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Simple Summary: Both the annotation and identification of genes in pathogenic parasites re-
main challenging. As a survival factor, nitric oxide (NO) has been proven to be synthesized in
Trichomonas vaginalis (TV). However, nitric oxide synthase (NOS) has not yet been annotated in the
TV genome. By aligning whole coding sequences of TV against a thousand sequences of known
proteins from other organisms via the Smith–Waterman and Needleman–Wunsch algorithms, we
developed a witness-to-suspect strategy to identify incorrectly annotated genes in TV. A novel NOS of
TV (TV NOS) with a high witness-to-suspect ratio, which was originally annotated as a hydrogenase
in the NCBI database, was successfully identified. We then performed in silico modeling of the
protein structure and the molecular docking of all cofactors (NADPH, tetrahydrobiopterin (BH4),
heme and flavin adenine dinucleotide (FAD)), cloned the gene, expressed and purified the protein,
and ultimately performed mass spectrometry analysis and enzymatic activity assays. We clearly
showed that although the predicted structure of TV NOS is not similar to that of NOS proteins of
other species, all cofactor-binding motifs can interact with their ligands with high affinities. Most
importantly, the purified protein is a functional NOS, as it has a high enzymatic activity for generating
NO in vitro. This study provides an innovative approach to identify incorrectly annotated genes.

Abstract: Both the annotation and identification of genes in pathogenic parasites are still chal-
lenging. Although, as a survival factor, nitric oxide (NO) has been proven to be synthesized in
Trichomonas vaginalis (TV), nitric oxide synthase (NOS) has not yet been annotated in the TV genome.
We developed a witness-to-suspect strategy to identify incorrectly annotated genes in TV via the
Smith–Waterman and Needleman–Wunsch algorithms through in-depth and repeated alignment
of whole coding sequences of TV against thousands of sequences of known proteins from other
organisms. A novel NOS of TV (TV NOS), which was annotated as hydrogenase in the NCBI database,
was successfully identified; this TV NOS had a high witness-to-suspect ratio and contained all the
NOS cofactor-binding motifs (NADPH, tetrahydrobiopterin (BH4), heme and flavin adenine dinu-
cleotide (FAD) motifs). To confirm this identification, we performed in silico modeling of the protein
structure and cofactor docking, cloned the gene, expressed and purified the protein, performed mass
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spectrometry analysis, and ultimately performed an assay to measure enzymatic activity. Our data
showed that although the predicted structure of the TV NOS protein was not similar to the structure
of NOSs of other species, all cofactor-binding motifs could interact with their ligands with high
affinities. We clearly showed that the purified protein had high enzymatic activity for generating NO
in vitro. This study provides an innovative approach to identify incorrectly annotated genes in TV
and highlights a novel NOS that might serve as a virulence factor of TV.

Keywords: bioinformatic; gene annotation; novel nitric oxide synthase; Trichomonas vaginalis; protein
structure prediction

1. Introduction

With advances in next-generation sequencing (NGS) and the falling cost of genome
sequencing, sequence annotations in gene identification and prediction remain challeng-
ing [1]. In addition, few of these predictions have been curated experimentally. The
sequence-to-function gap is still a challenge for scientists, despite tremendous increases
in sequencing speed [2]. Genome annotation involves two types of processes. One is
genome structure annotation, which identifies genes and their intron–exon relationships.
The other is genome function annotation, which uses database data, such as gene ontology,
for annotations [1]. Through functional annotation to understand the function of sequences
in an organism, we can conduct a comprehensive analysis of upstream and downstream
information, including new gene discovery, repeated sequence determination, regulatory
gene determination, and complete genetic analysis [3]. However, some studies have shown
that with the widespread use of systematic automated annotations, the proportion of se-
quences that are misannotated in public databases is also increasing; thus, future solutions
for misannotation are indispensable [4,5].

Many studies indicate that nitric oxide synthase (NOS) is found in a wide range of
organisms, including bacteria and animals, and that a few algae and protists have similar
NOS-like structures or activity [6–11]. Although the evolution of NOS varies among or-
ganisms, they still have similar conserved domains [9]. NOS plays an important role in
the reduction–oxidation reaction within organisms, which requires NADPH to provide
electrons, catalyzes L-arginine and oxygen, and generates L-citrulline and nitric oxide
(NO) [9,12,13]. The activated form of NOS is a homodimer structure, including the NOS
oxygenase domain (NOSoxy) with a heme protein and the NOS reductase domain (NOSred)
with a cofactor flavoprotein. Within mammals, calmodulin (CaM) transfers electrons from
the reductase domain to the oxygenase domain [7,12–15]. In addition, NO is related to
a number of important physiological functions in mammals, including vasoconstriction,
nerve conduction, and immune response [16]. Studies have shown that the NOS genes and
protein products in animals have similar characteristics (e.g., 56.3–60.9% identity in NOS
sequences in humans) and the intron position in the NOS gene is also highly conserved,
indicating that they may derive the NOS gene of Metazoa [16]. A protein in the protist
Physarum polycephalum acts similarly to mammalian NOS during spore formation. Although
its sequence identity to known NOS is less than 39%, it contains a conserved binding do-
main common to all NOS [13,17]. Among photosynthetic autotrophs, Ostreococcus tauri is
the earliest algae that has been found to have NOS activity; the protein has a similarity of
44–49% to human NOS and contains both NOSoxy and NOSred domains [8,14]. Bacteria
can produce NO via bacterial NOS (bNOS) and different types of bacteria have different
purposes for NO. In addition to UV resistance, against oxidative and antibiotic stress,
NO is also involved in synthesizing nitro compounds, as well as transcription adjust-
ment and other functions [9,18,19]. Most bNOS structures consist of the NOSoxy domain
alone and may obtain electrons from endogenous NAD(P)H reductase, but a few bNOS
are multidomain.
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T. vaginalis (TV) is a microaerophilic unicellular protozoan that parasitizes the human
urogenital tract epithelium and its genome was completely sequenced in 2007 [20]. With
six chromosomes, the number of genes is predicted to be approximately twice that of a
human and it also possesses highly repetitive gene sequences. It is speculated to adapt to
changes in the urogenital environment [20]. In 2006, Harris et al. [21] proposed the presence
of NOS activity in two microaerophilic parasites, including TV and Giardia intestinalis.
They found that under aerobic conditions, TV displays NOS activity and turns arginine
into citrulline and nitric oxide [6,22]. The two species of anaerobic protists are similar in
their evolutionary classification [22]. In addition, Harris et al. [6,21] proposed that the
sequence structure may encode two NOS isoforms. In 2007, Morrison et al. [23] reported
that G. intestinalis uses the arginine dihydrolase (ADH) pathway to metabolize arginine
and perform NO biosynthesis. The ADH pathway in TV was noted by Carlton et al. [20]
in 2007. Arginine is also an important source of energy. TV is a kind of eukaryote, but it
lacks mitochondria and alternatively has a hydrogenosome for fermentative carbohydrate
metabolism. Studies in the past found that the hydrogenosome of TV turns arginine
into citrulline and ammonia through arginine deiminase (ADI). This step is a part of the
energy production process of putrescine biosynthesis through the ADH pathway [24,25]. In
addition, TV hydrogenosomes produce more NO and enhance hydrogenosomal membrane
potential in an iron-restricted environment to maintain cell survival [26].

