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The emergence of drug resistance during antimicrobial therapy is a major
global health problem, especially for chronic infections like human immuno-
deficiency virus, hepatitis B and C, and tuberculosis. Sub-optimal adherence
to long-term treatment is an important contributor to resistance risk. New
long-acting drugs are being developed for weekly, monthly or less frequent
dosing to improve adherence, but may lead to long-term exposure to inter-
mediate drug levels. In this study, we analyse the effect of dosing frequency
on the risk of resistance evolving during time-varying drug levels. We find
that long-acting therapies can increase, decrease or have little effect on resist-
ance, depending on the source (pre-existing or de novo) and degree of
resistance, and rates of drug absorption and clearance. Long-acting therapies
with rapid drug absorption, slow clearance and strong wild-type inhibition
tend to reduce resistance caused by partially resistant strains in the early
stages of treatment even if they do not improve adherence. However, if sub-
populations of microbes persist and can reactivate during sub-optimal
treatment, longer-acting therapies may substantially increase the resistance
risk. Our results show that drug kinetics affect selection for resistance in a
complicated manner, and that pathogen-specific models are needed to
evaluate the benefits of new long-acting therapies.

1. Introduction

In recent decades, highly effective drugs have helped reduce morbidity and
mortality of chronic viral infections, like those caused by the human immuno-
deficiency virus (HIV) [1] and hepatitis B (HBV) [2] and C (HCV) [3] viruses.
However, drug resistance can evolve rapidly within individual hosts owing
to the large population sizes and high replication and mutation rates of many
viruses, rendering treatments ineffective [4]. Similar problems complicate treat-
ment for chronic bacterial infections like tuberculosis (TB) [5]. The long
treatment courses (months—years) required for chronic infections increase the
opportunity for pathogens to adapt.

Effective treatments can also fail owing to non-adherence (missed doses).
Typical rates of adherence for long-term medications are between 50% and
75% [6], which may be far less than what is needed for effective treatments.
For some HIV antiretroviral therapies, studies have estimated that patients
need near perfect (greater than 95%) adherence for viral suppression [7],
while for HBV, adherence levels greater than 80% have been associated with
an approximately 90% reduction in the rate of treatment failure [8].

Long-acting drugs are being developed to help address the problem of
imperfect adherence [9]. For example, a two-drug injectable treatment regimen
(cabotegravir/rilpivirine) was recently approved for treating HIV, and with a
multi-week half-life it is administered only once every four or eight weeks as
opposed to current daily dosing [10,11]. Large investments are being made in
developing long-acting treatments for HCV and TB, and prophylaxis for TB
and malaria [12,13], with some success already in animal models [14-16].
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Figure 1. Model schematic and example time-dependent drug efficacy profiles. (a) Schematic of the viral dynamics model consisting of uninfected target cells
(green) and cells infected with either the wild-type (WT) (blue) or drug-resistant virus (red). We assume treatment blocks infection with the WT (red cross), while
the resistant strain can still (at least partially) infect cells. The resistant virus is assumed to have a fitness cost, so in the absence of treatment, the WT is more
infectious and dominates the population. The resistant strain can be produced via mutation from the WT. Time-dependent drug efficacy €(t) under the (b) slow and
() fast absorbing drug models. Green curves correspond to drug profiles with the same time-averaged (blue line), maximum and minimum efficacy, but with

different dosing periods, T.

Long-acting lipoglycopeptide antibiotics are already avail-
able to treat bacterial skin infections [17]. Monoclonal
antibodies are an emerging treatment for infectious diseases
which can be engineered to have long half-lives [18]. While
long-acting therapies are likely to increase overall patient
adherence, their affect on resistance is unknown. Many
studies have shown that sub-optimal adherence to daily
pills contributes to resistance [19-24], but it is also possible
that the long-term exposure to intermediate drug levels
between doses of a long-acting drugs could facilitate the evol-
ution of resistance [25,26]. The goal of this study is to examine
the role of drug dosing kinetics on the risk of resistance.

