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Protein assembly and biological interpretation of the assembled protein lists are critical steps in
shotgun proteomics data analysis. Although most biological functions arise from interactions
among proteins, current protein assembly pipelines treat proteins as independent entities. Usually,
only individual proteins with strong experimental evidence, that is, confident proteins, are reported,
whereas many possible proteins of biological interest are eliminated. We have developed a clique-
enrichment approach (CEA) to rescue eliminated proteins by incorporating the relationship among
proteins as embedded in a protein interaction network. In several data sets tested, CEA increased
protein identification by 8–23% with an estimated accuracy of 85%. Rescued proteins were
supported by existing literature or transcriptome profiling studies at similar levels as confident
proteins and at a significantly higher level than abandoned ones. Applying CEA on a breast cancer
data set, rescued proteins coded by well-known breast cancer genes. In addition, CEA generated a
network view of the proteins and helped show the modular organization of proteins that may
underpin the molecular mechanisms of the disease.
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Introduction

Shotgun proteomics has emerged as a powerful technology for
protein identification in complex samples with remarkable
applications in elucidating cellular and subcellular proteomes
(Foster et al, 2006; Kislinger et al, 2006), mapping protein
interaction networks (Gavin et al, 2006; Krogan et al, 2006),
and discovering disease biomarkers (Decramer et al, 2006;
Whiteaker et al, 2007). In a typical shotgun proteomics
experiment, proteins in a complex mixture are digested
by sequence-specific enzymes and the resulting peptides
are analyzed by tandem mass spectrometry (MS/MS). Next,
MS/MS data acquired from the analyses are processed to
identify peptides that gave rise to observed spectra. Finally,
proteins are inferred based on peptide identifications and
reported.

As proteins are the fundamental units of proteomes,
inferring proteins from identified peptides is a critical step in

shotgun proteomics (Nesvizhskii and Aebersold, 2005). For
each identified peptide, one could add all matched precursor
proteins to a maximal protein list. This list comprises the
maximal number of possible proteins from the searched
database that could explain the observed peptides and
may exist in the original sample. In reality, this naı̈ve assembly
significantly exaggerates the actual number of proteins
in the sample (Nesvizhskii and Aebersold, 2005; Zhang et al,
2007).

To ensure the reliability of protein identification, existing
protein assembly pipelines usually eliminate a large number of
possible but non-confident proteins, including those sup-
ported by single peptide and those without distinct peptide
evidence (Nesvizhskii and Aebersold, 2005; Zhang et al, 2007).
However, this conservative assembly may eliminate more than
half of all possible proteins, including some truly present
proteins that could contribute to the systematic understanding
of the biological systems. Indeed, it may introduce a significant
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bias against detection of biologically important components of
signaling networks, which are often in low abundance and
detected by only one peptide. In biomarker studies, conserva-
tive assembly may prevent us from identifying important
biomarker candidates. Statistical modeling approaches have
been proposed to tackle single-hit protein identifications
(Nesvizhskii et al, 2003; Higdon and Kolker, 2007); however,
none of the existing tools is able to handle proteins without
distinct peptide identifications. Rescuing true protein identifi-
cations from a list of non-confident but possible proteins is still
a largely unsolved problem that is extremely challenging,
based solely on the observed peptides.

In the current protein assembly pipelines (Nesvizhskii et al,
2003; Yang et al, 2004; Zhang et al, 2007), proteins are
considered as independent entities. Nevertheless, accumulat-
ing evidence suggests that most biological functions arise
from interactions among proteins, and a discrete biological
function can only rarely be attributed to an individual protein
(Hartwell et al, 1999). Recent availability of large-scale protein
interaction networks provides an opportunity to investigate
shotgun proteomics data at a systems level by taking into
consideration the functional relationship among proteins.
Previously, protein interaction networks have been used
successfully in the prediction of protein functions (Chen and
Xu, 2004; Sharan et al, 2007), prioritization of candidate
disease genes (Oti et al, 2006), and classification of cancer
metastasis (Chuang et al, 2007). In this study, we described a
protein interaction network-assisted approach to improve
protein identification in shotgun proteomics. Our approach
was based on the general concept that proteins involved
in the same biological process or pathway tend to lie close to
one another in the protein interaction network (Sharan et al,
2007).

Using a yeast cell culture data set generated in this study and
a published mouse organ data set containing data from brain,
placenta, and lung tissues (Kislinger et al, 2006), we showed
that proteins confidently identified in a specific sample tended
to form tightly connected sub-networks in a protein interaction
network. These sub-networks might represent key molecular
entities that integrate multiple proteins to carry out cellular
functions. As cliques in a protein interaction network are sub-
networks in which all proteins are pairwisely connected, we
attempted to enumerate cliques from protein interaction
networks and use the information to improve protein
identification. Specifically, we hypothesized that an eliminated
but possible protein is more likely to be present in the original
sample if it is a member of a sub-network (clique) for which
other members have been confidently identified in the same
sample. Through simulation studies, we showed that our
approach was effective in protein rescue and that this
approach outperformed other network-assisted approaches
in accuracy and robustness. Application of this approach on
the mouse organ data set significantly increased protein
identification, and the rescued proteins were well supported
by existing literature or transcriptomic studies. Finally, we
used a published mouse breast cancer data set (Whiteaker
et al, 2007) to illustrate that the network-assisted approach not
only improved protein identification but also facilitated the
biological interpretation and systems level understanding of
lengthy protein lists.

