any dose assayed. In males, significant upreg-
ulations were shown at 18.75 and 75 µg CYN/kg b.w./day compared with its respective
control group (p < 0.05 and p < 0.001, respectively). Moreover, significant overexpression
was also observed at the highest dose compared with the lowest ones and to the female
rats exposed to the same dose (p < 0.001).

These results are in agreement with those obtained by Sieroslawska et al. [35], which
reported a significant increase in IL-1β gene expression of carp phagocytes after 24 h of
exposure to CYN.

In relation to IL-1β expression in the spleen (Figure 2a), only the males showed
significant differences. In this case, a decrease in the gene expression was observed at the
highest dose compared with its respective control group, and to the medium dose (p < 0.05).
Additionally, significant statistical differences were observed between males and females
exposed to 75 µg/kg b.w./day (p < 0.001).

IL-1β is a molecule involved in the proinflammatory response, which is widely re-
leased in bacterial infections [38], and it is expressed in an extensive range of tissues and
cells, specifically in macrophages in lymphoid organs, including the thymus and the spleen,
among others [39].

Furthermore, it seems that IL-1β implicates upregulation of the pleotropic cytokine
IL-6 [40]. This is in agreement with the results obtained in the present work, where both
IL-1β and IL-6 (Figure 1a,c) showed a significant overexpression in the thymus of males
at the highest dose assayed. Additionally, in the spleen of male rats, a similar response
between these two ILs, in this case a downregulation, was observed (Figure 2a,c).
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Figure 1. Interleukins (IL) IL-1β (a), IL-2 (b), IL-6 (c), tumour necrosis factor alpha (TNF-α) (d), and 
interferon-gamma (IFN-γ) (e) gene expression expressed as fold of control in the thymus of female 
and male rats in the different exposure scenarios (0, 18.75, 37.5, and 75 µg CYN/kg b.w./day, for 28 
days). Mean values (±SEM) of N = 6 are calculated (* p < 0.05, ** p < 0.01, *** p < 0.001). The coded 
symbols represent the following: *—statistical differences compared with respective control group; 
#—statistical differences compared with the 18.75 µg CYN/kg b.w./day dose group; $—statistical 
differences compared with the 37.5 µg CYN/kg b.w./day dose group; &—statistical differences be-
tween female and male rats exposed to the same dose. 

In relation to IL-1β expression in the spleen (Figure 2a), only the males showed sig-
nificant differences. In this case, a decrease in the gene expression was observed at the 
highest dose compared with its respective control group, and to the medium dose (p < 
0.05). Additionally, significant statistical differences were observed between males and 
females exposed to 75 µg/kg b.w./day (p < 0.001). 

Figure 1. Interleukins (IL) IL-1β (a), IL-2 (b), IL-6 (c), tumour necrosis factor alpha (TNF-α) (d), and
interferon-gamma (IFN-γ) (e) gene expression expressed as fold of control in the thymus of female
and male rats in the different exposure scenarios (0, 18.75, 37.5, and 75 µg CYN/kg b.w./day, for
28 days). Mean values (±SEM) of N = 6 are calculated (* p < 0.05, ** p < 0.01, *** p < 0.001). The coded
symbols represent the following: *—statistical differences compared with respective control group;
#—statistical differences compared with the 18.75 µg CYN/kg b.w./day dose group; $—statistical
differences compared with the 37.5 µg CYN/kg b.w./day dose group; &—statistical differences
between female and male rats exposed to the same dose.
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Figure 2. IL-1β (a), IL-2 (b), IL-6 (c), TNF-α (d), and IFN-γ (e) gene expression, expressed as fold of 
control in the spleen of female and male rats in the different exposure scenarios (0, 18.75, 37.5, and 
75 µg CYN/kg b.w./day, for 28 days). Mean values (±SEM) of N = 6 are calculated (* p < 0.05, ** p < 
0.01, *** p < 0.001). The coded symbols represent the following: *—statistical differences compared 
with respective control group; #—statistical differences compared with the 18.75 µg CYN/kg 
b.w./day dose group; $—statistical differences compared with the 37.5 µg CYN/kg b.w./day dose 
group; &—statistical differences between female and male rats exposed to the same dose. 

IL-1β is a molecule involved in the proinflammatory response, which is widely re-
leased in bacterial infections [38], and it is expressed in an extensive range of tissues and 
cells, specifically in macrophages in lymphoid organs, including the thymus and the 
spleen, among others [39]. 

Furthermore, it seems that IL-1β implicates upregulation of the pleotropic cytokine 
IL-6 [40]. This is in agreement with the results obtained in the present work, where both 
IL-1β and IL-6 (Figure 1a,c) showed a significant overexpression in the thymus of males 
at the highest dose assayed. Additionally, in the spleen of male rats, a similar response 
between these two ILs, in this case a downregulation, was observed (Figure 2a,c). 