Drug resistance can arise from two sources: mutants that
exist prior to treatment initiation or those that are produced
during treatment [27,28]. The relative contribution of these
sources towards resistance is difficult to separate experimen-
tally, but has been thoroughly investigated in a generalized
model of intra-host viral dynamics for a completely resistant
mutant in the presence of constant drug efficacy [29].
However, recent work on evolution in fluctuating environ-
ments [30] shows that the fate of mutants that are under
time-dependent selection pressures cannot necessarily be pre-
dicted by the time-averaged selective effect alone; suggesting
the effect of drug kinetics should be important. Numerous
studies have integrated pharmacokinetics into mathematical
models of infection dynamics [31-42], and have shown
that the likelihood of generating and selecting for drug resist-
ance depends on fluctuating drug levels. However, no studies
have systematically studied the impact of changing a drug
profile, as will occur with the reformulation of drugs into
long-acting therapies.

In this study, we expand previous models to analyse the
effect of drug kinetics on the evolution of resistance, focusing
specifically on the frequency of drug dosing. We incorporate
competition between wild-type (WT) and resistant strains,
the fitness costs and benefits of resistance, pharmacologically
relevant drug kinetics and treatment adherence. We consider
pre-existing and rescue (de novo) mutations as well as
mutations arising from reactivation of latent infection. This
framework allows us to determine the conditions under
which long-acting therapy promotes versus inhibits the
development of drug resistance.

To understand the impact of drug kinetics on the evolution of
resistance, we used a stochastic model of viral dynamics
within individual hosts [43] (see the electronic supplemen-
tary material, Methods for equations). This model (figure
1a) describes the interactions between target (uninfected)
cells, drug-susceptible WT virus, and a drug-resistant virus
strain, in the presence of treatment. While this model was
designed for chronic viral infections, our results are general-
izable to other infections with density-dependent growth
and direct-acting, infection-blocking therapeutics (e.g.
[38,39]). For now, we assume that the resistant mutant is gen-
erated from the WT by a single point mutation. We discuss
the implications of more complex mutational pathways in
the electronic supplementary material.

Like most infection models, pathogen fitness can be
encapsulated by the basic reproductive ratio, Ry, which is a
composite of multiple individual parameters (electronic sup-
plementary material, Methods). R is defined as the average
number of new infected cells produced in a single replication
cycle by one infected cell in an otherwise susceptible popu-
lation [43]. A viral strain i can establish infection only if
Ri > 1. When there are multiple strains with R} > 1, com-
petitive exclusion occurs and only the strain with highest
Ry can sustain high-level infection. We assume that resistance
is accompanied by some fitness cost, 0 <s < 1. Consequently,
in the absence of treatment, Rf > R;, and infection is predo-
minantly with the WT strain. The resistant strain is
maintained in the population at low levels by a mutation-
selection balance (electronic supplementary material, figure
S1), which may lead to pre-existing resistance.

We assume that treatment reduces the infection rate by
1 - e(t), where 0 < e(t) <1 is the time-varying drug efficacy.
The drug is less efficacious against the resistant strain
(e, < €,). We are interested in a regime where an established
WT infection is suppressed by treatment (Rf >1 and
Ry(1—€y) <1), whereas the resistant strain is not
(Rj(1 — &) > 1). We consider two example drug efficacy
models (electronic supplementary material, Methods): a
‘slow absorbing” model in which drug absorption is gradual,
such that the peak efficacy occurs in the middle of the dosing



interval (figure 1b), and a ‘fast absorbing’” model in which
drug efficacy peaks immediately after dose administra-
tion and then decays continuously until the next dose
(figure 1c). This choice allows us to investigate the role
played by the relative rates of drug absorption and clearance
on the risk of resistance which is important for long-acting
drugs as they are expected to have large differences in their
absorption profiles [44]. With each of these models, we sys-
tematically varied the dosing interval while keeping the
average efficacy the same (as well as the peak and trough effi-
cacy). This is meant to mimic the scenario under which long-
acting therapies are being developed: we assume that if the
drug decay can be slowed down by some amount, the
dosing interval is extended by the same amount.

Conceptually, there are two possible ways drug resistance
can emerge to therapy [27,29]. Drug resistant strains may pre-
exist at the start of therapy, since they are continually pro-
duced by the WT strain and exist at mutation-selection
balance. Once the WT infection is suppressed by therapy,
the resistant strain has less competition for target cells (the
‘resource’), and can potentially re-establish infection. How-
ever, establishment is not guaranteed: the population of
pre-existing resistant mutants can be very small and subject
to stochastic extinction. Resistant infection can also be estab-
lished by mutants produced by residual WT replication
during therapy (referred to as ‘rescue mutants’ following
[29], a term borrowed from population genetics literature
[45]), or later on in the treatment course owing to reactivation
of latent infected cells (for certain infections). These mutants
are also subject to stochastic extinction. The establishment
probability of a resistant infection is, therefore, a result of
complicated, time-varying birth-death dynamics and mul-
tiple model parameters (e.g. rate of target cell production,
cost of resistance; see the electronic supplementary material
for further details). In the following sections we analyse
the effects of drug dosing intervals on this probability for
different sources of mutants.