Results

Proteins identified in a specific sample form tightly
connected sub-networks

Individual shotgun proteomics data sets were processed using
the software IDPicker, which combines two-peptide filtering
with parsimony analysis in protein assembly (Zhang et al,
2007). In the yeast data set, 934 confident proteins were
identified. In the mouse organ data set, 1407, 1396, and 1741
confident proteins were identified in the brain, placenta, and
lung, respectively.

Proteins identified in the yeast data set were mapped to the
yeast protein interaction network (YPIN), which included
5665 proteins and 126127 interactions. Two mouse protein
interaction networks were used to map mouse proteins. The
first version (MPIN1) included only literature-supported
interactions in mouse and human proteomes collected from
public databases, in which human proteins were mapped to
mouse orthologs. MPIN1 covered 9776 proteins and 69 470
interactions. As MPIN1 had limited coverage, computationally
predicted interactions from Xia et al (2006) were appended to
MPIN1 to generate the second version of mouse protein
interaction network (MPIN2), which covered 12 271 proteins
and 236 675 interactions.

A protein interaction network derived from publicly avail-
able protein interaction databases includes all known inter-
actions observed in various cellular types and conditions.
Therefore, proteins identified in a specific sample under a
specific condition will only occupy part of the interaction
network. As these proteins are supposed to be functionally
related, we hypothesized that they are not randomly dis-
tributed on the protein interaction network, instead, they may
form tightly connected sub-networks. To test this hypothesis,
we constructed sub-networks of proteins identified in each
sample to investigate the organization of these proteins using
clustering coefficient analysis. The clustering coefficient of a
vertex quantifies how well connected the neighborhood of the
vertex is. If the neighborhood is fully connected, the clustering
coefficient is 1 and a value close to 0 means that there are
hardly any connections in the neighborhood. The clustering
coefficient of a network is the average clustering coefficient
of all vertices in the network. It characterizes the overall
tendency of vertices in a network to form clusters or groups
(Barabasi and Oltvai, 2004). A high clustering coefficient for a
network is an indication of the presence of densely connected
neighborhoods in the network (Watts and Strogatz, 1998). As
expected, sub-networks of proteins identified in each sample
had significantly higher clustering coefficients than the
average clustering coefficients obtained from 1000 random
sub-networks generated by randomly sampling the same
numbers of proteins from corresponding full protein interac-
tion networks (Supplementary Figure 1).

It is worth noting that proteins in the confident protein lists
tended to have higher vertex degrees and clustering coeffi-
cients in the full protein interaction network. This may have a
biological explanation, as essential proteins tend to have
higher vertex degrees (Jeong et al, 2001) and thus they are
likely to be included in the expressed protein lists in all
samples. This also may reflect bias in the current shotgun
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technology and protein interaction networks, because proteins
that are easily identified by the shotgun technology tend to
have higher expression levels. Abundant proteins are easier to
study and thus show more connections in the current protein
interaction networks. Therefore, we further tested whether the
higher clustering coefficients of the sub-networks were simply
an effect of the topological characteristics of constituent
proteins in the full protein interaction networks. Specifically,
we divided proteins in the full protein interaction network into
nine topological bins based on their degrees and clustering
coefficients as described in the Materials and methods section.
When we selected random proteins for generating random
sub-networks for a sample, for each protein identified in the
sample, we chose randomly one protein from the same
topological bin. As a result, proteins selected for the random
sub-networks had similar degrees and clustering coefficients
as the experimentally identified proteins. We refer to these
sub-networks as topology-matched random sub-networks. As
depicted in Supplementary Figure 1, although these topology-
matched random sub-networks tended to have higher cluster-
ing coefficients than the completely random sub-networks,
they did show significantly lower clustering coefficients than
the sub-networks of real proteins. Even in the closest case of
the yeast data set, the clustering coefficient of the real sub-
network exceeded that of the topology-matched random ones
by 8 s.d. (P¼9.75e–16).

These results suggest that proteins identified in a specific
sample are not randomly distributed on the protein interaction
network; instead, they tend to form tightly connected sub-
networks. As cliques in a protein interaction network are sub-
networks in which all proteins are pairwisely connected, we
attempted to enumerate cliques from protein interaction
networks and use the information to improve protein
identification in shotgun proteomics.

Overview of the clique-enrichment approach

To ensure a low protein false discovery rate (FDR), existing
protein assembly pipelines eliminate a large number of non-
confident but possible proteins. Using the yeast cell culture
data set as an example, among the 1742 proteins in the
maximal protein list, only 54% were found to be confident
proteins according to the rules implemented in IDPicker,
whereas 46% were non-confident proteins and thus were
eliminated. Non-confident proteins include those supported
by single peptide and those without distinct peptide evidence.