Figure 2. IL-1β (a), IL-2 (b), IL-6 (c), TNF-α (d), and IFN-γ (e) gene expression, expressed as fold
of control in the spleen of female and male rats in the different exposure scenarios (0, 18.75, 37.5,
and 75 µg CYN/kg b.w./day, for 28 days). Mean values (±SEM) of N = 6 are calculated (* p < 0.05,
** p < 0.01, *** p < 0.001). The coded symbols represent the following: *—statistical differences
compared with respective control group; #—statistical differences compared with the 18.75 µg
CYN/kg b.w./day dose group; $—statistical differences compared with the 37.5 µg CYN/kg b.w./day
dose group; &—statistical differences between female and male rats exposed to the same dose.

Concerning IL-2 in the thymus (Figure 1b), significant differences were found at all
doses of exposure for females. At the lowest and medium doses, there was an increase in the
expression (p < 0.05), whereas a downregulation was observed at 75 µg CYN/kg b.w./day
(p < 0.001). Besides, at the highest dose, this reduction was also significant compared with
the lowest doses (p < 0.001).

In the spleen, IL-2 expression was not altered in comparison to control in females
(Figure 2b), and only a significant increase was observed at 75 µg/ kg b.w./day compared
with the 37.5 µg CYN/kg b.w./day dose group (p < 0.01). In males, a significant overex-
pression was observed at the low and medium doses compared with its respective control
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group (p < 0.05 and p < 0.01, respectively). Moreover, statistical differences were reported
between females and males exposed to 37.5 µg CYN/kg b.w./day (p < 0.001).

This cytokine plays an immunoregulatory role; it can incite the growth and develop-
ment of immune cells in the initiation of the immune response, and keeps them alive as
effector cells, but subsequently it has a pro-apoptotic effect [41]. Moreover, it modulates the
expression of receptors for other cytokines and transcription factors, therefore either pro-
moting or inhibiting cytokine cascades that can be related with each T helper differentiation
state [42].

In the thymus, significant increases in IL-6 gene expression (Figure 1c) were shown
at 18.75 and 75 µg CYN/kg b.w./day in female rats and only at 75 µg CYN/kg b.w./day
in male rats compared with their respective control groups (p < 0.001). In females, this
increase at the highest dose was statistically different compared with the 37.5 µg CYN/kg
b.w./day dose group (p < 0.05). In males, the overexpression at the highest dose was also
significant in comparison to the lowest doses (p < 0.001), and significant differences were
observed compared with females exposed to 18.75 and 37.5 µg CYN/kg b.w./day (p < 0.01
and p < 0.05, respectively). IL-6 is a proinflammatory pleiotropic cytokine with effects on
inflammation, haematopoiesis, and immune response, with important effects in adaptive
immunity [41,43]. It is involucrated in mediating the activation of T and B cells, which are
key cells in the pathogenesis of many autoimmune diseases [44].

Concerning IL-6 gene expression in the spleen (Figure 2c), no significant changes
respect to the control were observed neither in females nor in males. A significant decrease
was only observed in males exposed to the highest dose compared with the 18.75 µg
CYN/kg b.w./day dose group (p < 0.05). In a similar way, no effects were observed in
this proinflammatory cytokine after murine macrophage-like RAW 264.7 cells exposure to
pure CYN (1 µM) for 24 h [36]; although, the experimental models and exposure conditions
employed in both works are very different for a direct comparison.

In the case of TNF-α in the thymus (Figure 1d), significant upregulations were shown
with 18.75 and 37.5 µg CYN/kg b.w./day (p < 0.001 and p < 0.05, respectively) in fe-
males and with 37.5 and 75 µg CYN/kg b.w./day (p < 0.05 and p < 0.001, respectively) in
males, compared with their respective control groups. Moreover, in females the increase
shown at 18.75 µg CYN/kg b.w./day was also significant compared with the other doses
(p < 0.001) and to male rats (p < 0.001). In males, this alteration shown at the highest dose
was significant compared with the lowest one (p < 0.001). In the spleen of female rats
exposed to 37.5 µg CYN/kg b.w./day, there was also a significant increase in TNF-α gene
expression, compared with its respective control group (Figure 2d), and it was even more
pronounced (p < 0.001) than in the thymus, while significant differences in males at any of
the doses assessed were not observed. Similar to our results, upregulation of TNF-α was
reported after exposure of phagocytic cells from Cyprinus carpio to CYN [35], and in RAW
264.7 macrophages exposed to CYN [36].

