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A Cluster-then-label Semi-
supervised Learning Approach for 
Pathology Image Classification
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Completely labeled pathology datasets are often challenging and time-consuming to obtain. Semi-
supervised learning (SSL) methods are able to learn from fewer labeled data points with the help of a 
large number of unlabeled data points. In this paper, we investigated the possibility of using clustering 
analysis to identify the underlying structure of the data space for SSL. A cluster-then-label method 
was proposed to identify high-density regions in the data space which were then used to help a 
supervised SVM in finding the decision boundary. We have compared our method with other supervised 
and semi-supervised state-of-the-art techniques using two different classification tasks applied to 
breast pathology datasets. We found that compared with other state-of-the-art supervised and semi-
supervised methods, our SSL method is able to improve classification performance when a limited 
number of labeled data instances are made available. We also showed that it is important to examine 
the underlying distribution of the data space before applying SSL techniques to ensure semi-supervised 
learning assumptions are not violated by the data.

Traditionally, there have been two fundamentally different tasks in the spectrum of pattern recognition and 
machine learning methods. On one side is supervised learning in which the goal is to learn a model from labeled 
data points. The learned model is then applied to an unseen test set and the method is validated based on how 
successful it was in assigning test data to different classes. The disadvantage of supervised learning techniques is 
that they are limited to learning from labeled datasets which are often expensive, time consuming, or difficult to 
generate. If the available labeled dataset is too small and does not represent the true variance of the data space 
then generalization performance may be poor. This issue is even more decisive in the medical image analysis 
domain since generating high quality datasets requires the effort of experienced and trained human observers. On 
the other side of the spectrum are the unsupervised learning methods in which unlabeled data points are grouped 
into clusters that share similar properties. Unlabeled datasets are often easier to acquire and require less human 
effort to create, however, since the information provided to these techniques is unlabeled, there is no clear way 
to validate the quality of this approach. In contrast to supervised learning, which only considers labeled data, 
and unsupervised learning which works only on unlabeled data, semi-supervised learning (SSL) methods work 
with both labeled and unlabeled data points. Therefore, by using SSL, it is possible to combine the advantages of 
working with a small labeled dataset to guide the learning process and a larger unlabeled dataset to increase the 
generalizability of the found solution as shown in Fig. 11.

Pathology images are an important source of diagnostic and prognostic information. With the advent of whole 
slide scanner technologies, pathology slides are being digitized at microscopic resolution making it possible to 
store and analyze digital pathology images using computer systems. This has led to a rapidly growing field of 
research into machine learning techniques that can be used to classify images and provide quantitative informa-
tion. A major difficulty facing researchers is the availability of labeled training data. Whole slide pathology images 
are orders of magnitude larger than other medical images and they are more complex. Pathologists use a combi-
nation of color, texture and morphological information that varies across multiple scales to interpret images and 
spend many years learning how to cope with enormous variability in the appearance of specific tissue and disease 
types. This means that it requires an expert to provide ground-truth labels and it also means that for every new 
application, additional training and validation data is needed; this makes the use of semi-supervised learning 
particularly relevant for digital pathology.
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In this paper, we present a semi-supervised learning method that analyzes groups of labeled and unlabeled 
points in multidimensional feature space in order to identify areas of high density and then guides the learning 
method to place decision boundaries through the regions with low density. We apply this technique to the analy-
sis of digital pathology images of breast cancer.

Related Works
Semi-supervised learning methods are not commonly used in the pathology image analysis field although they 
have previously been employed in some applications of medical image analysis to improve classification perfor-
mances on partially labeled datasets2–5. In order to make it possible for semi-supervised learning methods to 
make the most of the labeled and unlabeled data, some assumptions are made for the underlying structure of data 
space1. Among the assumptions, smoothness and cluster assumption are the basis for most of the state-of-the-art 
techniques6. In the smoothness assumption, it is assumed that points that are located close to each other in data 
space are more likely to share the same label, and in the cluster assumption, it is assumed that the data points that 
belong to one class are more likely to form and share a group/cluster of points. Therefore, the core objective of 
these two assumptions is to ensure that the found decision boundary lies in low density rather than high density 
regions within data space.