To highlight proteins that merit rescue from elimination, we
have developed a clique-enrichment approach (CEA), which is
illustrated in Box 1. CEA is based on the assumption that an
eliminated protein is more likely to be present in the original
sample if it is a member of a clique for which other members
have been confidently identified in the same sample. First,
peptide identification and protein assembly are processed
using standard methods; here we employed MyriMatch (Tabb
et al, 2007) and IDPicker (Zhang et al, 2007). Proteins in the
maximal protein list are grouped into confident proteins and
non-confident proteins after protein assembly, and then
mapped to the protein interaction network. In the network,
vertices representing confident proteins are labeled as positive
(red), vertices representing proteins with no experimental

evidence are labeled as negative (blue), and vertices repre-
senting non-confident proteins are unlabeled (gray). The next
step enumerates all maximal cliques from the protein
interaction network. A maximal clique is a clique that is not
part of any other larger cliques, that is, inclusion of any other
vertex to a maximal clique will violate its completeness. We
adopted a graph–theoretic maximal clique finding algorithm
(Zhang et al, 2008) for this study. For each identified clique, an
enrichment score derived from the Fisher’s exact test is used to

Confident Non-confident
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Peptide identificaion

Protein assembly

Enrichment analysis

Network mapping

Clique enumeration

Box 1 After peptide identification and protein assembly, proteins in the
maximal protein list are grouped into confident proteins (red) and non-
confident proteins (gray), and then mapped to the protein interaction network.
Proteins absent from the maximal protein list are considered as negative
proteins (blue). Cliques are enumerated from the network and evaluated for
the enrichment of confident proteins. All non-confident proteins that coexist in
a clique enriched with confident proteins are thus rescued and added to the
final list, whereas others are discarded.

Box 1 Workflow of the clique-enrichment approach (CEA)
for protein identification in shotgun proteomics
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evaluate the enrichment of confident proteins in the clique. All
non-confident proteins that coexist in a clique enriched with
confident proteins are thus rescued and added to the final list,
whereas others are discarded. The enrichment threshold can
be set to achieve desired sensitivity and specificity using cross-
validation as described below.

CEA is effective and robust

We used 10-fold cross-validation (see Materials and methods)
to evaluate the performance of the proposed method. We first
evaluated the performance of CEA in the yeast cell culture data
set using YPIN. We defined the gold standard positive set as
834 proteins in YPIN that were confidently identified in the
data, and the gold standard negative set as the 4049 proteins
that had no experimental evidence according to the data. The
783 non-confident proteins were kept in the network but
excluded in the cross-validation test. As shown in the solid red
ROC curve in Figure 1A, CEA achieved a specificity (1 false
positive rate) of 0.91 or an accuracy (proportion of true results
in the predictions) of 0.85 with a sensitivity (true positive rate)
of 0.55.

For comparison, we repeated the validation using random
networks with the same number of vertices and edges
generated by the Erdos–Renyi (ER) model (Erdos and Renyi,
1959). The ROC curve generated from ten ER random networks
lay on the diagonal (Supplementary Figure 2), indicating little
discrimination power. As the ER random networks do not
maintain important topological properties, such as clustering
coefficient and degree distribution of the real protein interac-
tion networks, we further repeated the validation with random
networks generated through vertex label redistribution, in
which the network topological properties were preserved. The
ROC curve generated from ten vertex label redistribution
random networks also lay on the diagonal (Supplementary

Figure 2). These results suggest that the relationship among
proteins embedded in the real protein interaction network is
critical for achieving good rescue performance.

The performance of CEAwas compared with other network-
assisted prediction methods. Protein interaction network-
based prediction has been an active research topic in other
areas such as protein function prediction (Sharan et al, 2007)
and algorithms developed in those studies could be adopted in
our context. Neighbor-voting (NV) is the simplest and most
direct method for network-based predictions (Sharan et al,
2007), in which the class of an unlabeled vertex is inferred
based on the labels of its immediate neighbors. In contrast to
NV, which uses only local information, the Hopfield method
takes into account the full topology of the network and assigns
the classes of the unlabeled vertices so as to minimize the
number of edges connecting vertices with different classes
(Karaoz et al, 2004). We compared the performance of these
two methods to that of the CEA through 10-fold cross
validation using the yeast cell culture data set. As shown in
the solid ROC curves in Figure 1A, the Hopfield method (green)
performed very similar to NV (black), whereas CEA (red)
clearly outperformed both of them. At the specificity of 90%,
the sensitivities for NV, Hopfield, and CEA were 48, 47, and
56%, respectively, whereas the accuracies were 82.8, 82.6, and
84.4%, respectively.

As shotgun proteomics is susceptible to false negatives, we
further tested the robustness of the three methods to false
negatives by moving 10% of the confident proteins to the
negative set. As shown in the dashed ROC curves in Figure 1A,
CEAwas very robust to the false negatives. In contrast, NVand
Hopfield were obviously disturbed by the false negatives.

To test the performance of CEA on mammalian proteomes,
in which the network coverage was not as extensive as in
yeast, CEA was applied on the mouse organ data set using two
versions of protein interaction networks, MPIN1 and MPIN2.
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Figure 1 ROC curves from cross-validation studies. (A) Comparison among three network-assisted methods: clique-enrichment approach (CEA, red), neighbor-voting
(NV, black), and Hopfield (green). Cross-validations using data sets with manually introduced 10% noise are shown in dashed curves. (B) ROC curves from the yeast
data set (red) and the mouse organ data set (green and black). YPIN: yeast protein interaction network. MPIN1: mouse protein interaction network 1 that includes only
literature-supported interactions. MPIN2: mouse protein interaction network 2 that includes both literature-supported and computationally predicted interactions.
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Figure 1B compares the performance of CEA in the mouse
organ data set using the two versions of networks (black and
green) with performance in the yeast data set (red). For the
mouse organ data set, the average performance in brain,
placenta, and lung samples was plotted. Results for individual
tissues are available in Supplementary Figure 3. Clearly, the
performance of CEA in the mouse organ data set was not as
good as that in the yeast cell culture data set. The area under
curve (AUC) based on MPIN2 (black) is better than that based
on MPIN1 (green), which suggests the value of improved
network coverage. As both networks gave similar sensitivity of
around 45% at the specificity of 90%, MPIN1 with literature-
supported interactions was used in the following studies.