It has been described that the metabolic effects of TNF-α include a decrease in choles-
terol and an increase in triglycerides, as well as hyperglycaemia [45]. In this sense, the
increases in TNF-α expression observed in this work are in agreement with the significant
decreases in cholesterol levels reported previously in our lab in female Sprague Dawley
rats after exposure to 18.75, 37.5, and 75 µg CYN/kg b.w./day for 28 days [46]. Moreover,
we also reported an increase in triglycerides and glucose levels after exposure to 18.75 and
37.5 µg CYN/kg b.w./day. TNF-α is one of the most important cytokines in the immune
system with pleiotropic effects on normal and malignant cells [45,47].

This inflammatory cytokine has shown to have a significant role in the regulation of
thymocyte production, among other functions [23]. Although at first it was considered as a
proinflammatory molecule, it has been reported that it also mediates a paradoxical anti-
inflammatory and immunomodulatory effect [48]. TNF-α also stimulates the production of
IL-6 [23]. This agrees with the correlation observed in the present work between the gene
expression of these two molecules in the thymus of female and male rats exposed to 18.75
and 75 µg CYN/kg b.w./day, respectively.
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In relation to IFN-γ in the thymus (Figure 1e), significant increases in its gene ex-
pression were observed at 18.75 and 75 µg CYN/kg b.w./day (p < 0.001) in females and
at 75 µg CYN/kg b.w./day (p < 0.001) in males, compared with their respective control
groups. In the case of females, significant differences were observed among the 3 doses
assayed (p< 0.001), and at the lowest dose compared with the males (p < 0.001). For males,
the increase shown at 75 µg CYN/kg b.w./day was also significant versus the lowest and
medium doses. Previous studies reported that IL-2 has an important role in the synthesis
of IFN-γ [49], in agreement with the upregulation of both genes found in the present work
in the thymus of female rats exposed to 18.75 µg CYN/kg b.w./day.

In the spleen, a significant decrease in IFN-γ gene expression (Figure 2e) occurred in
females exposed to 18.75 µg CYN/kg b.w./day compared with the control group (p < 0.05),
this also being significant compared with males (p < 0.01). Besides, a significant upregula-
tion was observed at 37.5 and 75 µg CYN/kg b.w./day compared with 18.75 µg CYN/kg
b.w./day dose (p < 0.01).

IFN-γ is often considered as a main effector of immunity, playing a key role in the
activation of cellular immunity and consequently stimulation of antitumor immune re-
sponse [26,50]. This cytokine is an important coordinator of innate and adaptive immunity,
which in an inflammatory process unleashes the activation of the immune response and
stimulates the elimination of pathogens, and it also prevents overactivation of the immune
system and tissue damage [50,51]. In our study, there is a direct relation between the gene
expression of IL-6, IFN-γ, and TNF-α in the thymus of female rats exposed to 18.75 µg
CYN/kg b.w./day and in male rats exposed to 75 µg CYN/kg b.w./day, showing an
upregulation. Besides, there was also an overexpression of IL-6 and IFN-γ in the thymus
of female rats exposed to the highest dose. In this sense, previous works reported a stim-
ulation of the secretion of IL-6 by thymic epithelial cells mediated by IFN-γ [23]. IFN-γ
are among the critical cytokines that initiate the downstream signalling cascade to secrete
TNF-α and IL-2, among others [52]. In this sense, we observed the same behaviour in the
thymus of female rats exposed to 18.75 µg CYN/kg b.w./day for IL-2, TNF-α, and IFN-γ
gene expression.

As general observation, the thymus seems to suffer from a more extensive alteration
of ILs gene expression in comparison to the spleen. This could be due as thymus is the first
lymphoid organ that shows morphologic alterations after exposure to many immunotoxic
agents [53]. Additionally, it has been reported for other toxicants that thymus can show a
higher ability to the xenobiotic uptake [54]. In regard to the sex, a clear sex-related pattern
is not evident. Thus, for example, at the highest dose, in the thymus, the gene expression
levels of IL-1β were higher in males while in spleen the contrary response was observed.
Additionally, at the lowest dose IFN-γ showed higher expression values in females in the
thymus, whereas, in the spleen, the males show the greatest ones.

Although changes of ILs gene expression induced by CYN have been scarcely investi-
gated, this is not the case for other cyanotoxins. For microcystins (microcystin-LR, MC-LR),
the studies on mammals are limited. Thus, Cao et al. [55] evaluated the expression level
of inflammatory-related factors in jejunum. Mice were treated with different doses (1, 30,
60, 90, and 120 µg/L) of MC-LR for 6 months. The microstructure and mRNA expression
levels of inflammation-related factors in jejunum were analysed. Results showed that the
microstructure of the jejunum was destroyed and expression levels of inflammation-related
factors IL-1β, IL-8, TNF-α, and IL-10 were altered at different MC-LR concentrations. In fish,
however, the number of available studies is higher [30]. The general trend for these studies
is an immune-stimulative response at low MC concentrations and an immunosuppressive
answer at high MC levels.