The most basic and easiest SSL method to apply is self-training7–10, which involves repeatedly training and 
retraining a statistical model. First, labeled data is used to train an initial model and then this model is applied 
to the unlabeled data. The unlabeled points for which the model is most confident in assigning labels to, are then 
added to the pool of labeled points and a new model is trained. This process is repeated until some convergence 
criterion is met. Another family of methods is based on generative models11–13, in which some assumptions are 
made about the underlying probability distribution of data in feature space. The parameters defining the assumed 
generative model are then found by fitting the model to the data. Graph-based SSL techniques14–17, attempt to 
generate an undirected graph on the training data in which every point on the graph is connected by a weighted 
edge. The weights are assigned to the edges in such a way that closer data points tend to have larger weights and 
hence they likely share same labels. Labels are assigned to the unlabeled points by propagating labels of labeled 
points to unlabeled ones through the edges of the graph with the amount dependent on the edge weights. This 
way unlabeled points can all be labeled even if they are not directly connected to the labeled points.

The support vector machine (SVM) classifier is an efficient and reliable learning method and to date is one of 
the best classifiers in terms of performance18 over a wide range of tasks. Semi-supervised SVM techniques expand 
the idea of traditional SVM to incorporate the ability to use partially labeled datasets to learn reliable models 
while maintaining accuracy. The idea is to minimize an objective function by examining all possible label combi-
nations of the unlabeled data iteratively in order to find low-density regions in the data space to place the decision 
boundary through19–22. Many implementations of the objective functions have been reported in the literature 
however these are often time inefficient. The reader is referred to Chapelle et al.’s work23 for a review comparing 
different methods. Kernel tricks which implement the cluster assumption in SSL have also been proposed24,25.

Recently, there have been some attempts to replace the lengthy objective function optimization process of 
semi-supervised SVMs by cluster analysis6,26,27. The concept behind these cluster-then-label techniques for 
semi-supervised learning28 is to first find point clusters of high density regions in data space and then assign 
labels to the identified clusters. A supervised learner is then used to find the separating decision boundary that 
passes through low density regions in data space (i.e. between the clusters). In this study, we propose a novel 
cluster-then-label semi-supervised learning method and compare its performance with other state-of-the-art 
techniques for two digital pathology tasks; triaging clinically relevant regions of breast whole mount images29 and 
the classification of nuclei figures into lymphocyte, normal epithelial and malignant epithelial objects.

Figure 1.  Semi-supervised learning tries to increase the generalization of classification performance by placing 
the decision boundary through the sparse regions in presence of both labeled and unlabeled data points. (a) The 
decision boundary in presence of labeled data points only, and (b) the decision boundary in presence of both 
labeled and unlabeled data.
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Methodology
Proposed Method.  In an earlier work30, we demonstrated that a semi-supervised cluster-then-label method 
was able to produce a reliable classification model from small amounts of labeled data. In this study, we propose 
an improvement of the method proposed in our earlier study30 and we carry out an extensive experimental com-
parison with other state-of-the-art semi-supervised techniques on two different pathology image classification 
tasks.

Clustering Analysis for Semi-supervised learning.  Inspired by the work published by Ankerst et al.31, we pro-
pose a cluster-then-label based SSL method that works by finding the underlying structure of points (clusters of 
points forming high density regions) in the data space. A standard supervised SVM is then employed to find the 
decision boundary using knowledge about the underlying structure of the data space provided by the clustering 
analysis. In the Ankerst et al.’s31 study, an ordering of points in the data space was found based on how points are 
spatially located around each other. Therefore, spatially closest points become neighbors in the ordering set. The 
clustering approach presented by Ankerst et al.31 is unsupervised and finding the clusters from the ordering set 
is a challenge.

In this paper, our approach in finding spatially closest points in the data space is somewhat similar to the one 
proposed by Ankerst et al.31, in the sense that points are grouped in such a way that they form clusters of densely 
populated points separated by regions with sparsely located points (low density). We consider a semi-supervised 
seeded approach to finding spatially closest points and checking how inclined unlabeled points are toward each 
of their surrounding labeled points. The algorithm starts by calculating the core radii of the labeled points with 
respect to all points in the data space. A labeled/unlabeled point q is located at a core radius to a labeled point p 
if it is within a circle/sphere with p as its center and ε as its radius. The value of ε for every point p is defined as 
the distance from p to the kth closest point located within the neighborhood of p. Parameter k is the minimum 
number of points located at the neighboring of p that could form a cluster and is specified by the user. Thus, the 
core radius is low in high density regions and high in low density regions. For this study, the value of k was set to 
one tenth of the number of points in the data space. This value of k showed a more consistent performance in our 
preliminary experiments30.