CEA improves protein identification

After the cross-validation studies described above, CEA was
applied to rescue non-confident proteins in the real datasets.
The enrichment threshold was specified in each data set
separately to achieve an accuracy of 85% based on the cross
validation results. For the yeast cell culture data set, 194 of the
783 non-confident proteins in the network were rescued,
increasing overall protein identifications by 21% compared
with the conservative assembly produced in IDPicker. For the
mouse organ data set, 171, 156, and 181 possible proteins were
rescued in the brain, placenta, and lung samples, respectively,
corresponding to 12, 11, and 10% increases in protein
identifications in each organ proteome.

To provide further assessment of the reliability of the rescued
proteins, we evaluated the rescued proteins in different organs
using relevant data in microarray and EST library studies, as
well as through publications indexed in PubMed. Figures 2A–C
illustrate the percentage of rescued proteins with different
levels of support from the three information resources in the
brain, placenta, and lung, respectively. On average, 66% of the
rescued proteins were supported by microarray data, 78%
were supported by the EST libraries, and 77% were presented
in publications on corresponding organs. If we combine
different information sources, 49% of the rescued proteins
were supported by all of the three information resources, 77%
were supported by at least two resources, and 94% were
supported by at least one resource.

To evaluate the significance of the support ratios, we further
compared the ratios for the rescued proteins with those for all
annotated mouse proteins, confident proteins, and un-rescued
non-confident proteins. As each information resource used for
the evaluation may also have false positives and false
negatives, we analyzed the percentage of proteins in each
protein set that was supported by, at least, two information
resources. As shown in Figure 2D, the support ratios for
confident proteins were significantly higher than those for all
annotated proteins (P-values in Fisher’s exact test are 4.90e–
90, 1.68e–71, and 4.25e–125 for brain, placenta, and lung,
respectively). Interestingly, rescued proteins showed compar-
able levels of support as confident proteins (P-values are 0.51,
0.83, and 0.13 for brain, placenta, and lung, respectively).
However, rescued proteins had significantly higher support
ratios than un-rescued proteins (P-values are 5.28e–7, 2.75e–
10, 5.85e–7, for brain, placenta, and lung, respectively). We
also carried out the analyses for each information resource

separately. The same trend was observed for all comparisons
(Supplementary Table 1). These results show that proteins
rescued by CEA are reliably identified.

CEA reveals disease-related sub-networks

Finally, we applied CEA on a shotgun proteomics data set
comparing tumor and normal mammary tissues from a mouse
model of breast cancer. Cross-validation results in this data set
were similar to those in the mouse organ data sets
(Supplementary Figure 4). CEA increased protein identifica-
tion by 8 and 23% in the tumor and normal tissues,
respectively. Among the 95 rescued non-confident proteins
in the tumor tissue, 95 and 33% had been reported in cancer-
and breast cancer-related publications. These support levels
were significantly higher than those for all annotated proteins
(P-values in Fisher’s exact test are 1.25e–7, 4.20e–4 respec-
tively). Rescued proteins included products from some well-
known breast cancer genes, such as Ctnnb1 and Top1
(Schroeder et al, 2002; Zhao et al, 2003; Schlange et al, 2007;
Yasmeen et al, 2007).

As CEA focuses on cliques instead of individual proteins, it
provides a logical framework to compare proteomics data sets
at the sub-network level. Identified maximal cliques were
highly overlapping, which may reflect the involvement of one
protein in multiple sub-networks, the dynamic arrangement of
the sub-networks, and the incompleteness of protein interac-
tion networks. Overlapping modular structure has been
observed in various types of networks, including protein
interaction networks, and software has been developed to
merge highly overlapping cliques into larger tightly connected
sub-networks to show a higher level organization of the
networks (Adamcsek et al, 2006). To gain a higher level
understanding of the difference between tumor and normal
tissues, we merged highly overlapping cliques comprising
confident and rescued proteins into tightly connected sub-
networks using the software, Cfinder (Adamcsek et al, 2006).
Fourteen cancer-specific sub-networks that comprise only
cancer-specific proteins and three normal-specific sub-net-
works were identified and indicated by different vertex colors
in Figure 3 and Supplementary Figure 5.

As shown in Figure 3, 97% of the proteins in the cancer-
specific sub-networks had been reported in cancer-related
publications (middle vertex size), with 47% in breast cancer-
related publications (large vertex size). Interestingly, six of the
cancer-specific sub-networks contained four rescued non-
confident proteins (triangle vertices). Three of the four rescued
proteins had been reported in breast cancer-related publica-
tions and all of them had been reported in cancer-related
publications. Some proteins in the cancer-specific sub-net-
works had not been reported in any cancer studies (small
vertex size). These proteins may be good candidates for
further investigation.