3. Results

(a) Resistant mutants existing prior to treatment
We first examined the impact of the dosing interval on the
evolution of resistance from pre-existing mutants, which
depends both on their number at the time of treatment
initiation and the subsequent establishment probability
(pest) of each of them. Since only the latter depends on the
treatment course, we calculated the establishment probability
for a single pre-existing resistant mutant in the presence of
treatment, from traditional daily therapy to long-acting
multi-monthly intervals with the same average, maximum
and minimum efficacy (electronic supplementary material,
Methods). We first examined the case of a fully resistant
mutant (a strain completely unaffected by the drug level;
purple curves in figure 2b,e). For the slow absorbing drug
profile, longer dosing intervals (i.e. long-acting therapy)
always lead to lower probabilities of resistant mutants estab-
lishing. By contrast, for the fast absorbing drug profile,
increasing the dosing period makes it more likely the resist-
ant strain will establish. However in either case, the
differences in pess were minimal.

We next looked at the case where the mutant is only par-
tially resistant (green curves in figure 2b,e). Overall the

establishment probability was lower and more sensitive to [ 3 |

the drug dosing frequency. When drug was absorbed more
slowly between doses, longer dosing intervals only led to
slightly lower establishment probability up to a certain
maximal dose period (approx. monthly for the parameters
we used), and then further increasing the period leads to
even higher establishment probabilities than daily dosing.
When drug was absorbed quickly, less frequent dosing
decreased the establishment probability. Therefore, the
effect of increasing dosing intervals on the risk of resistance
owing to pre-existing mutants seems to depend strongly on
both the degree of resistance and on the details of the drug
kinetics curve.

We identified an important timescale in the system that
helps explain the complex relationship observed between
the dosing frequency and the risk of pre-existing resistance
establishing. When therapy begins, the resistant strain has a
selective advantage over the WT, but the establishment prob-
ability is extremely low until the WT strain is sufficiently
suppressed to remove competition for the limited resource
they share (i.e. target cells). Each individual mutant has a
finite lifespan, and the lineage of this strain must survive
this time period to make establishment likely.

We call this timescale the establishment time frame (ETF),
and we discuss its derivation and dependence on model
parameters in the electronic supplementary material, figure
52 and Methods. The effective drug levels during the ETF
are the most relevant for resistance risk, explaining the obser-
vation of two limiting cases: when dosing is frequent,
the drug undergoes many cycles during this time frame
and the establishment probability is well-approximated
by assuming constant efficacy at the time-averaged value
(see blue stars in figure 2b,e). When drug dosing is very infre-
quent (i.e. long-acting therapy), the establishment probability
approaches the value predicted from the earliest drug levels
(orange stars in figure 2b,e).

Divergent results for partially versus fully resistant
mutants can also be explained by selection forces acting
during the ETF. Higher drug efficacy during this time
period indirectly promotes the resistant strain by suppressing
WT competition, but if the mutant is not completely resistant,
the drug also causes some partial direct dose-dependent inhi-
bition. Thus, for a fully resistant mutant, establishment is
more likely for drug profiles with higher effective efficacy
during the ETF (figure 2b,e), whereas for a partially resistant
mutant the opposite is true when the inhibition by the drug is
the dominant selection force (figure 2be). The trends
described here are robust to the choice of parameter values,
and we discuss this in detail in the electronic supplementary
material, Discussion along with figures S3 and S4.

To summarize, when partial inhibition of the resistant
strain during therapy is the dominant selection force, long-
acting drugs tend to increase the risk of resistance owing to
pre-existing mutants when the drug absorption is slow, and
decrease the risk when drug absorption is fast. The converse
is true when the degree of resistance is high and competition
with the WT dominates instead.