The core radii of all labeled points with respect to the whole data space are calculated. We define a distance 
matrix D of the size l × u where l is the number of labeled points and u is the number of unlabeled points. The 
Euclidean distance between the labeled point pi and the unlabeled point qj is compared to the core distance εi, and 
dij is defined as the maximum of these two values. Therefore, this could be written as:

ε= || − || ∀ ∀= =d max p q( , ); and (1)ij i i j i
l

j
u

2 1 1

where εi is the core radius of the labeled point pi, l is the number of labeled points, and u is the number of unla-
beled points.

Once the matrix D has been populated using expression (1), it is used to find the closest labeled point for each 
unlabeled point. Figure 2 shows an example of how core radii are useful in assigning unlabeled points to different 
clusters and highlights differences between conventional clustering methods. In Fig. 2(a) the unlabeled point q is 
located within the core radii of both the labeled points p1 and p2. Since ε2 < ε1, q is assigned to p2 despite the fact that, 
according to the Euclidean distance, it is actually closer to p1. In Fig. 2(b) the unlabeled point q is within the core 
radius of p1 and lies outside of the core radius of p2 however, since ε1 > ||p2 − q||2, q is again assigned to p2. In cases 
where an unlabeled point q is equidistant between two points with different labels, q is assigned a negative label.  

Figure 2.  Example showing different scenarios where an unlabeled point q is located with respect to the clusters 
formed by labeled points p1 and p2. (a) An unlabeled point q is within the core radii of two labeled points p1, and p2. 
Since ε2 < ε1, q is assigned to p2 despite the fact that, according to the Euclidean distance, it is actually closer to p1. 
(b) An unlabeled point q is within the core radius of the labeled point p1 but not p2. Since ε1 > ||p2 − q||2, q is again 
assigned to p2. ε1, and ε2 are the core radii of the labeled points p1 and p2 respectively. Please note that the ε1 and ε2 
are different based on the density of points surrounding them. In this representation, k is set to be 7.
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This, however, rarely happens in practice as distances are represented as floating point values. Hence, this method 
finds and groups the points that match both the smoothness and cluster assumptions in SSL and is referred to as 
Semi-supervised Seeded Density-based (S3DB) clustering hereafter.

After the groups of points that form clusters are identified and the underlying structure of the data space is 
learned (using S3DB), this knowledge is given to an SVM classifier with radial basis function (RBF) as kernel to 
find the maximum margin boundary that passes through the sparse regions.

Datasets.  Pathology Triaging Image Dataset.  Recently29, we addressed the problem of triaging digital 
pathology images and employed a supervised learning method to distinguish between different relevant or irrel-
evant breast tissue regions. Here, we consider a more extensive dataset and focus on the statistical learning aspect 
of the problem. The goal is to achieve a high sensitivity of at least 95% in detecting relevant regions while main-
taining the highest possible specificity.

Data Collection: To generate a ground-truth dataset, we have used whole-mount images (WMIs)32 of 30 breast 
lumpectomy specimens stained with hematoxylin and eosin (H&E) (n =  150 WMIs). The slides corresponding to 
28 of the patients were scanned at 5X magnification (135 WMIs, 2 μm/pixel) and 2 of them were scanned at 10X 
(15 WMIs, 1 μm/pixel). Patches of 512 × 512 pixels (1 mm2 for 5X and 0.25 mm2 for 10X images) were cropped 
from each WMI at the highest magnification by overlaying a grid of uniformly spaced squares on the previously 
preprocessed (adaptive thresholding and morphological operations) tissue regions (Fig. 3). The collaborating 
pathologist then labeled patches from the 2 patients scanned at 10X magnification (15 WMIs, 2849 patches) 
and 8 patients scanned at 5X magnification(115 WMIs, 2302 patches labeled, 2100 patches unlabeled). For each 
patch, the pathologist evaluated the presence of diagnostically relevant information corresponding to each tis-
sue type. According to the pathologist’s annotations, diagnostically relevant features include cancers, atypias, 
microcalcifications and lymphovascular invasion, and irrelevant features include fat, stroma, normal ducts and 
lobules. To assess inter-observer variability when labeling the triaging ground-truth set, a random subset of 1500 
patches were evaluated by a second pathologist. The Kappa agreement coefficient between the two pathologists 
was κ = 0.77.