We used Gene Ontology (GO) enrichment analysis (Zhang
et al, 2005) to identify biological processes associated with the
cancer-specific sub-networks. All of the sub-networks showed
high functional homogeneity with a Bonferroni-adjusted
P-value o0.01 in at least one of the biological process
categories (Supplementary Table 2). The most enriched GO
biological process categories for the sub-networks are labeled
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in Figure 3. These sub-networks corresponded to important
biological processes involved in tumor biogenesis and
progression, such as ‘apoptosis’, ‘cell adhesion’, and ‘Wnt
receptor signaling pathway’ etc. For comparison, we also
carried out the GO enrichment analysis for all cancer-specific
proteins. As this list was more functionally heterogeneous, we
were only able to identify broader categories, such as
‘intracellular transport’, ‘cellular component organization
and biogenesis’, ‘translation’ etc (Supplementary Figure 6).
Through organizing functionally related proteins together
using protein interaction networks, CEA was able to show
important but more specific biological processes that involve
limited number of proteins.

Discussion

Proteins that are not confidently identified based on multiple
peptide identifications and parsimonious assembly in shotgun
proteomics are usually eliminated from further consideration.
Complete elimination of these possible proteins ensures higher
specificity, but sacrifices sensitivity in protein identification.
We showed that proteins identified in a specific sample
were not randomly distributed on the protein interaction
network; instead, they tended to form tightly connected
sub-networks. This result suggests that the relationship among

proteins embedded in a protein interaction network could
provide additional evidence for proteins that are eliminated
owing to insufficient experimental evidence. The CEA,
proposed in this study, incorporated protein interaction
network information and increased protein identification
sensitivity while maintaining reasonable accuracy. Indeed,
the support levels from independent data sources for rescued
proteins were comparable with those for confident proteins
(Figure 2D).

Compared with other network-assisted prediction methods,
such as NV and Hopfield, CEA proved more effective and
robust in our study, which can be explained by its ability to
capture the modular architecture of protein interaction net-
works. Although all three methods are based on the evaluation
of neighborhood enrichment, NV and Hopfield do not
investigate proteins in a modular context. Instead, all
interacting proteins are considered equally and simulta-
neously. A protein interaction network only represents a
collection of possible interactions under many different
conditions. Although a protein might be involved in many
modules, not all of them are required for a given condition.
The evidence of presence for one of them is enough to infer the
presence of the protein. Considering the dynamic modular
organization of the network, CEA is focused on the most
enriched clique and gains sensitivity. However, even under
specific conditions, one protein can be involved in multiple
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modules to carry out different functions. False negative
identifications in one module will not necessarily affect
other modules. Given the multifunctional nature of proteins,
CEA gained robustness by evaluating all possible cliques
separately.

In the data sets tested in this study, CEA increased the
number of identified proteins by 8–23% without additional
proteomic analyses. We want to point out that the improve-
ment was calculated based on the highly confident assembly
requiring a peptide FDR of less than 0.05, more than two
distinct peptides, and parsimony analysis. The improvement
over other protein assembly methods will be different.
However, as CEA uses information completely independent
of the spectral data, it will complement any method using only
spectral data. Despite its promise as a useful tool for
protein identification in shotgun proteomics, there are limita-
tions to the performance of CEA based on the following
considerations.

First, CEA is dependent on network coverage and quality. As
illustrated in Figure 1B, the performance of CEA in the yeast
cell culture data set was clearly superior to that in the mouse
organ data set. This can be explained by the lower coverage
and quality of the mouse protein interaction networks. It is
estimated that only B10% of the human protein interactions
are currently known (Hart et al, 2006). As the small mouse

network was largely derived from the human network, its
coverage also was likely to be very low. Although the large
mouse network increased the AUC, the major increase was in
the region where the specificity fell below 90%. This suggests
that the network quality is also very important for achieving
both high sensitivity and specificity. Even for yeast, existing
databases are estimated to contain only B50% of all
interactions (Hart et al, 2006). The growing effort in protein
interaction network studies and concomitant improvement of
network coverage and quality should improve the perfor-
mance of CEA.

Second, the ‘gold standard’ negative set nevertheless
contained false negatives. CEA treated all proteins for which
no experimental evidence exists as a gold standard negative
set. Therefore, false negatives in the shotgun proteomics data
would certainly affect the quality of this gold standard.
Although we showed that CEA was robust to false negatives,
we may have underestimated the performance of CEA in
cross-validation. CEA should be able to rescue some proteins
that were truly present in the original sample, even if they
were treated as gold standard negative in the cross validation,
which would lead to an underestimation of performance.
Any improvements in the technology sensitivity will reduce
false negatives and improve the accuracy of performance
evaluation.