The gene annotation of NOS in TV has not been validated in the past 2 decades,
although the gene annotation of G. intestinalis was completed in 2010 [23,27,28]. There-
fore, the blastp (protein–protein BLAST) results were obtained from NCBI using NOS of
G. intestinalis. Unfortunately, the closest comparison with other species was found to be
iNOS in house mice, but no sequence similar to that in TV was found. Hence, there is still
little information available regarding NOS in TV [21]. Here, we use a hybrid annotation
method by combining the Smith–Waterman algorithm and the Needleman–Wunsch algo-
rithm to systematically explore and annotate NOS in TV. In the Smith–Waterman algorithm,
the similarity of partial regions is a priority and has higher sensitivity, which is used for the
comparison of cross-species proteins. In the Needleman–Wunsch algorithm, the sequences
of two pairs are aligned, regardless of their length, and compared from beginning to end,
which can be used for comparison of highly similar sequences. By using these methods,
our study hopes to identify the novel NOS gene in TV.

2. Materials and Methods
2.1. Sequence Retrieval, Data Reduction, Witness-vs.-Suspect Search, and Hybrid-Alignment
Annotation Method

Traditionally, the process of gene annotation in an organism is to use gene sequences
of that organism as queries to search against all annotated genes of other species in the
database. Misannotation sometimes occurs when a query sequence is analogous to more
than one family of genes. To avoid the ambiguous situation, we used a reverse approach
to focus on identifying only one gene family in one species in which the gene family has
never been identified. In this study, a witness-to-suspect strategy was used to dig out the
unidentified NOSs in Trichomonas vaginalis. In this way, we can remove interference from
the sequences of unrelated genes during gene identification. As shown in the flowchart in
Figure 1, our approach can be divided into four steps.

First, we collect sequences of a single-protein family, such as annotated nitric oxide
synthase from all species to serve as queries (i.e., witnesses) and collect whole sequences
(i.e., suspects) of a single organism such as Trichomonas vaginalis as subjects (Figure 1A). In
terms of NOS, sequences of non-Trichomonas-vaginalis NOS from NCBI proteins database
were defined as witnesses, while all protein sequences of Trichomonas vaginalis from NCBI
proteins database were defined as suspects. As a result, in total, 14,107 NOS sequences
from all species and 120,958 TV sequences were downloaded and exported as FASTA files
from NCBI protein database.
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study. (A) Protein sequences of non-TV organisms were retrieved from NCBI database to serve as 
witnesses, while sequences of all TV proteins were retrieved to serve as suspects. (B) Duplicates of 
the retrieved sequences were removed to keep unique sequence for each witness or suspect. (C) 
Smith–Waterman algorithm were performed as the first step of the hybrid alignment method to 
identify suspects with a score greater than 100 bits by using non-TV NOSs as query sequences. (D) 
Needleman–Wunsch algorithm was performed as the second step of the hybrid alignment method 
to determine the final candidates with high witness-to-suspect ratios. 
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quence sets as inputs for analysis 

Third, we performed a witness-to-suspect search with Smith–Waterman (SW) algo-
rithm (Figure 1C, the first step of hybrid-alignment annotation method). Using SW algo-
rithm, query sequences of a single family from multiple species serve as witnesses to iden-
tify the suspects belonging to the same gene family from all sequences of a subject single 
organism [29,30]. MATLAB R2014a software was used to perform the Smith–Waterman 

Figure 1. Flowchart illustrating the strategy and procedure of identifying TV NOS genes in this study.
(A) Protein sequences of non-TV organisms were retrieved from NCBI database to serve as witnesses,
while sequences of all TV proteins were retrieved to serve as suspects. (B) Duplicates of the retrieved
sequences were removed to keep unique sequence for each witness or suspect. (C) Smith–Waterman
algorithm were performed as the first step of the hybrid alignment method to identify suspects with
a score greater than 100 bits by using non-TV NOSs as query sequences. (D) Needleman–Wunsch
algorithm was performed as the second step of the hybrid alignment method to determine the final
candidates with high witness-to-suspect ratios.