Figure 4 shows a subset of this ground-truth set. We have also added 1500 unlabeled image patches from the 
remaining 20 patients scanned at 5X (20 WMIs). This set of unlabeled patches was used to improve the generali-
zation performance of the learning models as mentioned in section 3.3.1.

Texture Feature Extraction from Patches: To retrieve texture features from image patches, they were converted 
from RGB to Lab colorspace and the normalized luminance channel was divided into smaller non-overlapping 
tiles of size 32 × 32 pixels. Root filter set (RFS)33 texture filters were used to highlight different textures from 
image tiles. First order statistical measures (mean, mode, standard deviation, skewness and kurtosis) were calcu-
lated from the maximal filter responses along all filter orientations of each scales to combine the texture informa-
tion. To regroup all extracted information from individual tiles and form one numerical representative per image 
patch, the bag of words (BoW)34 technique was used with a previously found optimum dictionary size of 10029. 
The calculated 100-dimensional histograms of words per individual image patch were used to train and evaluate 
the statistical learning techniques presented in this paper. We used the RBF kernel of the SVM classifier imple-
mented in libsvm library35 to find the best separating hyperplane between the two classes.

Figure 3.  Adaptive thresholding and morphological operations were applied to remove clearly irrelevant 
structures before patch selection for the data collection process (left), 512 × 512 pixel uniformly spaced box 
patches (in green) on tissue regions (middle), and an example of a 512 × 512 pixel image patch picked from the 
WMI (right).
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Nuclei Figure Classification Dataset.  Recently36, we developed an automated method to assess cancer cellular-
ity in breast tissue removed after neoadjuvant chemotherapy (NAT). As a part of the pipeline, we developed a 
method to classify nuclei figures into three classes of lymphocyte (L), benign epithelial (B) and malignant epi-
thelial (M) figures from a dataset of image patches annotated by a pathologist. Here, we used the same dataset to 
validate the proposed SSL technique.

Data Collection: H&E stained sections from 92 post-NAT lumpectomy specimens were scanned at 20X 
magnification (0.5 μm/pixel). The whole slide images (WSIs) were annotated by an expert pathologist using the 
Sedeen Viewer37 (Pathcore, Toronto, Canada). A total of n = 166 rectangular regions of interest (ROIs) were 
defined on the 92 WSIs and, within these ROIs, the centers of nuclei figures were labeled as either lymphocyte, 
benign epithelial, or malignant epithelial. Nuclei that were out of focus, out of plane, or could not be categorized, 
were not marked by the pathologist. More than 30,000 nuclei figures (n = 3,868 lymphocyte, n = 10,407 benign 
epithelial, and n = 16,419 malignant epithelial figures) were marked from all 116 ROI patches.

Nuclei Feature Extraction from Patches: In order to train the proposed SSL method, the nuclei have to be 
segmented first. We have developed a segmentation method38 that works by manipulating the original RGB col-
orspace of the image patches to better identify foreground nuclei figures. Multilevel thresholding and marker 
controlled watershed algorithms were then used to extract nuclei regions and divide overlapping nuclei figures. 
The nuclei segmentation method achieved an F1-score of 0.9 when tested against a publicly available dataset of 
7931 nuclei from 36 images39. The effect of color variation from the image patches was reduced by standardizing 
their color to a reference image as explained in our recent study36. The segmentation method was able to segment 
more than 72% of the ground-truth nuclei figures (n = 21,779) from the 166 ROI patches. The segmented figures 
were used to extract 125-dimensional feature vectors from individual nuclei figures based on intensity, morpho-
logical, textural, and spatial properties describing their differences among the three classes36. Table 1 summarizes 
the datasets used to validate and compare performances of the supervised and semi-supervised learning methods 
described in section 3.1.

Experimental Setup
Comparison with State-of-the-art Methods.  We compare our proposed SSL method (S3DB + SVM) 
with a range of successful supervised and semi-supervised methods in the literature.

Method for supervised learning.  The standard supervised SVM technique implemented in the libsvm35 library 
was considered to find the separating decision hyperplane. Here we used the RBF kernel and a similar parameter 
optimization approach to other methods described in this paper was followed, as explained in the subsequent 
section. Let X = x1, x2, …, xl be the set of d-dimensional labeled points with Y = y1, y2, …, yl be their labels. The 
SVM technique works by minimizing the optimization function presented in equation (2) to find the maximum 
margin hyperplane parameters dividing the two classes.