Figure 3 Breast cancer specific sub-networks. Different sub-networks are shown in different colors and identified by IDs from ‘a’ to ‘n’. Proteins shared by multiple sub-
networks are colored in red. The most enriched Gene Ontology (GO) biological process annotations for each sub-network are labeled. The IDs accompanying the GO
annotations match those of corresponding sub-networks. Triangle vertices represent the proteins rescued by the clique-enrichment approach (CEA). Vertex size
represents different levels of publication support: the large size indicates support from breast cancer-related publications, the middle size indicates support from cancer-
related publications, and the small size indicates no support from existing cancer-related publications.
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Third, cliques are perfectly connected sub-networks and
they only represent one type of functional modules. A
functional module is composed of multiple molecules that
work together in a cell as a distinct unit. Although a module
may be a single physical entity, that is, a protein complex, it
may also be made from a number of separate physical entities,
like a signal transduction pathway. Single physical entities
usually constitute tightly connected sub-networks in a protein
interaction network, and can be identified by maximal clique
enumeration or other well-established algorithms (Snel et al,
2002; Bader and Hogue, 2003; Spirin and Mirny, 2003;
Newman, 2004; Palla et al, 2005). It is more challenging to
detect modules consisting of separate physical entities in
protein interaction networks. However, a few algorithms have
been proposed for this purpose (Steffen et al, 2002; Scott et al,
2006). Extending our clique enrichment approach to a more
general module enrichment approach should help rescue
proteins working in functional modules other than cliques and
improve the sensitivity of protein identification. As shown in
Figure 2D, even un-rescued non-confident proteins were better
supported by other information resources than all annotated
proteins, which suggests that an improved method should be
able to rescue more truly present proteins from the non-
confident proteins.

Finally, CEA-based protein rescuing can only be applied on
biological samples in which protein interaction networks are
expected. For example, we do not anticipate that CEAwill work
in plasma samples. Moreover, although CEA is extremely
useful for shotgun proteomics studies that suffer from high
false negative rates, such as studies aiming at the identification
of biomarkers, cautions need to be taken if false positive
identifications are a major concern. As shown in Figure 2D,
although the support levels from independent data sources for
rescued proteins were comparable with those for confident
proteins, the performance might vary from sample to sample.

Besides accurate protein identification, another challenge in
shotgun proteomics is the biological interpretation of the
lengthy lists of protein identifications. Although functional
class enrichment analysis (Subramanian et al, 2005; Zhang
et al, 2005) could potentially facilitate this process, such
analysis is usually limited by existing knowledge on pathways
and biological processes. GO and KEGG are the most
commonly used databases for defining functional classes.
However, out of the 22 762 protein-coding human genes
annotated by the Ensembl database (version 48), only 3942
genes (17%) were assigned to KEGG pathways, and only
15 086 (66%) genes were assigned to biological processes in
the GO database. Moreover, many genes are annotated at a
coarse level in GO, such as ‘biological regulation’, which is not
very helpful in the biological interpretation.

Protein interaction networks provide an alternative way to
organize and interpret proteins lists. Mapping proteins in a list
to a protein interaction network will help reveal the functional
relationships among the identified proteins. More importantly,
in comparative analysis, this approach makes it possible to
compare proteomics data sets at the network level instead of
the individual protein level, which may provide a systems level
understanding of the difference between two samples.
Recently, protein sub-networks have been proposed as
biomarkers for the classification of breast cancer metastasis

(Chuang et al, 2007). Sub-network biomarkers outperform
single gene-based biomarkers in both accuracy and robustness
(Chuang et al, 2007). In this study, we showed that CEA
generated a network view of the identified proteins and helped
identify sub-networks that were specific to the cancer
phenotype. Subsequent functional profiling of the cancer-
specific sub-networks provided insights into molecular
mechanisms of cancer (Figure 3). Besides cancer-specific
sub-networks, a quantitative score may be calculated to
further identify sub-networks that are enriched with cancer-
specific proteins, and these sub-networks might also be worth
further investigating. We will evaluate different scoring
methods for incorporating in the CEA workflow in the future.

Our results also showed that CEA could both rescue
biologically important proteins and reveal their biological
relevance. For example, the well-known breast cancer protein,
Ctnnb1, was supported by single peptide identification in the
dataset and would have been eliminated by conservative
assembly. CEA not only rescued Ctnnb1 but also assigned it to
a sub-network with primary function in the Wnt signaling
pathway, which was consistent with the essential role of
Ctnnb1 (Fodde and Brabletz, 2007; Malanchi et al, 2008).
Another interesting rescued protein was Top1. The human
ortholog, TOP1, is the only known target of the alkaloid
camptothecin, from which the potent anticancer agents,
irinotecan and topotecan, are derived (Pommier, 2006).
Recently, it has been validated that TOP1 is among the very
first proteins to respond to camptothecin in human H1299 lung
carcinoma cells (Cohen et al, 2008). CEA rescued Top1 and
assigned it to a sub-network in which all other proteins were
involved in RNA splicing. Although the main function of Top1
is generally considered to be the relaxation of transcription-
dependent DNA supercoils, it has also been suggested to have
a function in transcript maturation, in particular in the splicing
process of mRNAs (Soret et al, 2003). Indeed, in a proteomic
analyses of Top1 protein complexes, 10 of the 36 proteins
identified as Top1 interaction partners are involved in RNA
splicing (Czubaty et al, 2005).

In conclusion, CEA incorporated protein interaction net-
work information, and greatly improved protein identification
and data interpretation in shotgun proteomics. It can be easily
integrated into routine shotgun proteomics protein assembly
pipelines, such as IDPicker, ProteinProphet, and DBParser
(Nesvizhskii et al, 2003; Yang et al, 2004; Zhang et al, 2007). A
web-based implementation of CEA is available at the following
URL: http://bioinfo.vanderbilt.edu/cea.