Second, we used MATLAB to remove duplicates to keep unique sequences(Figure 1B).
After removing duplicates from using MATLAB, only 50,769 sequences of Trichomonas vagi-
nalis and 3639 sequences of NOS were left. We finally used the 50,769 and 3639 sequence
sets as inputs for analysis.

Third, we performed a witness-to-suspect search with Smith–Waterman (SW) al-
gorithm (Figure 1C, the first step of hybrid-alignment annotation method). Using SW
algorithm, query sequences of a single family from multiple species serve as witnesses to
identify the suspects belonging to the same gene family from all sequences of a subject sin-
gle organism [29,30]. MATLAB R2014a software was used to perform the Smith–Waterman
algorithm (local alignment) between all TV sequences and all the NOS sequences from
other species downloaded from the NCBI protein database. The output results after SW
analysis were used as an input into SPSS 22.0 for score sorting. Since each witness sequence
was compared and aligned with all suspect sequences of TV, one with highest score can
be regarded as one-time identification of a candidate NOS. After sorting from high to low
scores, sequences with a score greater than 100 bits, a threshold higher than the requirement
of NCBI database (40–50 bits), were regarded as a successful identification. The ratio of
identification of candidate NOS can be estimated [30]. The hit numbers of identification for
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each suspect were summarized as a percentage of all identification. All identified suspects
were collected as candidate genes for following global alignments.

Fourth, Needleman–Wunsch algorithm was used to perform global alignment between
the candidates to filter out low-confidence ones and keep the final top candidates [30]
(Figure 1D, the second step in the hybrid-alignment annotation method). After years of
research in our laboratory, the rule of thumb of our annotation method has proven that a
suspect with final witness-to-suspect ratio greater than 30 is a high-confidence suspect with
low false-positive identification. A pie chart was constructed to show the identification
percentages and a phylogenetic tree was used to find evolutionary relationships between
different species by MATLAB. We took the top 32 high-scoring NOS non-TV sequences and
two major TV NOS sequences for phylogenetic analysis. The output of MATLAB would
show the gene name TVAG_136330.

2.2. Structure Prediction and Models of TV

To simulate whole proteins, we used the alphafold2 advanced (https://colab.research.
google.com/github/sokrypton/ColabFold/blob/main/beta/AlphaFold2_advanced.ipynb) (ac-
cessed on 13 September 2021) and the RoseTTAFold (https://robetta.bakerlab.org/submit.
php) for the prediction of the structure (accessed on 7 December 2021). TV NOS PDB files
were created.

2.3. Predicting Domains Using a Bioinformatics Tool and Manually

The TV NOS sequences were annotated on the NCBI database as iron-only hydroge-
nase large subunit, C-terminal domain containing protein. This means that this protein
sequence function is considered to be a hydrogenase by NCBI. The results of the two
domain sequences in NCBI and InterPro are shown in the Supplementary Results [31].

The TV NOS FASTA sequences predicted with the NOS function were submitted to the
MPI Bioinformatics Toolkit (https://toolkit.tuebingen.mpg.de) (accessed on 15 November
2020) by the MUSCLE alignment tool and TV NOS was aligned with 4 A. flavus NOS [32].
Manual alignment with three human NOS domain sequences according to an article
published by Foresi was also arranged [8].

2.4. Predicting Calmodulin Binding Sites Using the Calmodulin Target Database and
HDOCK Server

The amino acid sequences of TV NOS were submitted to the HDOCK server (http://
hdock.phys.hust.edu.cn/) (accessed on 4 December 2021) to find probable calmodulin
binding sites. This tool allots it to predict the highest affinity for calmodulin binding.
Additionally, by using PDB created by alphafold2, protein–protein interactions were tested
by the HDOCK server.

2.5. Predicting Cofactor Binding Sites Using AutoDock FR Software

The PDB of TV NOS was submitted to AutoDock FR software (https://ccsb.scripps.
edu/adfr/) (accessed on 17 November 2021) to find probable cofactor binding sites (includ-
ing heme, BH4, FMN, FAD, and NADP). The manual alignment of the binding sites will
serve as a reference for the results of biding sites predicted by AutoDockFR.

2.6. Cloning of TV Nitric Oxide Synthase (TVAG_136330) Using a PCR-Based Accurate
Synthesis Method

DNA synthesis and gene cloning were conducted by a custom service provided by
Elabscience. The nucleotide coding region of TVAG_136330 was selected for full-length TV
NOS synthesis based on the published method called PAS (PCR-based Accurate Synthesis).
Briefly, multiple overlapping oligonucleotides (60 mer each) which cover the whole length
of coding region of TVAG_136330 were designed and chemically synthesized. A nested
PCR-based ligation and amplification of the overlapping fragments were performed to
gradually elongate the length of the coding regions. Subsequently, a forward primer with
BamHI site and a reverse primer with HindIII site were used to produce the full-length TV

https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/beta/AlphaFold2_advanced.ipynb
https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/beta/AlphaFold2_advanced.ipynb
https://robetta.bakerlab.org/submit.php
https://robetta.bakerlab.org/submit.php
https://toolkit.tuebingen.mpg.de
http://hdock.phys.hust.edu.cn/
http://hdock.phys.hust.edu.cn/
https://ccsb.scripps.edu/adfr/
https://ccsb.scripps.edu/adfr/
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NOS with start codon with restriction site sequence BamHI and stop codon with restriction
site sequence HindIII. Finally, after digestion with HindIII and BamHI restriction enzymes,
the PCR product was ligated to vector pFastBac1 (Invitrogen, Waltham, MA, USA) between
BamHI-HindIII sites and transformed to Escherichia coli TOP10 strain. The orientation and
sequence of inserted TV NOS was verified by Sanger DNA sequencing.