Figure 4.  A subset of cropped image patches used as ground-truth in the triaging dataset used for this study 
with their labels. It is clear that the clinically relevant information may have covered different portions of the 
patches in the dataset since they were randomly picked from different areas within the tissue region.

Dataset

Triaging Image 
Dataset

Nuclei Figure 
Classification

# of labeled instances in training set 2,302 13,821

# of unlabeled instances in training set 2,100 + 1,500 49,000

# of instances in test set 2,849 7,958

Dimensionality of feature vectors 100 125

Table 1.  Summary of the data proportions used in each validation stage for the two pathology datasets used in 
this study.
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where w→ and b are the parameters defining the maximum margin hyperplane, Φ (.) is the kernel function, C is the 
parameter defining the trade-off between the margin size and misclassified examples, and ξ is the slack variable.

Methods for semi-supervised learning.  a) semi-supervised Fuzzy c-mean (ssFCM) clustering + SVM: this method 
has been previously employed for semi-supervised learning2,27,40,41. The idea is to first apply the semi-supervised 
clustering to both labeled and unlabeled data to find the underlying structure of the space (hard labeling) and 
then a supervised classifier is trained on the labeled data. The semi-supervised version of the original unsuper-
vised FCM in particular is useful to provide a prior knowledge on the structure of the space in the form of labels27. 
Therefore, in the following optimization problem, the first term is to discover the data space structure of the 
labeled data and the second term takes care of the unlabeled data. Let X = x1, x2, …, xl be the set of d-dimensional 
labeled points with Y = y1, y2, …, yl be their labels and = …X x x x, , , u1 2
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where c is the number of classes (c = 2 for binary classification), m is the degree of fuzziness (we set m = 2), V 
represents the set of prototypes corresponding with each class, U and U* are matrices that define the fuzzy mem-
bership values for the labeled and unlabeled data points respectively and uij is the probability that the jth labeled 
data point belongs to class i. The maximum number of iterations for the experiments using this method was set 
to 1000 rounds.

We have used the RBF-SVM classifier in conjunction with the semi-supervised FCM method similar to the 
one presented by Gan et al.27. The parameters of the SVM classifier was optimized using a similar strategy to other 
methods described in this paper as explained in section 3.3.

b) TSVM19,42: this SSL method is one of the most successful implementations of the semi-supervised SVM 
technique in terms of performance23. The algorithm starts by learning a partially complete model using the labe-
led data only and then applies this to the unlabeled data. The method then improves the initial solution by switch-
ing the labels assigned to the unlabeled data to decrease the objective function after each iteration. The label 
switching mechanism is important to ensure the balancing constraints between the two classes are maintained. 
Therefore, the main objective function to be minimized in this method is as follow:
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Visualization and Cluster Separability.  To visualize the underlying distributions of data spaces used in 
this study in lower dimensions, t-distributed Stochastic Neighbor Embedding (t-SNE) was used43. It is an iterative 
method which maps data points into lower dimensional space in such a way that the distances between points 
correspond to their similarity. Also, we have used Fisher Discriminant Ratio (FDR)44–46, as a measure of cluster 
separability. FDR measures the cluster separability by calculating the square of the difference between means of 
points in each cluster divided by the sum of square of their standard deviations:

=
−
+
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where m1 and m2 are the mean of points; and s1 and s2 are the standard deviations of points in clusters 1 and 2 
respectively.
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Experimental Design.  In order to evaluate the performance of the proposed SSL technique and compare 
with state-of-the-art methods, the following validation steps were taken.

Triaging Image Dataset.  Here, the dataset described in section 2.2.1 was divided into a training set contain-
ing the patches scanned at 5X magnification, and a testing set containing the 2 patient datasets scanned at 10X 
(n = 2849 labeled image patches). The training data was further subdivided into two components; one part con-
tained the labeled and unlabeled patches from the 8 patients reviewed by the pathologist (n = 4402 patches, 307 
relevant, 1995 irrelevant, and 2100 unlabeled image patches with the mean and standard deviation of 283 ± 90 
labeled patches and 267 ± 243 unlabeled patches per patient) and the second part consisted of the of 1500 unla-
beled image patches taken from the remaining patients’ WMIs (section 2.2.1).