(b) Resistant mutants produced during treatment

Next, we examined the effect of dosing frequency on the evol-
ution of resistance owing to de novo mutants produced
during treatment. To contribute to treatment failure, a

YPPLTZ0T 687 g 20S Y 20id  qdsi/jeusnol/bi10°buiysiigndfianosiesol



slow absorbing drug

(@) ) () 0
1.0 1 & . 109
Va Ve VAR B L — . B
= 08 ~ g i 3 08 - .
v £ 0067 e 2 . “
2 0.6 — 10 resistance 22 g2 06~ M
S = partial resistance s 5 1w g5
= 0.4 A . s g 004 = £ L ox
g U = full resistance & B 8 E 049"
0 Q . . g . .
s 029 A~ Vs g 0.02{ = partial resistance 2 0 | = partial resistance
= 04 S NS N\ % === full resistance é ’ full resistance
. . . - 8 0L : : . 01+ . . .
0 5 10 15 0 50 100 150 0 50 100 150
fast absorbing drug
(d) (@ " 10
107 — — - B 0087 7 T T
| B £ : 2 08
S 08+ \ 2 2
v ‘ \ \ 5 0.06- 3
Z 0.6 \ \ \ g =, 061«
g ! ! = S €
\ \ i > X '
2 04| \ | E S 004 S Z 04~
5} \ \ \ E g o g
o0 \ I\ Q g
g 027]\ \ \ 2 0.021 g 024 -
= . \ N ;;\\\%7 ‘ - g -% %
I ' l I 9_53 0 I I I...>s ...... . 0. i x Ix.---lc u---l
0 5 10 15 0 50 100 150 0 50 100 150

time, ¢ (days)

dosing period, T (days)

dosing period, T (days)

Figure 2. Effect of drug dosing intervals on the establishment of resistance owing to pre-existing and rescue mutants. Results from numerical simulations for the
slow (top row) and fast (bottom row) absorbing drug models. (a,d) Drug efficacy €(t) versus time for the WT and resistant strain. (b,e) Establishment probability for
one pre-existing resistant mutant as a function of the dosing interval. (¢,f) Probability that at least one rescue mutant is produced as a function of the dosing
interval. Each dot represents the establishment or rescue probability in the presence of an oscillatory efficacy with a fixed period. Colours go from light to dark with
increasing dosing intervals keeping constant time-averaged efficacy. Results are for mutants unaffected (purple) and affected (green) by the drug. Stars correspond
to the probabilities for constant efficacies: time-averaged efficacy (blue) and efficacy at t =0 (orange). The overlaid black marks are results from stochastic simu-

lations of the model (electronic supplementary material, Methods).

resistant lineage must first be produced by mutation during
residual WT replication despite therapy and then have a
strong enough selective advantage to escape stochastic
extinction. We computed the probability that at least one
such ‘rescue mutant’ is produced during treatment (electronic
supplementary material, Methods), and analysed how it was
affected by varying the frequency of drug dosing while keep-
ing the average, maximum, and minimum drug efficacy fixed
(figure 2¢f).

We found that for slow drug absorption, long-acting
drugs tend to increase the risk of resistance (figure 2c). By
contrast, for fast drug absorption, longer acting drugs
reduce the risk of resistance (figure 2f). These trends are inde-
pendent of the degree of resistance of the mutant strain, and
are robust to variations in other parameters (see the electronic
supplementary material, Discussion and figures S5 and S6 for
details).

The ETF also plays an important role in explaining the
risks of de novo resistance emerging, but through different
mechanisms. The rate at which rescue mutants are produced
depends on the product of the rate of mutant production
from residual WT replication before infection is controlled,
which is increased for lower drug efficacy during the ETE
and the establishment probability of these newly generated
mutants, which may be increased for either higher or lower
drug efficacy depending upon the degree of resistance of
the mutant strain (as was seen in the case of pre-existence).

Our findings suggest that the impact of drug kinetics on
the rate of mutant production dominates the effect on
mutant selection (and establishment probability). Drug pro-
files with higher efficacy shortly after treatment begins (e.g.
frequently dosed slow-absorbing drugs or long-acting fast

absorbing drugs) are associated with lower risks of resistance
from rescue mutants. There are two limiting cases again:
when dosing is frequent, the rescue probability depends
upon the time-averaged drug efficacy, whereas in the
limit of very infrequent dosing it depends upon the initial
drug efficacy.

In summary, long-acting therapy increases the risk of
resistance owing to rescue mutations when drug absorption
is slow, and decreases it when drug absorption is fast.