2.7. Subcloning of Gene and Expression of Recombinant TV NOS Proteins

Subcloning, protein expression, and purification were also conducted by a custom
service provided by Elabscience. Bac-to-Bac baculovirus expression system (Cat. No.
10359-016, Invitrogen, Waltham, MA, USA) was used to perform subcloning of gene and
expression and purification of histidine-tagged recombinant TV NOS proteins. First, the
pFastBac1 construction obtained previously was used to transform E. coli strain DH10Bac
to yield recombinant Bacmids through DNA recombination in the E. coli cells. Second,
purified recombinant Bacmids were then prepared by a standard method and transfected
Spodoptera frugiperda (Sf) insect cells with the virus stock. For expression of recombinant
TV NOS, baculovirus was amplified for three generations and infected to Sf9 cells cultured
in 200 mL of 1 × 106 cells/mL SF cells. After three days post infection of SF cells, the cells
were lyzed and the lysate was centrifugated to remove insoluble debris. Recombinant TV
NOS proteins were then purified by a standard affinity absorption to Nichel resins in a
column, washed with phosphate-buffered saline, and eluted with imidazole buffer. Finally,
the eluted proteins were verified by SDS-PAGE stained with Coomassie blue and Western
blotting stained with anti His-Tag antibodies.

2.8. Verification of Recombinant TV NOS Proteins by Mass Spectrometry

In addition to verifying the purified TV NOS using SDS-PAGE and Western blot anal-
ysis, we further verify the sequence of the purified TV NOS proteins by mass spectrometry.
Briefly, fifty micrograms TV NOS protein was dissolved in 6M urea, reduced with 5 mM
di-thiothreitol for 45 min at 29 ◦C, alkylated with 10 mM iodoacetamide in the dark for
45 min at 29 ◦C, and digested with 1 µg trypsin (MS-grade, Promega, Madison, WI) at
29 ◦C for 16 h. The reaction was terminated by adding 10% trifluoroacetic acid (TFA)
to a final concentration of 0.5% TFA and tryptic peptide solution was desalted with C18
ZipTip prior to LC-MS/MS analysis. The eluted peptides were dissolved in 0.1% formic
acid, separated using an Ultimate system 3000 nanoLC system (Thermo Fisher Scientific,
Bremen, Germany) equipped with a 75 µm ID, 25 cm length C18 Acclaim PepMap NanoLC
column (Thermo Fisher Scientific, San Jose, CA, USA) packed with 2 µm particles with
a pore of 100 Å. Mobile phase A was 0.1% formic acid in water and mobile phase B was
composed of 100% acetonitrile with 0.1% formic acid. The peptides were eluted at a flow
rate of 300 ng/mL with a gradient of 2% to 40% for 90 min. Mass spectra were acquired on
a Thermo Scientific™ Orbitrap Fusion™ Lumos™ Tribrid™ Mass Spectrometer (Thermo
Fisher Scientific, San Jose, CA, USA). Mass spectrometry analysis was performed in a
data-dependent mode with Full-MS (externally calibrated to a mass accuracy of <5 ppm
and a resolution of 120,000 at m/z 200) followed by MS/MS analysis of the most intense
ions in 3 s. High-energy collision-activated dissociation (HCD)-MS/MS (resolution of
15,000) was used to fragment multiple charged ions (Charge state 2–7) within a 1.4 Da
isolation window at a normalized collision energy of 32. AGC target at 5e5 and 5e4 was
set for MS and MS/MS analysis, respectively, with previously selected ions dynamically
excluded for 180 s. Max injection time was set as 50 ms.

Peptides were identified with version v2.0.3.1 against TrEMBL Database (Trichomonas
vaginalis version 2022_03). An output MS2 mass spectrometry representative for FMN
binding site was obtained and depicted from MaxQuant software (https://www.maxquant.
org/) (accessed on 20 March 2022) The sequence coverage of MS was also obtained and
depicted from MaxQuant software.

https://www.maxquant.org/
https://www.maxquant.org/
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2.9. NOS Activity Assay

NOS activity of the cell lysate and purified proteins was measured by a modified
Griess reaction using a fluorometric kit (Nitric Oxide Synthase Assay Kit, Fluorometric,
Biovision, K206, Milpitas, CA, USA). Protein concentrations of cell lysate and purified
proteins were quantified by using Bradford method with bovine serum albumin as the
standards. Finally, specific activity of NOS was calculated by normalized against the protein
concentrations and converted to activity units according to the manufacturer’s protocol,
in which one unit of NOS activity is defined as the amount of enzyme required to yield
1.0 umol of nitric oxide/min at 37 ◦C.

3. Results
3.1. Hybrid Annotation Method by Combining the Smith–Waterman Algorithm and the
Needleman–Wunsch Algorithm

By using the Smith–Waterman algorithm and the Needleman–Wunsch algorithm,
the results showed a total of 273 identifications of non-TV NOS for searching candidate
NOS proteins in TV and the main sequences of TV NOS were recognized. A flowchart
of the thought process for this Hybrid Annotation Method of the bioinformatic part is
shown in Figure 1. Manual alignment of domain sequences took place according to an
article published by Foresi [8]. TV NOS and four Aspergillus flavus NOS protein sequences
were submitted to the UniProt website for sequence alignment. Manual alignment of the
domain (Heme, BH4, Calmodulin, FAD, FMN, NADPH sites) is shown in Figure 2. The
phylogenetic analyses were performed with MATLAB 2014a first, including all top 32
high-scoring NOS protein sequences from other species and TV NOS protein sequences.
The results showed that the closest species was four Aspergillus flavus NOS according
to phylogenetic analysis (Figure 3). A total of 273 identifications of non-TV NOS stand
for searching candidate NOS proteins in TV (Figure S1a). The entire pie chart is evenly
distributed, which means that the TV NOS protein sequence is not recognized as candidates
with probable NOS function by a single species. In other words, 273 identifications of the
non-TV NOS sequences contributed averagely to the identification of the TV NOS protein.
In total, six sequences of the TV sequences were recognized as candidates with probable
NOS function (Figure S1b). The major genes named TV NOS were recognized. TV NOS
revealed the gene names of TVAG_136330.