Materials and methods

Proteomics data sets

Three data sets were used in this study. The yeast cell culture data set
was generated in the Ayers Institute at Vanderbilt. A tryptic digest of
a Saccharomyces cerevisiae was provided by David Bunk (National
Institute of Standards and Technology, Gaithersburg, MD) and
analyzed at a concentration of 60 ng/ml using 2 ml injection volumes.
The yeast digest was analyzed on an LTQ Orbitrap XL mass
spectrometer (Thermo Fisher Scientific) equipped with an Eksigent
NanoLC AS1 autosampler and Eksigent NanoLC 1D Plus pump,
Nanospray source, and Xcalibur 2.0 SR2 instrument control. Peptides
were separated on a packed capillary tip (Polymicro Technologies,
100 mm� 11 cm) with Jupiter C18 resin (5 mm, 300 Å, Phenomenex)
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using an in-line solid-phase extraction column (100 mm� 6 cm)
packed with the same C18 resin using a frit generated with liquid
silicate Kasil 1 (Cortes et al, 1987), similar to that previously described
(Licklider et al, 2002). Mobile phase A consisted of 0.1% formic acid
and mobile phase B consisted of 0.1% formic acid in acetonitrile. A
184-min gradient was carried out with a 15-min washing period (100%
A for the first 10 min followed by a gradient to 98% A at 15 min) to
allow for solid-phase extraction and removal of any residual salts.
Following the washing period, the gradient was increased to 40% B by
135 min, followed by an increase to 90% B by 150 min and held for
9 min before returning to the initial conditions. Tandem spectra were
acquired using a data-dependent scanning mode in which one full MS
scan (m/z 300–2000) was acquired on the Orbitrap at a resolution
of 60 000, followed by 8 MS/MS scans collected on the LTQ. The
data set may be downloaded from ProteomeCommons.org Tranche,
https://proteomecommons.org/tranche/, using the following hash:
g6HnZFXo7rRKyLJBFFx98lJT3VoThzIT5Lf4iyCI4TZrV0uKKuKFfvpP-
izJcjf9mupIeKeOJmLNmn5ZMy4FaLh8zG58AAAAAAAAIZA¼¼. It is
also available at our local website: http://www.mc.vanderbilt.edu/
msrc/bioinformatics/data.php.

The mouse organ data set was provided by Kislinger et al (2006).
The study combined subcellular fractionation with exhaustive MS/
MS-based shotgun sequencing to examine the protein content in six
organs of the laboratory mouse, Mus musculus. We focused on the
three organs (brain, placenta, and lung) that contained the most
identifiable spectra.

The mouse breast cancer data set was provided by Whiteaker et al
(2007). The study used LC-MS/MS to examine the protein content in
tumor and normal mammary tissues from a conditional HER2/
Neu-driven mouse model of breast cancer.

Database search and protein assembly

Using Myrimatch version 1.2.9 (Tabb et al, 2007), MS/MS spectra were
identified against the Saccharomyces Genome Database (SGD; http://
www.yeastgenome.org/) for yeast, and Swiss-Prot (release 53.1) for
mouse. In both cases, the reversed version of each protein sequence
was appended. Only tryptic peptides were considered. All cysteines
were assumed to be carboxamidomethylated, and methionines were
allowed to be oxidized. A precursor error of up to 1.25 m/z was
permitted, whereas fragment ions were required to fall within 0.5 m/z
of their expected locations. Ambiguous identifications that mapped
spectra to multiple peptide sequences at equal scores were excluded.
Peptide identification and protein assembly was carried out
using IDPicker (Zhang et al, 2007). Instead of relying on peptide
identification score thresholds, IDPicker estimates FDRs from
reversed-sequence database search to control the quality of peptide
identification. The peptide FDR cutoff was set to 0.05 for all data sets in
this study. The two distinct-peptide requirement and parsimony
analysis were applied in protein assembly.

Protein interaction networks

Yeast protein interaction network
Protein interaction data were downloaded from BioGRID (http://
www.thebiogrid.org/, version 2.0.35 release) and MIPS (Mewes et al,
2004) (http://mips.gsf.de/) on 12/20/2007 and integrated. The
BioGRID network included 5049 proteins and 69 228 interactions,
and the MIPS network contained 5003 proteins and 76 856 interac-
tions. The integrated network was comprised of 5665 proteins and
126127 interactions.

Mouse protein interaction network
We downloaded literature-supported human and mouse protein
interactions from seven databases: HPRD (v7; including HPRD_COM-
PLEX), DIP, MINT, MIPS, REACTOME, and INTACT (latest updated on
1/10/2008). Genes in human protein interactions were mapped to
mouse orthologs according to the mouse–human orthology map from
MGI (http://www.informatics.jax.org/orthology.shtml). A literature-
supported network (MPIN1) with 69 470 interactions and 9776

proteins were obtained after removing redundancy. In addition, this
network was appended with computationally predicted mouse
protein–protein interactions (Xia et al, 2006) to form a high-coverage
network with 12 271 proteins and 236 675 interactions (MPIN2).