(c) Resistant mutants produced owing to latency

reactivation

The infection model considered so far is applicable to infec-
tions like HCV that do not have persistent infected cell
populations [46]. As a result, the infection tends to be cleared
quickly as long as resistance does not emerge, which is why
the early drug kinetics play an outsized role in the risk of
resistance. Persistence, however, is a characteristic of many
chronic infections (e.g. HIV, HBV, TB, some types of malaria)
[5/47] that makes it difficult to design effective treatment
strategies to completely clear the infection. It is also an impor-
tant source of resistance. Reactivation events from this pool
(‘latent reservoir’) of persistent infected cells can lead to the
introduction of resistant mutants that establish infection
[35,48,49]. The rate at which resistant mutants are produced
and go on to establish infection (‘rescue’ owing to reactiva-
tion) is dependent upon the details of the drug kinetics and
hence, we expect it to be influenced by the drug dosing fre-
quency. With this in mind, we investigated how long-acting
therapy affects the emergence of a resistant infection owing
to the reactivation of latent infected cells.
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Figure 3. Effect of drug dosing intervals on the establishment of resistance owing to latency reactivation. (a) Model schematic showing the two ways in which
resistant mutants can be produced via a latent infection (square). (b) Example drug efficacy €(t) versus time curves for WT (e,,) and resistant (e,) strains under the
fast absorbing drug model. The purple curve corresponds to a high drug efficacy with R* < 1 for all points of the drug cyde. B > 1 for approximately 23% of each
period for the lower efficacy drug (green). (c—e) Average probability of rescue per latency reactivation event as a function of the drug dosing interval for different
drug efficacy profiles and degrees of resistance. Colours darken with increasing T keeping constant time-averaged efficacy. Black marks in (c) denote results of the
stochastic simulation of the model. See the electronic supplementary material, Methods for details on the parameter values.

We modelled two ways in which resistant mutants can be
introduced during a persistent infection (electronic sup-
plementary material, Methods)—reactivation of a latently
infected lineage that is already resistant (we assume that a
fraction of the latent population given by mutation-selection
balance was resistant at the time it was seeded), or reactiva-
tion and subsequent replication of WT infection that
generates a resistant mutant (figure 34). Summing up these
possibilities, we calculated the average probability of rescue
per latency reactivation event (electronic supplementary
material, Methods).

We found that depending upon the degree of WT inhi-
bition between doses, long-acting therapies are associated
with the same or increased risk of resistance as compared
to frequent dosing (figure 3c). When the drug efficacy is
high enough that the WT is suppressed (R”<1) for the
entire the drug cycle, the average rate of rescue has no depen-
dence upon the dosing interval (purple curve in figure 3c). In
the absence of WT replication, resistance can arise only via
mutants that pre-exist in the latent reservoir. Since we
assume the rate of reactivation is constant and independent
of the drug kinetics, the risk of resistance in this case does
not depend upon the drug dosing frequency. However,
when the drug efficacy is lower and the WT can replicate
during the times of lowest drug levels (R” > 1), despite still
being suppressed overall ( (R®) <1), the rate of rescue has
a strong dependence upon the dosing intervals and increases
for longer acting drugs (green curve in figure 3c). The slow
decay of longer acting drugs leads to more time in the non-
suppressive part of the dosing period, enabling the WT to
undergo multiple rounds of replication before eventually

getting suppressed by the next dose, and increases the
chance that a resistant mutant is produced and establishes
infection. These results are irrespective of the degree of resist-
ance of the mutant strain (figure 3d) and the drug absorption
rates (figure 3e).

In summary, during a persistent infection, long-acting
therapies are associated with an increased risk of resistance
if there is sub-optimal WT suppression in the lowest parts
of the drug cycle.

(d) Impact of non-adherence on resistance for different
dosing intervals

The previous sections show how drug kinetics influence the
risk of resistance when there is perfect adherence to treat-
ment. In reality, treatment adherence is known to be sub-
optimal, especially for chronic infections, and is associated
with the risk of resistance for daily therapies. We, therefore,
evaluated how imperfect adherence to therapy influences
the relationship between drug dosing intervals and the risk
of resistance. We assumed each scheduled dose was taken
or missed randomly and independently with a probability
given by the adherence level (electronic supplementary
material, Methods) and analysed the effect of dosing intervals
on the probability of a resistant infection owing to the differ-
ent sources of mutations, for varying levels of adherence
(figure 4). While in reality low enough adherence levels can
allow for treatment failure to occur without resistance, just
due to rebound of the WT strain, we were not interested in
this effect and so ensured that the system stayed in the
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Figure 4. Effect of non-adherence on the establishment of resistance for different drug dosing intervals. Results for a mutant fully (top row) and partially (bottom
row) resistant to treatment. (a,d) Establishment probability of pre-existing mutants. (b,e) Probability that at least one rescue mutant is produced. (c,f) Average
probability of rescue per latency reactivation event. Results are for the fast absorbing drug model with the solid black line in each subplot corresponding to results
for perfect adherence. Imperfect adherence results are medians of 100 iterations for pre-existence and rescue, and 500 iterations for latency. The error bars
correspond to the interquartile range. X-axis positions are offset for ease of visualization.