3.2. Protein Structure Prediction and Simulations of TV NOS and by RoseTTAFold and AlpaFold2

With the advancement in artificial intelligence, alphafold and RoseTTAFold can help
us to predict the protein structure and perform in silico molecular docking with vital
cofactors of NOS (NADPH, BH4, heme, FAD) to reduce unnecessary experimental steps,
time, and costs (Figure 4). The RoseTTAFold models were calculated at the server. (https://
robetta.bakerlab.org/submit.php) (accessed on 7 December 2021) The confidence scores are
like receiver characteristic curves area under curve (ROC AUC) and are used to assess the
predicted results. The confidence score 1 revealed good and 0 revealed bad. A value > 0.7
is considered to reflect a reasonable prediction model; a value > 0.8 is considered to reflect
a strong prediction model [33]. The result of the TV NOS confidence score by RoseTTAFold
was 0.82, which showed that the prediction is a strong candidate for answering queries
when the confidence score is greater than 0.7. Protein structure predicted by the Alphafold2
advanced server. (https://colab.research.google.com/github/sokrypton/ColabFold/blob/
main/beta/AlphaFold2_advanced.ipynb) (accessed on 13 September 2021) (Figure 4). In
2013, Valerio et al. proposed the Local Distance Difference Test (LDDT) for comparison of
protein structures and models by using a local superposition-free score [34]. The pLDDT
revealed a predicted local-distance difference test. A higher confidence value represents
better results. The pLDDT of Alphafold2 is between 0 and 100. The pLDDT of TV NOS
showed 84.05 with confident prediction (confident prediction ranged from 70 to 90 pLDDT).
The TM score represents the template modeling score. It reflects the similarity of two
proteins. If the protein pairs with a TM-score > 0.5, it reveals that they are mostly of the

https://robetta.bakerlab.org/submit.php
https://robetta.bakerlab.org/submit.php
https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/beta/AlphaFold2_advanced.ipynb
https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/beta/AlphaFold2_advanced.ipynb
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same fold [35]. The Template Modeling (TM) score of TV NOS was 0.6576, which indicates
that the protein has the same fold (TM score > 0.5) (Table 1).
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CaM prediction biding sites (C) FAD and NADPH prediction binding sites (D) NADPH prediction
binding site.
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Table 1. Prediction of the 3D model of TV NOS in RoseTTAFold and AlpaFold2. Both proteins have
no close homologs in the Protein Data Bank (PDB).

Protein RoseTTAFold
(Confidence Score)

AlphaFold2
(pLDDT)

AlphaFold2
TM Score

TV NOS 0.82 (all models) 84.05 (model 1) 0.6576 (model 3)



Biology 2022, 11, 1210 11 of 20

3.3. Molecular Docking of TV NOS with Cofactors and NOS Inhibitor (L-NMMA)

Our docking analysis revealed that all the cofactors (Heme, BH4, FMN, FAD, NADPH)
exhibited binding energy (TV NOS: heme revealed −7.8 kcal/mol; BH4 revealed −7.2 kcal/mol;
FMN revealed −6.5 kcal/mol; FAD −10.6 kcal/mol; NADP −8.2 kcal/mol). NAPDH
plays a vital role in NOS activity. [36] Two-dimensional (2D) representation of TV NOS in
complex with Heme, BH4, FMN, FAD, and NADPH show interactions with conventional
H bonds, with interactions further stabilized by different amino acids around the TV NOS
backbone. Additionally, docking analysis revealed that the NOS inhibitor (L-NMMA)
exhibited binding energy (TV NOS docking with L-NMMA revealed −5.6 kcal/mol).
These results suggest that cofactors of NOS can bind to TV NOS protein. In addition,
NOS inhibitors can also show good binding affinity to TV NOS protein (Figure 5 and
Supplementary Materials, Figures S3–S8).
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Figure 5. Protein–cofactor interaction sites (A) and binding energies (B) calculated by autodock FR. The
structure of TV NOS used is from prediction of Alphafold2, while the structures of cofactors (Heme, BH4,
FMN, FAD, and NADPH) were downloaded from PubChem database. Predicted binding energies for
Heme, BH4, FMN, FAD, and NADPH were −7.8, −7.2, −6.5, −10.6, and −8.2 kcal/mol, respectively.

3.4. Prediction of the Protein–Protein Interaction of TV NOS with Calmodulin Protein

Calmodulin plays a vital key role in the physiological processes of NOS. Calmodulin
acts as a switch and allows electron transfer from the FMN subdomain to heme. Our in
silico protein–protein interaction of TV NOS with calmodulin protein revealed binding
sites from amino acids 513 to 527 compatible with our manual alignment. The docking
energy scores revealed −197.83 and the ligand rmsd from the input structures revealed
83.17 (Table 2).

Table 2. Prediction of protein–protein interactions by HDOCK of TV NOS.