2.2. Cytokine Serum Levels

Alterations in cytokine levels (pg/mL) were measured in serum of male and female
rats exposed to different doses of CYN (Table 1).
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Table 1. Serum levels (pg/mL) of cytokines (IL-1β, IL-2, IL-6, TNF-α, and IFN-γ) of male and female rats fed with 18.75, 37.5, and 75 µg CYN /kg b.w./day
for 28 days. Values are mean ± SD for 6 rats/sex/group. The differences between control and treated groups for male and female rats were evaluated by the
Kruskal–Wallis test (K.W.). The significance level observed are ** p < 0.01 in comparison to control group values, and & p < 0.05, && p < 0.01 comparing males and
females exposed to the same dose.

MALE FEMALE

Group 1
(0 µg/Kg/day)

Group 2
(18.75 µg/Kg/day)

Group 3
(37.5 µg/Kg/day)

Group 4
(75 µg/Kg/day)

Group 1
(0 µg/Kg/day)

Group 2
(18.75 µg/Kg/day)

Group 3
(37.5 µg/Kg/day)

Group 4
(75 µg/Kg/day)

N = 6 N = 6 N = 6 N = 6 N = 6 N = 6 N = 6 N = 6

IL-1β
MEAN 192.01 205.92 236.28 169.93 218.09 190.12 262.53 300.43

SD 45.21 56.19 56.98 33.89 41.22 61.96 159.78 146.09
K.W χ2 = 7.825 p = 0.35; N.S.

IL-2
MEAN 7587.473 9125.263 10128.74 && 9417.15 8988.63 4805.75 5649.99 8134.93

SD 984.78 1312.51 735.55 1131.08 1147.15 1670.85 1533.65 1596.87
K.W χ2 = 31.053 && p < 0.01

IL-6
MEAN 1027.99 1123.73 1369.89 && 1202.74 1172.01 637.66 782.97 1092.62

SD 187.34 93.79 137.42 126.98 179.73 191.24 135.18 222.13
K.W χ2 = 31.492 && p < 0.01

TNF-α
MEAN 653.40 786.23 908.90 & 837.63 845.67 358.23 ** 487.09 784.34

SD 66.40 141.69 112.18 151.93 91.41 124.78 174.91 107.19
K.W χ2 = 31.287 ** p < 0.01; & p < 0.05

IFN-γ
MEAN 509.18 520.04 617.72&& 546.59 551.73 330.11 364.92 480.6

SD 106.23 40.34 64.04 45.84 79.45 92.84 68.47 96.20
K.W χ2 = 29.699 && p < 0.01

K.W—Kruskal–Wallis test; N.S.— not significant. The significance level observed are ** p < 0.01 in comparison to control group values, and & p < 0.05, && p < 0.01 comparing males and
females exposed to the same dose.



Toxins 2022, 14, 144 9 of 18

In general, compared with the control group, there are only significant differences in
females in the case of TNF-α at the lowest dose, showing a significant decrease in the levels
of this cytokine (** p < 0.01). However, a significant increase was found in levels of IL-2,
IL-6, IFN-γ (&& p < 0.01), and TNF-α (& p < 0.05) in males compared with females exposed
to the same dose (37.5 µg CYN/kg b.w./day).

In females, the general trend for the different cytokines assessed is a decrease in their
levels at the doses of 18.75 and 37.5 µg CYN/kg b.w./day with respect to the control group,
to increase again at the highest dose (75 µg CYN/kg b.w./day) compared with the lowest
doses, although there were not statistically significant in comparison to the control group.
Furthermore, there are significant differences between sexes for all the cytokines assessed
at the medium dose (37.5 µg CYN/kg b.w./day) except for IL-1β, all these levels being
higher in males than in females.

IL-1β negatively regulates the responses mediated by IFN-γ, by induction of
Cyclooxygenase-2 and prostaglandin E2 expression, leading to the suppression of IFN-γ
production [38]. This could explain the trend in the present work in females exposed to
37.5 µg CYN/kg b.w./day with respect to the control group, where IL-1β serum levels show
a slight increase, whereas IFN-γ is reduced in this group compared with the control levels.

The increasing trend in TNF-α serum levels in males in all doses, although not being
statistically significant, may be a result of the significant increases in this cytokine expression
in the thymus of the same individuals. A sporadic case could be the significant decrease in
TNF-α serum levels in females exposed to 18.75 µg CYN/kg b.w./day compared with the
control group, because TNF-α showed a significant overexpression in the thymus, and a
tendency to increase in the spleen of these female rats. These contradictory effects are not
related with the dose and would require further research.