regime where the WT has a lower fitness than the resistant
strain and is suppressed by treatment.

We found that for both pre-existing and rescue mutants,
long-acting drugs were more robust to the effects of treatment
non-adherence, with the same observed overall trends relat-
ing the risk of resistance to the frequency of dosing as for
perfect adherence (figure 4a,b,d,e). Long-acting drugs are
more robust in this case because the risk of resistance is
mainly dependent upon the treatment strength during the
ETF. The number of doses taken during this time frame
decreases as the dosing interval increases, reducing the
chance one of them is missed. As by definition the first
dose is always taken, the risk of resistance is the same as
that for perfect adherence when the dosing interval is equal
to or larger than the ETF. These results are independent of
the specific model chosen for adherence (see the electronic
supplementary material, Methods and figure S7 for results
with an alternative adherence model in which missed doses
can be taken on any subsequent day, instead of waiting for
the next scheduled dose).

In agreement with previous modelling work [35,39], we
found that non-adherence generally—but not always—pro-
motes the emergence of resistance. In the case of fully
resistant pre-existing mutants, lower adherence actually
lowers the establishment probability (figure 4a). With lower
adherence, the WT infection is less effectively suppressed,
which increases competition for target cells and makes it
more difficult for the resistant strain to establish. This high-
lights the more general observation from other modelling
studies [27,38,50] and experiments [51,52] that an ‘aggressive’
treatment (e.g. high initial drug levels) does not necessarily
lead to reduced resistance risk.

Depending upon the drug dosing frequency, imperfect
adherence can significantly increase (by orders of magnitude)
the risk of resistance during a persistent infection irrespective
of the degree of resistance of the mutant strain (figure 4c,f).
The non-monotonic pattern of resistance risk versus dosing
period and large error bars imply that the resistance risks are
very sensitive to the state of the system at the time the
mutant arises. When drugs are very long-acting (drug dosing
period larger than approximately two months), imperfect
adherence does not play much of a role—missing a dose
causes WT infection to rebound without selecting for resist-
ance. However, for shorter dosing periods the risk of
resistance is predominantly increased, apart from an intermedi-
ate regime. This trend is a combined effect of the rate at which
resistant mutants are produced from the WT and competition
between the two strains for uninfected cells once the resistant
mutants have been produced. The risk of resistance is highest
in the regime where missing a dose leads to a burst of WT repli-
cation and mutant production, but where there is enough WT
suppression overall that a resistant strain can establish infec-
tion. This is also why the overall rates of resistance are higher
if we instead consider an alternative adherence model where
individuals are given the chance to take a missed dose on
any subsequent day, instead of waiting for the next scheduled
dose (electronic supplementary material, Methods, Discussion
and figure S7). Although on average the number of missed
doses are equivalent in both models, the distribution of the
number of days between doses is narrower in the second
model and results in drug levels reaching highest-risk inter-
mediate levels more frequently.

The results presented in this work correspond to a model
where we assume that the resistant strain is one mutational
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Table 1. Summary of the effect of long-acting drugs on the risk of resistance during therapy. ('t" means that the probability of drug resistance emerging
during long-acting therapy is higher compared to daily dosing (with the same average, peak, and minimum levels), and ‘|’ means the opposite. Dotted arrows
indicate minimal effect. For resistance arising from mutations that are either ‘pre-existing’ at the time treatment starts or from ‘rescue’ (de novo) mutations
produced by residual replication before WT infection is suppressed, the speed of drug absorption (relative to clearance) is the important pharmacokinetic factor
determining resistance risk. For resistance arising from reactivation of persistent infection long after therapy initiation, the inhibitory effect of the minimum drug
level is the most important pharmacokinetic factor determining resistance risk (with a more minor role played by the drug absorption rate and degree of
resistance). Results come from simulations with a specific infection model and parameter values, and while our analyses suggest trends are relatively general,
the magnitude of the effect will change with model details (see the electronic supplementary material, Discussion for more details).)