Protein Docking Score Ligand rmsd Receptor–Ligand
Interface Residue Pair

TV NOS (receptor) −197.83 83.17 513–527Calmodulin (Ligand)

3.5. Experimental Validation of the NOS Gene in TV

To validate the putative NOS in TV, the TV NOS genes were cloned by using a
bac-to-bac protein expression system (Figures 6–8). Purification of TV NOS protein is
shown in Figure 7. To confirm protein identification, liquid chromatography-tandem
mass spectrometry (LC–MS/MS) was conducted using in-gel digestion and in-solution
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digestion. The results of LC–MS/MS and the analysis with species-specific amino acid
sequences revealed a coverage of 89% for TV NOS (Figure 7, Supplementary Materials and
Methods, Figures S12–S19 and Tables S1 and S2). The FMN polypeptide sequence fragments
covered in the LC–MS/MS data searched in NCBI BLASTp showed 100% identity and 100%
positives to the TV NOS protein sequence (gene name: TVAG_136330). The sequence search
analysis by a Mascot search revealed top scores of 30288 and 15708 with accession numbers
XP_001580488.1 and the UniProt database of reviewed Spodoptera frugiperda proteins
(TVAG revealed in-solution digestion and TV120 revealed in-gel digestion for 120 kDa,
respectively) (Table S1). These results confirm the presence of a TV NOS protein. The NOS
activity was detected by using the NOS Activity Assay Kit and is shown in Figure 9. The
results of the crude lysate of TV protein and TV NOS protein revealed enzyme activities
of 8.2970 and 6.160 (mu/mg), respectively, showing that both TV and TV NOS protein
had NOS activities. However, activity of TV NOS (mean = 0.009, SD: 0.002) was greatly
suppressed in Sf cells as compared to TV cells (mean = 8.2970, SD: 0.966) and purified TV
NOS proteins (mean = 6.160, SD: 0.176), suggesting that a certain NOS inhibitor exists in
insect cells, which can block NOS activity (Figure 9).
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synthase in TV, including (A) cloning of TVAG_136330 by using a PCR-based accurate synthesis
method, (B) subcloning of TVAG_136330 to the baculoviral vector, (C) transfection of sf-9 insect
cells with the baculoviral vector to generate virus, (D) transduction of insect cells with viruses to
overexpress proteins and performing protein purification, (E) verification of protein sequence by
mass spectrometry, and (F) verification of NOS activity in purified TVAG_136330 proteins.
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Figure 7. Electrophoresis and staining of biomolecules during the serial steps to clone TVAG_136330
gene and express TVAG_136330 proteins including (A) intact plasmids with gene insert, (B) digested
plasmids showing separated plasmid backbone and gene insert, (C) a crude protein sample (left) with
antibody staining of TV NOS (right), and (D) purified protein sample (left) with antibody staining of
TV NOS (right). Note that most impurities in protein were removed after purification.
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Figure 8. Mass-spectrometry-based sequence analysis of purified TVAG_136330 proteins. Both (A) 
peptide data with daughter ions which match the trypsin-digested FMN-binding sites 
(YCFCGHQLDK) and (B) a high sequence coverage which occupies 88.2% of protein length and 
includes all cofactor-binding sites indicate that the correct protein was successfully cloned and ex-
pressed. 

Figure 8. Mass-spectrometry-based sequence analysis of purified TVAG_136330 proteins. Both (A) peptide
data with daughter ions which match the trypsin-digested FMN-binding sites (YCFCGHQLDK) and (B) a
high sequence coverage which occupies 88.2% of protein length and includes all cofactor-binding sites
indicate that the correct protein was successfully cloned and expressed.
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Figure 9. Analysis of NOS activities in crude lysate from TV cells, in crude lysate from Sf insect cells
exogenously overexpressing TV NOS and with purified TV NOS proteins. Note that activity of TV
NOS (blue arrow, mean = 0.009, SD: 0.002) was greatly suppressed in Sf cells as compared to TV cells
(mean = 8.2970, SD: 0.966) and purified TV NOS proteins (mean = 6.160, SD: 0.176), suggesting that
certain NOS inhibitor exists in insect cells which can block NOS activity.

4. Discussion

The gene annotation of NOS in TV is now supported by our witness-to-suspect hybrid
bioinformatic annotation method and verified by experimental assay. In addition, we found
a novel NOS gene (TV NOS) that is compatible with Harris’s proposal.

In this study, we also compared the TV NOS amino acid sequence with the top three
highest scores of NOS amino acid sequences and the top three rank sequences in the Giardia
genome program (“GiardiaDB,” 2012) using BLAST provided by NCBI and MATLAB
software for multiple alignment. Many studies have revealed that NOS in different species
has an oxygenase domain as its central axis and many other studies have shown that
NOS in both evolutionarily classified prokaryotic bacteria and eukaryotic mammals has an
oxygenase domain [9]. However, the three Giardia NOS that are evolutionarily similar to
TV have no oxygenase domain and the conserved domains of the three domains in Giardia
were included in our two target sequences.

This study also extends the species of the top three highest rank NOS sequences
compared to the target sequence. Compared with TV NOS, the highest scores of the three
NOS sequences are sequentially predicted to be the NOS sequences of the Aspergilllus flavus,
the mammalian Rattus norvegicus, and the insect Lucidina biplagiata. Our results showed that
TV NOS may be similar to mammalian enzymes, which was comparable to Harris et al.’s
proposal [6,21]. That is, the species with high-NOS sequence similarity in comparison with
our target sequence are not restricted to prokaryotes or eukaryotes.