Regarding the effects of other cyanotoxins, different authors [56–58] evaluated the ILs
serum levels induced by microcystin-LR (MC-LR) using mice or rabbits as experimental
model. Thus, in mice exposed to MC-LR ranging from 3.125 to 25.000 ug/kg b.w./d i.p. for
7 days, the level of TNF-α decreased with the increase in toxin dosage, while the levels of IL-
6 increased with the MC-LR exposure doses showing a statistical difference from the control
group, and no changes were detected on IL-10 levels [57]. In mice exposed intraperitoneally
(i.p.) to 10 ug/kg.b.w. MC-LR day for 15 days, the toxin significantly enhanced the levels
of osteoclastogenic cytokines (IL-6, IL-17, and TNF-α) in serum along with a simultaneous
decrease in the levels of anti-osteoclastogenic cytokines (IL-10 and IFN-γ) [58]. MC-LR
was able to disturb the rabbit immune system and a time–dose response relationship was
found: the cytokine production in the low dose group (12.5 µg MC-LReq/kg) increased
(TNF-α, IFN-γ, IL-4, IL-3, and IL-6), but began to decrease after 24 h compared with the
control. At the high dose group (50 µg MC-LReq/kg), the production of all the evaluated
ILs decreased [56].

2.3. Organ Weights and Histopathology

Results obtained for absolute organ weights are presented in Table 2. No significant
changes were observed in the thymus or the spleen of both sexes at any concentration
assessed. In relation to organ weight/body weight ratio of rats exposed to CYN (Table 2),
the only significant difference (p < 0.05) was found in the spleen of male rats exposed to
the highest dose (75 µg CYN/kg b.w./day). However, no alterations were observed in the
thymus of these rats. In relation to the relative organ weight/brain weight, no significant
changes were observed in male or female rats exposed to CYN. Similarly, Humpage and
Falconer [59] exposed mice up to 240 µg/kg/d CYN-containing cyanobacterial extract in
their drinking water for 11 weeks, and they did not find changes in the weight of spleen
and thymus, but in other organs, such as liver and kidney.
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Table 2. Absolute organ weight, relative organ weight/body weight, and relative organ weight/brain weight of the thymus and the spleen of male and female rats
fed with 18.75, 37.5, and 75 µg CYN /kg b.w./day for 28 days. Values are mean ± SD for 6 rats/sex/group. The differences between control and treated groups for
male and female rats were evaluated by ANOVA test (F values) or by the Kruskal–Wallis test (K.W.). The significance level observed is * p < 0.05 in comparison to
control group values.

ORGAN WEIGHT DATA SUMMARY

MALE FEMALE

Group 1 Group 2 Group 3 Group 4 Group 1 Group 2 Group 3 Group 4
(0 µg/Kg/day) (18.75 µg/Kg/day) (37.5 µg/Kg/day) (75 µg/Kg/day) (0 µg/Kg/day) (18.75 µg/Kg/day) (37.5 µg/Kg/day) (75 µg/Kg/day)

N = 6 N = 6 N = 6 N = 6 N = 6 N = 6 N = 6 N = 6

THYMUS (g) MEAN 1.1 1.0 1.0 1.1 THYMUS (g) MEAN 0.7 0.8 0.9 0.9
SD 0.1 0.1 0.2 0.1 SD 0.0 0.2 0.1 0.1

F (20.3) = 1.276 p = 0.31; N.S. F (20.3) = 2.745 p = 0.07; N.S.
SPLEEN (g) MEAN 1.1 1.1 1.1 1.2 SPLEEN (g) MEAN 0.6 0.7 0.7 0.7

SD 0.1 0.1 0.2 0.1 SD 0.0 0.1 0.1 0.0
F (20.3) = 2.118 p = 0.13; N.S. F (20.3) = 1.808 p = 0.18; N.S.

ORGAN WEIGHT/BODY WEIGHT RATIO DATA SUMMARY

MALE FEMALE

THYMUS (g) MEAN 0.27 0.25 0.25 0.28 THYMUS (g) MEAN 0.30 0.29 0.34 0.36
SD 0.02 0.02 0.04 0.02 SD 0.01 0.06 0.04 0.04

F (20.3) = 1.913 p = 0.16; N.S. F (20.3) = 3.681 p = 0.06; N.S.
SPLEEN (g) MEAN 0.25 0.26 0.26 0.31 * SPLEEN (g) MEAN 0.26 0.25 0.27 0.29

SD 0.02 0.02 0.05 0.02 SD 0.02 0.04 0.02 0.02
F (20.3) = 3.795 * p < 0.05 K.W χ2 = 5.410 p = 0.14; N.S.

ORGAN WEIGHT/BRAIN WEIGHT RATIO DATA SUMMARY

MALE FEMALE

THYMUS (g) MEAN 54.7 51.8 48.0 54.4 THYMUS (g) MEAN 37.7 40.3 46.1 45.6
SD 3.1 4.8 9.2 4.3 SD 3.5 7.9 7.5 6.3

F (20.3) = 1.702 p = 0.20; N.S. F (20.3) = 2.366 p = 0.10; N.S.
SPLEEN (g) MEAN 50.9 55.1 51.3 60.6 SPLEEN (g) MEAN 33.6 35.1 36.4 36.7

SD 3.9 3.4 9.6 6.8 SD 3.7 4.6 1.7 1.5
F (20.3) = 2.916 p = 0.06; N.S. F (20.3) = 1.216 p = 0.33; N.S.