source of resistance drug kinetics model

degree of resistance

full

pre-existing slow drug absorption 3§ T
fast drug absorption 4 11
rescue slow drug absorption ) 0
fast drug absorption l l
latency reactivation suppressive minimum drug level no change no change
non-suppressive minimum drug level 1 1

step away from the WT. However, we find that the results
also qualitatively hold for a more complex mutational path-
way (see the electronic supplementary material, Methods
and figure S8 for more details).

To summarize, longer acting drugs are more robust to the
effects of imperfect adherence when drug resistance is
expected to arise owing to mutants pre-existing or generated
early on after the start of treatment. During a persistent infec-
tion, non-adherence to long-acting drugs can dramatically
increase the risk of resistance occurring if latent infection
reactivates compared to daily dosing.

4. Discussion

New long-acting antimicrobial therapies are being developed
to improve patient adherence and reduce treatment failure
[9]. Although these drug formulations are likely to reduce
missed doses, it is unclear whether this alone will lead to
better treatment outcomes. Therapies with extended half-
lives can lead to long-term exposure to intermediate drug
levels, which could promote the evolution of drug resistance
[25,26]. A systematic study of the relationship between drug
dosing kinetics and the risk of resistance is, therefore, essen-
tial to the development and optimization of new long-acting
therapies.

In this study, we found that the interplay between time-
varying drug concentrations in the body and competing
pathogen strains results in a complicated effect of drug
dosing intervals on the evolution of resistance (table 1).
Using models of infection dynamics within hosts, we show
that when resistance mutations pre-exist before treatment
and confer complete resistance, long-acting therapies increase
the resistance risk if drug absorption is fast and reduce it if
drug absorption is slow. These trends can be reversed if
pre-existing mutants confer only partial resistance. These
opposing results suggest that in cases where complex resist-
ance pathways exist, full disease and treatment-specific
models that attempt to account for realistic fitness landscapes
of resistance—such as the model developed by Raja et al. [53]
or the one developed by Kirtane et al. [54]—will be needed to

evaluate the risks of resistance and guide treatments. When
the main source of resistance is mutants produced de novo
via residual WT infection after treatment begins (‘rescue’),
then irrespective of the degree of resistance, long-acting
drugs reduce the resistance risk if drug absorption is fast
and increase it if drug absorption is slow. Our results demon-
strate that resistance risk owing to both pre-existing and
rescue mutations is dominated by drug kinetics (treatment
strength) and infection dynamics in a short initial time
window after treatment begins, which we call the ‘establish-
ment time frame’. It is worth noting that our analysis
essentially amounts to calculating the fixation probability of
a mutant under time-varying selection pressures, a compli-
cated problem that has been studied in the field of
population genetics. We relate our findings to previous
work in the electronic supplementary material.

Treatment for infections such as HIV and TB can be com-
promised by persistent sources of infection which are not
rapidly cleared by therapy. For resistance arising from reacti-
vation of persistent reservoirs, early drug kinetics (and thus
the absorption speed of long-acting therapies and the
degree of resistance) become less important. Resistant
mutants can arise at any time from pre-existing mutant popu-
lations in the persistor pool, or get generated during
breakthrough replication of WT cells from the persistent
population when drug levels are low. We found that during
persistent infection, longer-acting therapies increase the risk
of resistance if the drug is not fully suppressive during the
lowest drug levels. Long-term exposure to low drug levels
can allow WT populations that reactivate from latency to tem-
porarily grow, significantly increasing the chance that
resistant mutants are generated and expand. Individual phys-
iological differences in drug absorption, distribution,
metabolism and excretion mean that the suppressive action
of therapy can vary significantly across a population, and
previous studies have stressed the need to individualize treat-
ment regimens [32,55]. Our findings suggest that this need
might be even more acute for longer-acting therapies.