Clustering coefficient analysis and network
randomization

Clustering coefficient was calculated according to Watts and Strogatz
(1998). Random sub-networks were generated by randomly sampling
a desired number of vertices from a full network, and any edges that
connected two sampled vertices were kept in the random sub-network.
To generate topology-matched random sub-networks for a real sub-
network, we first assigned all proteins in a full protein interaction
network to three bins of equal size based on their degrees, and
similarly three bins based on their clustering coefficients. Next,
proteins were divided into nine topological bins based on the
combination of their degree bin and clustering coefficient bin
assignments. Finally, for each protein included in a real sub-network,
we chose randomly one protein from the same topological bin to create
a topology-matched random sub-network. ER random networks were
generated according to the ER model (Erdos and Renyi, 1959). Vertex
label redistribution random networks were generated through
randomly reshuffling the vertex labels while maintaining the network
topology.

Network-assisted approaches

A protein interaction network is represented as an undirected graph
G(V,E) that consists of a set of vertices V and a set of edges E. Each
vertex represents a protein, whereas each edge represents an
interaction between two proteins. We considered three network-
assisted approaches to predict the class label of the non-confident
proteins.

CEA is a clique-based approach that first identifies all maximal
cliques in the network (Zhang et al, 2008) and then assigns a label of
presence or absence to each clique and associated non-confident
proteins based on a statistical scoring algorithm. The enrichment score
for a clique c is computed as the following:

Sc ¼ � log
fðm;n;j;kÞ
10

fðm;n; j; kÞ ¼
Xminðn;jÞ

i¼k

m�j
n�i

� �
j
i

� �

m
n

� �

where m, n, j, k denote the numbers of all the proteins involved in, at
least, one clique; confident proteins involved in, at least, one clique; all
proteins in clique c; and confident proteins in clique c, respectively.
Clique c is assigned a present label if its enrichment score is higher than
a predefined threshold. A non-confident protein is assigned a present
label if it is involved in, at least, one clique with a present label.

The NV algorithm is adopted from Karaoz et al (2004) as described
in the following formula:

Si ¼
X

1�j�ni

WijSj:

Here, ni denotes the number of neighbors of protein i, and sj denotes
the label of the jth neighbor of protein i. For protein j, sj¼1 if it has a
positive (present) label, sj¼�1 if it has a negative (absent) label, and
sj¼0 if it is unlabelled. wij is the weight of the edge connecting protein i
and protein j, which is set to 1 in this study. A possible protein ‘i’ is
assigned a present label if sj is higher than a predefined threshold.

The Hopfield algorithm is as described by Karaoz et al (2004).
Briefly, each positive vertex is assigned a state Sv that equals þ 1,
whereas each negative vertex is assigned a state that equals �1. Next,
an assignment of�1 and þ 1 states to the unlabeled vertices is sought
so as to maximize

P
ði;jÞ2E SiSj. This is achieved by an iterative

procedure in which for every unlabeled vertex, in turn, the state of the
vertex is changed according to the majority of the states of its
neighbors, until satisfactory convergence is reached.
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Cross-validation tests

Tenfold cross-validation was used to evaluate the performance of the
network-assisted approaches. A gold standard positive set included all
confident proteins. For the proteins in an indiscernible protein group
(Zhang et al, 2007), the protein with the largest number of positive
direct interaction partners was also added to the positive set. A gold
standard negative set comprised all proteins with no peptide
identification. Non-confident proteins were kept in the network but
excluded in the cross-validation tests. The data were partitioned into
ten equal partitions and each in turn was used for testing, whereas the
remainder was used for training. As we had many more negative
instances than positive instances in the dataset, stratified 10-fold cross-
validation was used to ensure that each fold had roughly the same
proportion of class labels as in the original data set. After the cross-
validation tests, all proteins in the 10 test sets were ranked together
based on their predicted scores. True labels of the proteins were
retrieved for ROC curve generation.

Evaluation of the CEA predictions

Existing microarray and EST profiling data sets, and PubMed records
were used to evaluate the predictions in the mouse data sets. The
microarray gene expression profiling data set (Su et al, 2004) was
downloaded from the GEO database (Barrett et al, 2007) of NCBI
(http://www.ncbi.nlm.nih.gov/geo/, GDS592). Expression data on
mouse normal lung, placenta, and brain samples were used for the
evaluation. Genes were considered to be expressed if they had a
present call. EST-based gene expression profiles of mouse normal lung,
placenta, and brain were download form CGAP (http://cgap.nci.nih.
gov/Tissues). For the PubMed-based evaluation, we first associated
publications with various keywords, including ‘lung’, ‘placenta’,
‘brain’, ‘cancer’, and ‘breast cancer’, through PubMed search. Next,
we downloaded the gene to publication association table Gene2-
pubmed from NCBI (ftp://ftp.ncbi.nlm.nih.gov/gene/DATA). A Perl
script was written to process these two association tables to generate
gene lists related to each keyword. Fisher’s exact test was used to
compare the difference of support between two selected protein lists.

Clique merging, sub-network visualization, and
functional evaluation

Maximal cliques were merged to form tightly connected sub-networks
using the software Cfinder (Adamcsek et al, 2006) and visualized using
Cytoscape (Shannon et al, 2003). From a list of maximal cliques,
CFinder identifies the tightly connected sub-networks by carrying out a
standard component analysis of the clique–clique overlap matrix
(Palla et al, 2005). GO enrichment of the sub-networks was analyzed
using WebGestalt (Zhang et al, 2005).

Software implementation

CEA was implemented in Perl and PHP. It is available at http://
bioinfo.vanderbilt.edu/cea.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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