An 8-fold patient-wise cross-validation scheme was used to train and validate the performance of learning 
methods. The optimum SVM-RBF parameters were chosen by examining a range of possible SVM trade-off 
parameter (C) and the kernel width (γ) values on the training set. The additional set of 1500 unlabeled image 
patches (section 2.2.1) was included in all folds of the cross-validation scheme.

Validation step for semi-supervised methods: For every fold in semi-supervised learning methods, one or 
more of the patient datasets were randomly selected to be the labeled set (unlabeled images of chosen patients 
were kept unlabeled) and labels of the rest of patients were kept hidden (unlabeled set).

Validation step for supervised method: Similarly, for the supervised learning method, in every fold one or 
more patient datasets were randomly selected to be the labeled set (unlabeled images of chosen patients were 
discarded) and rest of the patients data were also discarded.

The randomly selected patients, dictionary of words, and histograms of words were kept the same to form 
paired labeled sets in every fold of each experiment. To do a fair comparison between different methods, we 
defined the optimum SVM-RBF parameter set by first identifying all sets that produced a sensitivity of 95%; from 
which the set with maximum specificity was chosen.

Validation using an unseen set: To compare the generalization performance of the methods, the median of 
the optimized parameters found in all 8-folds of the cross-validation was considered to train an overall model 
using all training images. For semi-supervised methods, one or more of patients were randomly chosen to form 
the labeled set and the labels of the rest of patients were kept hidden. For the supervised method also, one or 
more of patients data were chosen to form the labeled set and the rest of patients data were discarded. The overall 
performance of the trained model was assessed using the the two unseen patient cases in the test set. To match 
our previously trained models on 5X magnified images, the test image patches, which were scanned at 10X mag-
nification, were down-sampled.

Nuclei Figure Classification Dataset.  The aim of this experiment was to see whether adding many unlabeled 
instances to an already large set of labeled instances improved the classification performance when comparing an 
SSL technique with a supervised learning method. A cascaded learning approach was used to first train a classifier 
to distinguish between lymphocyte versus epithelial figures (L vs. BM) and then to distinguish between benign 
versus malignant classes (B vs. M).

The supervised SVM was trained using n = 13,821 labeled nuclei figures (n = 2,260 Lymphocytes, n = 3,157 
Benign epithelial, and n = 8404 Malignant epithelial figures). Both the labeled figures and an additional n = 49,000 
unlabeled figures were used by the semi-supervised methods.

For both supervised and semi-supervised training, a 5-fold cross-validation was performed to assess the per-
formance of the learning methods. In this experiment, the best parameters were chosen in such a way as to max-
imize the accuracy.

Once the best parameters had been selected a final model was trained on the whole training dataset using the 
median of the best parameters in all 5 folds and this was applied to an unseen test set of n = 7,958 nuclei figures to 
evaluate the generalizability of the trained models.

Results
Comparing Classification Performances.  Mean accuracy of the subject-wise cross-validated experi-
ments are shown in Fig. 5 for different number of patients chosen to be the labeled set from the pathology triaging 
image dataset. As can be seen from Fig. 5, our clustering-based SSL technique (S3DB + SVM) achieved a superior 
performance compared to the other state-of-the-art supervised and semi-supervised methods.

Table 2 summarizes the cross-validated performance of different methods on triaging image dataset at an 
operating point of 95% sensitivity. A pairwise Wilcoxon Signed-Rank test using 8 cross-validated accuracy val-
ues was used to compare each method at a given number of labeled patients to that of our proposed SSL tech-
nique. For each method tested, we had 6 comparisons, therefore for a two-tailed test with a 5% type I error the 
Bonferroni adjusted α-value = 0.004. Although none of the comparisons achieved statistical significance against 
this adjusted threshold, there is an increasing trend in the classification performance of our proposed method 
compared to other techniques. It is clear by looking at the specificity column that in most cases our method 
maintained higher specificity values at 95% sensitivity compared to the other methods at all individual experi-
ments (except when number of labeled patients = 1). It is also interesting to note that the average train time of our 
method is significantly lower than the TSVM technique, which requires a heavy optimization on a 64-bit Intel(R) 
Xeon(R) CPU (at 3.50 GHz) machine. The supervised SVM method however, took the least amount of time to 
train a model using the labeled data made available to it. Table 3 summarizes the performance of the four meth-
ods using an overall model trained in the first validation phase using number of labeled patients as 3 on a totally 
unseen test set. The test set consisted of two patient cases scanned at 10X magnification. It is clear that our method 
consistently performs better in classifying image patches compared to the other supervised and semi-supervised 
techniques in a totally unseen test set.
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Table 4 summarizes the mean performance of the 5 fold cross-validation on n = 13,821 labeled nuclei figures 
combined with n = 49,000 unlabeled objects using our proposed SSL technique compared with supervised SVM 
method trained on the labeled portion only. No statistically significant difference in performance was observed 
between the accuracy pairs of the supervised SVM and our proposed SSL method in Table 4 using a pairwise 
Wilcoxon Signed-Rank test.