F—statistics ANOVA test; K.W.—Kruskal–Wallis test; N.S.—not significant. The significance level observed is * p < 0.05 in comparison to control group values.
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The thymus from both the control and 75 µg CYN/kg b.w./day groups showed similar
relation between cortex and medulla (Figure 3a,c). In the cortex of the thymus in control
rats there were infrequently large macrophages containing phagocytosed apoptotic bodies
(termed as tingible body macrophages), indicative of apoptosis (Figure 3b); meanwhile, in
the CYN-administered rats, these apoptotic bodies were slightly more frequent (Figure 3d).
These results are in agreement with the obtained by Terao et al. [14], which reported necrosis
of lymphocytes in the cortical layer of the thymus of mice exposed to CYN isolated from
Umezakia natans by intraperitoneal (IP) injection (0.2 mg/kg b.w.). Later, Seawright et al. [15]
observed atrophy of the thymic cortex in mice orally exposed to a C. raciborskii culture
containing 0.2% CYN. Furthermore, thymic atrophy was observed in mice after a single
oral dose of C. raciborskii cellular suspension [31]. All these studies were performed with
cyanobacterial extracts, and these may contain more bioactive compounds other than CYN
that increase the toxicity, as it has been previously reported in various works [6,11,60–64].
On the contrary, Chernoff et al. [65] exposed mice orally for 90 days to 75–300 µg/kg/d
purified CYN and they did not observe histopathological lesions in thymus.
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The observation of the spleen did not reveal any change associated with the highest
dose of CYN compared to the control rats (Figure 4). No difference between either males
or females was found. The samples from both groups showed the normal architecture of
the spleen displaying a well-developed white pulp (Figure 4a,c), and a red pulp with mild
extramedullary haematopoiesis characterized by the presence of megakaryocytes that are
commonly seen in the red pulp of healthy rodents in a low number (Figure 4b,d). On the
contrary, histopathological alterations were reported in the white pulp of the spleen of mice
orally exposed to C. raciborskii culture [15]. Moreover, in mice exposed to purified CYN
(IP) or cellular suspension of C. raciborskii by gavage, a characteristic of these animals was
the appearance of lymphophagocytosis in the spleen, which is indicative of immunotoxic
response [31]. Other authors, however, did not observe histopathological lesions in spleen
in mice orally exposed for 90 days to 75–300 µg/kg/d purified CYN [65]. Therefore, these
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studies suggested that the thymus and the spleen are not primary targets of CYN exposure,
in agreement with our results.

These contradictory results could be due to several factors: the exposure route, such
as the IP or gavage routes [14,15,31]—whereas, in our study, oral exposure through the
diet by gelatine tablets was used; the experimental model (mice/rats); the time of expo-
sure (single IP dose [14]/single oral dose by gavage [15,31]/repetitive IP daily doses for
14 days [19]/repetitive oral doses by ingestion for 28 days). Moreover, in our study the
effects are due to the pure toxin (CYN), in contrast with those obtained with cyanobacterial
extracts or cellular suspensions of cultures containing not only CYN but also other active
substances [14,15,31].
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In general, the results obtained in this work evidence the sensitivity of molecular
biomarkers in the study of CYN’s immunotoxicity. Thus, changes observed in the gene
expression of different ILs do not result in altered IL serum levels or clear histopathological
damage of lymphoid organs. These results agree with the findings of Diez-Quijada et al. [46],
who performed a repeated-dose, 28-day oral study in rats and did not observe changes in
most of the parameters investigated; although, they did observe a very mild affectation of
the liver and the kidney at the highest dose. The authors concluded that longer oral toxicity
studies were necessary to define the potential consequences of long-term CYN exposure.
Thus, as it is well known, liver and kidney are the primary targets of CYN exposure, and
this is not the case for the immune system; although, it does suffer from alterations of ILs
gene expression, that could be indicative of an immunotoxic response.

3. Conclusions

The present work shows for the first time the immunotoxic effects caused by pure
CYN in the thymus and the spleen of male and female Sprague Dawley rats orally exposed
to 18.75, 37.5, and 75 µg CYN/kg b.w./day for 28 days. Alterations in gene expression were
found principally in the thymus at the highest dose evaluated (75 µg CYN/kg b.w./day)
in males (IL-1β, IL-6, TNF-α and IFN-γ) and in females (IL-2, IL-6, IFN-γ). Moreover,
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there were no statistically significant differences in serum levels of cytokines between
treated rats and control groups, except for females in the case of TNF-α at the lowest
dose. No significant differences were found in the weights of the thymus and the spleen of
the exposed rats, and no histopathological changes were found when compared to their
respective control groups. These results highlight the need to fulfil further research to
determinate the immunotoxicity caused by long-term exposure to CYN and elucidate the
mechanisms involved.