Imperfect treatment adherence is a major challenge for
long-term antimicrobial therapy and can facilitate the emer-
gence of resistance. While the development of long-acting
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therapies was motivated by the need to improve adherence,
their robustness to missed doses has not been evaluated.
Mathematical models have helped provide valuable insights
into understanding the complex and at times surprising
effects of treatment non-adherence [31-36,39,56]. Extending
this work to long-acting therapies, we find that the effects
of imperfect adherence depend on whether there is a persist-
ent source of infection. In its absence, long-acting drugs are
more robust to the effects of imperfect adherence compared
to more frequent dosing, since it is less likely doses will be
missed in the critical early time frame during which WT
infection is cleared before resistant strains can be produced
or effectively compete for resources. However, if there is a
persistent population from which infection can reactivate
during later periods of non-adherence, then some intermedi-
ate dosing frequencies lead to dramatically higher resistance
risks.

Our model assumes a single well-mixed pathogen popu-
lation. In reality, pathogen subpopulations can reside in
tissues and organs where drug absorption and pathogen
dynamics may be significantly altered [57-59]. Previous
work has considered the consequences of spatial heterogen-
eity on treatment efficacy and the role it can play in
facilitating the emergence of drug resistance [60-66]. In our
analysis, the rate of drug absorption played an important
role in determining the risk of resistance to long-acting thera-
pies. Since drug absorption and clearance can differ between
tissues, we suspect that the relationship between the fre-
quency of dosing and the emergence of resistance could be
more complex for compartmentalized infections.

The injectable combination cabotegravir/rilpivirine is the
only long-acting antiretroviral therapy for HIV in late-stage of
clinical trials, and after showing non-inferiority to the current
standard daily oral dosing it was recently approved for use in
many countries [10,11,67,68]. Our analysis provides some
insight into what to expect long-term. In these trials, partici-
pants initiating therapy were given standard daily doses until
viral suppression was achieved, after which they were ran-
domly assigned to a longer dosing schedule (four or eight
weeks) or kept at daily dosing as a control. Our analysis
suggests that by switching to longer-acting therapy only
after viral suppression is achieved, the risk of resistance
from pre-existing or rescue mutations during the critical
ETF may be negated. HIV infection will still persist indefi-
nitely in the latent reservoir and may reactivate during
periods of non-adherence, but results suggest that long-
acting therapy will not be associated with an increased risk
of resistance if drug levels are kept high enough in all indi-
viduals to ensure WT suppression even at the lowest points
of the drug cycle, which existing pharmacokinetic data sup-
ports [69,70]. The rates of non-adherence for these monthly
or bi-monthly injections has yet to be determined.

1. Arts E, Hazuda D. 2012 HIV-1 antiretroviral drug 3. Webster D, Klenerman P, Dusheiko G. 2015 Hepatitis
C. Lancet 385, 1124-1135. (doi:10.1016/50140-

therapy. Cold Spring Harb. Perspect. Med. 2,

7681-7686. (doi:10.1101/cshperspect.a007161) 6736(14)62401-6)

Long-acting drugs are also being considered for prophy-
lactic use to improve adherence and increase effectiveness in
preventing infection, for example for HIV and malaria
[14,71,72]. For long-acting preventative therapy, there are con-
cerns about the emergence of resistance owing to long-term
exposure of intermediate drug levels if prophylaxis is insuffi-
cient to prevent infection, or is initiated during an
undiagnosed acute infection [73,74]. Penrose et al. [74] report
an instance of infection with WT HIV and subsequent
selection of a resistant virus owing to persistent exposure to
long-acting pre-exposure prophylaxis (PrEP). In addition,
Radzio-Basu et al. [73] show in a macaque model that
initiating long-acting PrEP during acute simian-human immu-
nodeficiency virus infection can frequently select mutations
conferring resistance to therapy and are maintained for several
months. Although we have not considered prophylactic use
directly, some of our results seem qualitatively applicable.
The risk of resistance if prophylaxis is unknowingly started
during acute infection may be similar to our findings for the
risk due to rescue mutations after therapy initiation. The risk
of resistance during breakthrough infections is likely to
depend on drug kinetics in a similar way to that of reactivating
persistent infection, but the chance of breakthrough infection
itself may require a more specific model of transmission.

Our findings underscore the importance of explicitly
modelling drug kinetics, since time-averaged drug efficacy
is a poor proxy for resistance risk. Future work should
focus on developing application-specific models that use
data-driven pharmacodynamic, pharmacokinetic and evol-
utionary parameters. Such models can help guide future
dose-optimization and implementation tasks for long-acting
therapies for globally important infectious diseases.

Our code is open access on GitHub: https://github.
com/anjalika-nande/drugkinetics-resistance. The data are provided
in the electronic supplementary material [75].
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