The annotation method in this study was to use the cross-species NOS sequence to
identify the presence or absence of the target protein in TV. We used the MUSCLE multiple-
sequence alignment tool to perform multiple alignment comparisons of TV NOS with three
kinds of human NOS. The results show that the identity of TV NOS and the three NOS is
between 23 and 27% and the positive (or similarity) is approximately 55–57%. Compared
with previous studies, O. tauri overlaps with human NOS sequences by 44–45% [8,37].
The consistency between P. polycephalum and the three animal NOS sequences is less
than 39% [17]. That is, TV NOS are less consistent with the sequence of the currently
known NOS.
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The NOS sequence of TV annotated in this study was found to have a partial structure
similar to that of the NOS reductase domain in the NCBI conserved domain search, but
it did not have similar oxidation domain features. Although TV NOS did not show
a similar oxidative domain in the NCBI conserved domain data, there are still some
sequences of iron-containing proteins (Fe2S2) that may replace the original heme protein
in the oxidized domain. It is well known that the electron flow in the NOS reaction is
NADPH –> FAD –> FMN –> heme –> O(2). TV NOS lacks a mammalian N-terminal
domain but contains a flavodoxin domain, a flavin adenine dinucleotide (FAD)-binding
domain, and a nicotinamide adenine dinucleotide (NAD)-binding domain structure at
the C-terminus, which is comparable to other species. The most interesting feature is that
the N-terminal domain contains iron-sulfur proteins (Fe-hydrogenase). Harel et al. [38]
reported several ancient connections between two iron-containing redox families (Fe2S2
and heme-binding domains). These protein families account for half of the metal-containing
oxidoreductases that may catalyze redox reactions. By modular evolutionary processes,
the heme-binding domains are probably derived from redox reactions, including both
anaerobic and aerobic respiration and photosynthesis [38]. Some studies revealed that NO
synthesis in D. radiodurans could be provided by a surrogate mammalian reductase domain
supplied in trans [39]. Wang et al. [40] reported that the flavodoxins of B. subtilis support
NO production. That is, different types of reductase proteins may support NO production.
Similar to the sequence in Sorangium cellulosum, TV also had an Fe2S2 cluster related to
electron chemistry in NOS [6,31]. Hunter et al. [41] and Sarkar et al. [39] proposed that
M. phaseolina possesses an oxygenase domain and that the flavodoxin domain analyzed by
InterPro may function as NOS (IPR008524). The result may be comparable to our finding
and InterPro also annotates TV flavodoxin/nitric oxide synthase but without experimental
validation. In addition, the variation among several species may hinder traditional gene
annotation, which can explain some cases of misannotation.

TV NOS was searched against the NOS-related sequences by NCBI BLAST and the
results of the first 100 search results were presented as a BLAST TREE. TV NOS is similar
to P. polycephalum NOS. Using different phylogenetic indicators, it was found that TV is not
only similar to prokaryote NOS but may also be similar to an NOS of eubacterial origin or
the early evolutionary branches of eukaryotes [42,43].

The rapid progress of artificial intelligence allows us to simulate 2D structures to
3D structures and by means of artificial intelligence, Alphafold2, so that we were able to
predict the oxygenase domains that were not predicted by Discovery Studio in the past
(Figure S9). The pLDDT and TM score values from the Alphafold2 program are meaningful
(Table 1). In addition, the well-known RoseTTAFold artificial intelligence algorithm can
also predict the structure of TV NOS and the confidence score is meaningful (Table 1). By
using alphafold and RoseTTAFold to predict the protein structure of TV NOS, in silico
molecular docking with vital cofactors of NOS (NADPH, BH4, heme, FAD) was performed
and revealed good binding affinities. Additionally, docking analysis with the NOS inhibitor
(L-NMMA) also showed good binding energy. These results showed various elements of
NOS activity in our TV NOS protein.

By simulating two protein 3D structures, we were able to simulate calmodulin binding
sites with the HDOCK server to understand protein–protein interactions (Table 2). By using
the HDOCK server to investigate the protein–protein interaction of TV NOS protein with
calmodulin, the results were found to be relatively consistent with the predicted binding
sites between amino acids 513 and 528 (Table 2).

The internal validation results obtained using our hybrid method successfully iden-
tified enzymes that were previously experimentally proven. External validation was
performed in our lab using previously published NOS-annotated Physarum polycephalum
and Ostreococcus tauri strains. By using our annotation method, NOS sequences of both
species can also be found. It is proved only by a dry-lab approach without further exper-
imental validation [17,37,44]. In addition, non-TV NOS pie charts consist of many small
fragments that show the diversity of species involved in the identification and are not
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contributed by a single species. In other words, 273 identifications of the non-TV NOS
sequences contributed evenly to the TV NOS protein. The TV sequence recognized by non-
TV NOS protein sequences presents a concentrated section representing the high identity of
the fragments identified by many species, so it is presumed that the two fragments with the
higher proportions are the probable NOS sequences of TV [30]. We infer that the candidate
sequence criterion can be set by the final witness-to-suspect ratio. When the final witness
number is greater than the final number of suspects and the final witness-to-suspect ratio is
greater than 30, by using our hybrid annotation method, the verification result is usually
valid (Table S3) [30].

Expression of the gene in the bac-to-bac protein expression system has advantages for
characterization because it is a eukaryotic protein expression system and TV is also a eukary-
otic organism. Kinetic assays confirmed that the recombinant TV NOS enzyme is functional.
However, the difficulty in conducting this study was NO production. Wu et al. [36] re-
ported that NO had a cytotoxic effect on SF 21 cells, making the collection of recombinant
NOS protein difficult. They proposed that this phenomenon was noted in other recombi-
nant transmembrane proteins [36]. In the past, we also used E. coli-competent cells for NOS
protein production and cytotoxic effects were also noted in our laboratory of TV NOS and
TV2 proteins [38,39]. Furthermore, difficulty in the production of NOS in the bac-to-bac
protein expression system was also noted during TV NOS recombinant protein expression
in our study. Validation of the TV2 gene by using the bac-to-bac protein expression system
in eukaryotic insect cells is for future work.

Although Harris et al. [6] proposed two isoforms of NOS in 2007 (UniProt KB No: Q8
WQT4, A2G9E0), the protein sequences of TV NOS were not similar to their findings. Our
findings provide novel biological insights into gene annotation. The discovery of a novel
NOS gene in TV has important implications, not only for medical research but also for
reducing the burden of costs in scientific studies. Our hybrid gene annotation method can
enable the rapid and accurate identification of unknown gene functions in multiple species.