4. Materials and Methods
4.1. Chemicals and Reagents

CYN standard with 95% purity was purchased from Enzo Life Sciences (Lausen,
Switzerland). Neutral gelatine (powder) from pork protein was used as vehicle for toxin
administration, and was supplied by Jesús Navarro S.A. (Alicante, Spain). Reagents for
RT-qPCR and Bio-Plex Pro™ Rat Cytokine assay kit for cytokine serum levels were obtained
from Bio-Rad Laboratories (Hercules, CA, USA) and Qiagen (Madrid, Spain). The rest of
the chemicals were purchased from Sigma-Aldrich (Madrid, Spain).

4.2. Animal Housing and Experimental Set-Up

The subchronic toxicity study (28 days) was performed at the Central Service of Exper-
imental Animals (SAE) of the University of Córdoba (Spain), under the code 20-CAM-01 in
conformity with the OECD Guideline 407 [37]. All animals received human care in agree-
ment with the Directive for the protection of animals used for scientific purposes [66–68],
and all methods have been authorized by the Ethical Animal Experimentation Committee
of the University of Córdoba and by the Junta de Andalucía (project no. 20-03-2017/047).

For the experimental set up, Sprague Dawley rat strain RjHan:SD (24 male and
24 female) were supplied by Janvier Labs (Le Genest-Saint-Isle, France) and were treated
according to Diez-Quijada et al. [46]. Briefly, after a 1-week acclimation period (room
temperature 22 ± 3 ◦C, 50–60% of relative humidity, 12 h light/dark cycle), when rats were
fed with standard laboratory diet (Harlan Laboratories, Barcelona, Spain) and water ad
libitum, they were randomly assigned to the control and dose groups (6 rats/sex/group).
The sample size, six females and six males for each dose level, was chosen according to
the OECD 407 guideline [37]. At this point, rats were 5 weeks old, and their average body
weights (b.w.) were 173.5 ± 6.24 g (males) and 155.3 ± 3.10 g (females).

4.3. Experimental Exposure

For toxin administration, individual dietary dose formulations were prepared every
day during the 28 days experiment. For this purpose, the volume (µL) of CYN standard to
be incorporated in 3 mL of neutral gelatine was calculated to provide the selected doses
and let to solidify overnight at 4 ◦C, as described in Diez-Quijada et al. [46]. This method
of oral administration by gelatine tablets allows a better control of dosage, and eliminates
pain and distress in animals compared with other methods, such as gavage [69].

The doses were selected according to a previous 90-day oral CYN exposure study
performed in mice [65], where 75 µg CYN/kg b.w. induced several biochemical and
histopathological alterations. So, this was fixed as the highest dose in the present study and,
using a descending factor of two, according to the OECD Guideline 407 [37], the selected
doses were 18.75, 37.5, and 75 µg CYN/kg b.w./day.

4.4. RNA Extraction and Reverse Transcription

For extraction and purification of total RNA, the RNeasy Mini Kit™ (catalog number:
74104, Qiagen, Madrid, Spain) was used following the manufacturer’s instructions. During
RNA purification, on-column DNase digestion was also performed with the RNAse-free
DNase set (catalog number 79254). RNA purity was assessed as the 260/280 nm absorbance
ratio using a NanoDrop 2000 (Thermo Scientific, Pittsburgh, PA, USA). The RNA was then
stored at −80◦C until reverse transcription (RT). cDNA was synthesized from 2 µg of total
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RNA using QuantiTect® reverse transcription kit (catalog number: 205311, Qiagen, Madrid,
Spain) in 28 µL reaction volume, as described by the manufacturer. The cDNA was stored
at −20 ◦C until further use.

4.5. Gene Expression Analysis by Quantitative Real-Time PCR (RT-qPCR)

A RT-qPCR protocol was developed to measure the mRNA levels for the five tested
cytokines in the thymus and the spleen of rats, using the housekeeping gene Glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH) as internal control. The cDNA obtained in
the previous step was diluted (1:1.5) in RNase-free water and amplified by the PCR in a
final reaction volume of 20 µL (96-well plate), which also includes the primePCR probe
assay for the corresponding cytokine and the iTaq universal probes Supermix (catalog num-
ber 1725134). Amplification was performed in a LightCycler®480 System (Roche, Berlin,
Germany) according to the following parameters: 95 ◦C for 2 min followed by 50 cycles of
95 ◦C for 5 s and 60 ◦C for 30 s. Amplification data were collected by the sequence detector
and analyzed with sequence detection software supplied by the manufacturer. The RNA
concentration in each sample was determined from the threshold cycle (Ct) values and cal-
culated with the sequence detection software supplied by the manufacturer. For the treated
samples, evaluation of 2−∆∆CT indicates the fold change in mRNA expression relative to
the internal control GAPDH, and to the untreated control, used as the calibrator [70].