5. Conclusions

As there are no previous studies on the functional annotation of TV NOS in this
study, our hybrid annotation bioinformatics methods were used to predict the TV NOS
sequences (novel TV NOS gene), whose NOS activity was experimentally verified, proving
that our annotation method is practical. Further applications may involve the gene function
annotation of other species.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/biology11081210/s1, Figure S1a. NOS-A total of 273 identifications of the
non-TV NOS protein sequences for searching candidate proteins. Figure S1b T. vaginalis—a total of
6 sequences of the T. vaginalis sequence recognized as candidates of NOS. Figure S2. Ligand–receptor
interaction results of Mus musculus protein (3DWJ) with heme. Three-dimensional (3D) represen-
tation of 3DWJ in complex with heme with the highest binding energy of −10.0 kcal/mol. The
accompanying table shows summary results of the analysis; Figure S3. Protein–cofactor interaction
results of TV NOS with heme. (a) Three-dimensional (3D) representation of TV NOS in complex with
heme with the highest binding energy of −7.8 kcal/mol. (b) Two-dimensional (2D) representation
of TV NOS in complex with heme, showing interactions with three conventional H-bonds, with
interactions further stabilized by different amino acids around the TV NOS backbone. The accompa-
nying table shows summary results of the analysis; Figure S4. Protein–cofactor interaction results
of TV NOS with BH4. (a) Three-dimensional (3D) representation of TV NOS in complex with heme
with the highest binding energy of −7.2 kcal/mol. (b) Two-dimensional (2D) representation of TV
NOS in complex with BH4, showing interactions with three conventional H-bonds, with interactions
further stabilized by different amino acids around the TV NOS backbone. The accompanying table
shows summary results of the analysis; Figure S5. Protein–cofactor interaction results of TV NOS
with FMN. (a) Three-dimensional (3D) representation of TV NOS in complex with heme with the
highest binding energy of −6.5 kcal/mol. (b) Two-dimensional (2D) representation of TV NOS in
complex with FMN, showing interactions with four conventional H bonds, with interactions further
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stabilized by different amino acids around the TV NOS backbone. The accompanying table shows
summary results of the analysis; Figure S6. Protein–cofactor interaction results of TV NOS with FAD.
(a) Three-dimensional (3D) representation of TV NOS in complex with FAD with the highest binding
energy of −7.7 kcal/mol. (b) Two-dimensional (2D) representation of TV NOS in complex with
FAD, showing interactions with ten conventional H bonds, with interactions further stabilized by
different amino acids around the TV NOS backbone. The accompanying table shows summary results
of the analysis; Figure S7. Protein–cofactor interaction results of TV NOS with NADP. (a) Three-
dimensional (3D) representation of TV NOS in complex with NADP with the highest binding energy
of −8.2 kcal/mol. (b) Two-dimensional (2D) representation of TV NOS in complex with NADP,
showing interactions with nine conventional H bonds, with interactions further stabilized by different
amino acids around the TV NOS backbone. The accompanying table shows summary results of the
analysis; Figure S8. Protein–cofactor interaction results of TV NOS with NOS inhibitor (L-NMMA).
(a) Three-dimensional (3D) representation of TV NOS in complex with L-NMMA with the highest
binding energy of −5.6 kcal/mol. (b) Two-dimensional (2D) representation of TV NOS in complex
with L-NMMA, showing interactions with seven conventional H bonds, with interactions further
stabilized by different amino acids around the TV NOS backbone. The accompanying table shows
summary results of the analysis; Figure S9. pFastBac1 Vector of TV NOS; Figure S10. Simulated
models of the TV NOS and TV2 reductase domains by Discovery Studio Alignment of sequence and
structure models. Superposition of the models of the TV NOS reductase domain (a) (cyan) and TV2
reductase domain (b) (green) with the structure of the rat nNOS reductase domain (PDB code: 1tll)
(gray). The backbone root mean square deviation (RMSD) was 8.1 and 6.8 Å for the models of the
TV NOS and TV2 reductase domains, respectively; Figure S11. Whole blot images and densitometry
readings of TV NOS proteins and his-tag controls. Figure S12. Mass spectrometry protein sequence
of the heme binding site; Figure S13. Mass spectrometry protein sequence of the BH4 binding site;
Figure S14. Mass spectrometry protein sequence of the calmodulin binding site; Figure S15. Mass
spectrometry protein sequence of the FMN binding site; Figure S16. Mass spectrometry protein
sequence of the FAD pyrophosphate binding site; Figure S17. Mass spectrometry protein sequence
of FAD isoaaloxazine binding site; Figure S18. Mass spectrometry protein sequence of NADPH
ribose binding site; Figure S19. Mass spectrometry protein sequence of the NADPH adenine binding
site; Figure S20. Internal validation and external validation of this bioinformatic method in our
laboratory [6]; Table S1. Protein list of LC/MS/MS identification in Spodoptera frugiperda and
the TVAG database (top 10 for each sample); Table S2. NOS cofactor binding sites, sequences and
TV NOS mass spectrometry protein sequences, including NCBI BLASTp results (including identity
and positives); Table S3. The summary of the ratio of i/j and i/30 in the annotation process in our
laboratory. Figure S21. The result of protein sequences of TV NOS submitted to INTERPRO website.
References [45–49] are cited in the Supplementary Materials.
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Abbreviations

TV Trichomonas vaginalis or T. vaginalis
NOS nitric oxide synthase
NGS next-generation sequencing
NOSoxy NOS oxygenase domain
NOSred NOS reductase domain
CaM calmodulin
bNOS bacterial NOS
ADH arginine dihydrolase
ADI arginine deiminase
IPGs identical protein groups
FMN flavine mononucleotide
NADPH nicotinamide adenine dinucleotide phosphate
BH4 tetrahydrobiopterin
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