4.6. Multiplex Assay

At the end of the 28-day period, blood samples were obtained by intracardiac injection
from the rats fasted overnight and anesthetized. Levels of five cytokines (IL-1β, IL-2,
IL-6, TNF-α, and IFN-γ) were measured in serum samples using a Bio-Plex Pro™ Reagent
Kit V with Flat Bottom Plate (catalog number: 12002798) and the different Bio-Plex Pro™
Rat Cytokines Sets, following the manufacturer’s instructions (Bio-Rad Laboratories, Inc.,
Hercules, California, USA). After dilution and mixture of the coupled magnetic beads for
the 5 cytokines, they were added (50 µL) into each well of the 96-well, flat-bottom assay
plate supplied, and washed twice with Bio-plex wash buffer (100 µL). Then, the blank,
and 4-fold serial dilutions of the 8 standard and the samples (50 µL) were added to the
corresponding wells, followed by incubation with constant shaking (850 ± 50 rpm, 1 h,
room temperature), and washing 3 times (100 µL). Diluted (1×) biotinylated detection
antibodies (25 µL) (IL-1β, IL-2, IL-6, TNF-α, and IFN-γ) were also added to the wells,
incubated for 30 min and washed 3 times (100 µL). Finally, streptavidin–phycoerythrin
(SA-PE) (50 µL) was added to the wells, incubated for 10 min, and washed 3 times (100 µL).
At the end, beads were resuspended in assay buffer (125 µL), incubated for 30 s, and the
plate was read on a Bio-Plex® 200 Multiplex system (Bio-Rad Laboratories Inc., Hercules,
CA, USA) available at the Biology Service of the Centro de Investigación, Tecnología e
Innovación (CITIUS) of the University of Sevilla. All washes were performed with Bio-Plex
wash buffer using the Bio-Plex® Handheld Magnetic Washer (catalog number 171020100),
and incubation steps performed in constant shaking, as described above. For readings
with the Bio-Plex 200 instrument, the following settings were set: RP1 (PMT) High; DD
Gates: 5000 (low) and 25,000 (high); Bead Events: 50. Data from the multiplex analysis was
obtained using the Bio-Plex Manager™ version 4.1.1 software (Bio-Rad Laboratories, Inc.,
Hercules, CA, USA).

4.7. Organ Weights and Histopathology

At the end of the study, and after the sacrifice of the animals, which was performed
as described in Diez-Quijada et al. [46], the thymus and the spleen of all rats were macro-
scopically analysed, extracted, and weighed. At postmortem examination, tissue samples
were immersed in 10% neutral buffered formalin for 24 h, routinely processed using an
automatic processor, and embedded in paraffin wax. Sections of 4 µm were stained with
haematoxylin and eosin to carry out the histological examination. Samples of the spleen
and the thymus from the control and the highest dose group (75 µg CYN/kg b.w./day)
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were examined in a Modular Microscopy BX43 with a camera XC50 (Olympus, Shinjuku,
Tokyo, Japan).

4.8. Statistical Analysis

Organ weights, and organ weights ratios were determined by sex and dose group,
statistically analysed, and summarized by mean and standard deviation (SD). One-way
analysis of variance (ANOVA) was performed to evaluate potential differences in the dif-
ferent variables studied. The Kolmogorov–Smirnov test was applied to check for normality
assumption. Comparisons were made with the Tukey–Kramer multiple comparisons test
(when statistically significant) or with the Kruskal–Wallis test, followed by Dunn’s multiple
comparison tests (non-normality). Differences were considered significant from * p < 0.05.
All the statistical analysis were conducted using GraphPad InStat software (GraphPad
Prism 9 Software Inc., La Jolla, CA, USA).

IL-1β, IL-2, IL-6, TNF-α, and IFN-γ gene expression were analyzed by fitting general
linear models (GLMs) with the explanatory variable’s doses of CYN (control, 18.75, 37.5,
and 75 µg CYN/Kg b.w./day), sex (female vs. male), and the interaction between them.
Gene expression, being a continuous strictly positive variable, was fitted to a gamma
distribution with a log link function. After model adjustment, whenever a main factor
was found significant, marginal post hoc Tukey tests were performed to check significant
differences between the control and doses within the same sex, and between sexes subjected
to the same dose of CYN. All GLMs and posthoc tests were run with the package base and
emmeans [71] and plotted with ggplot2 [72] in R 4.1.2 [73].
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