Figure 5.  Comparison of mean classification accuracy for 8-fold subject-wise cross-validation of the four 
supervised and semi-supervised methods discussed in this paper for the breast pathology dataset at different 
labeled portions. To have a fair comparison, results are reported at an operating point of 95% sensitivity.

Method
# of Labeled 
Patients AUC

Accuracy 
(SD) (%) 95% CI Specificity (%) p-value

Train Time 
(min)

SVM

1 0.71 31.4 (17.2) [17.0, 45.8] 19.9 0.253 1 ± 0.1

2 0.76 36.8 (23.8) [16.9, 56.7] 27.8 0.015 2 ± 0.2

3 0.75 31.8 (18.3) [16.5, 47.1] 21.4 0.007 4 ± 0.2

4 0.76 40.4 (22.6) [21.5, 59.3] 32.4 0.007 6 ± 0.5

5 0.78 41.0 (24.1) [20.8, 61.1] 33.6 0.039 8 ± 0.8

6 0.79 39.8 (23.6) [20.1, 59.5] 31.9 0.007 13 ± 1

ssFCM + SVM

1 0.62 20.1 (15.7) [7.0, 33.2] 5.2 0.007 97 ± 11

2 0.70 28.0 (28.2) [4.4, 51.6] 18.1 0.007 120 ± 13

3 0.72 34.4 (27.4) [11.5, 57.3] 25.3 0.007 112 ± 16

4 0.73 33.9 (26.5) [11.7, 56.6] 24.1 0.007 126 ± 16

5 0.74 31.0 (27.1) [8.3, 53.6] 22.5 0.007 131 ± 13

6 0.78 44.3 (21.7) [26.1, 62.4] 34.2 0.039 138 ± 17

TSVM

1 0.81 48.4 (18.3) [33.1, 63.7] 39.2 0.583 6178 ± 3408

2 0.83 54.7 (17.8) [39.8, 69.6] 46.4 0.546 7100 ± 3663

3 0.83 55.4 (18.3) [40.1, 70.7] 46.8 0.541 8008 ± 4238

4 0.83 54.6 (15.9) [41.3, 67.9] 47.8 0.148 7093 ± 4113

5 0.84 58.7 (17.5) [44.1, 73.3] 52.8 0.296 7432 ± 4259

6 0.85 61.0 (16.1) [47.5, 74.5] 54.4 0.541 6551 ± 3536

S3DB + SVM

1 0.69 42.3 (16.9) [28.2, 56.4] 33.1 — 105 ± 21

2 0.83 63.6 (18.4) [48.2, 79.0] 59.1 — 88 ± 11

3 0.84 64.5 (19.9) [47.9, 81.1] 60.2 — 114 ± 11

4 0.84 63.8 (17.8) [48.9, 78.7] 59.1 — 85 ± 11

5 0.84 62.9 (17.2) [48.5, 77.3] 57.7 — 137 ± 18

6 0.84 63.7 (18.1) [48.6, 78.8] 59.6 — 81 ± 9

Table 2.  Results comparing the mean performance of the 8-fold subject-wise cross-validated methods on 
triaging image dataset. Results are reported at an operating point of 95% sensitivity. A pairwise Wilcoxon 
Signed-Rank test was used to check for statistical significance in accuracy performances of each method 
compared with our proposed method. No statistically significant difference was observed between the pairs 
performances after adjusting for multiple testing using the Bonferroni method (adjusted α-value = 0.004).
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Table 5 summarizes the performance of applying the models generated from both supervised and 
semi-supervised methods on the training part on an independent testing set of n = 7,958 nuclei figures. From 
Tables 4 and 5 it is clear that the proposed SSL method did not fit well for this dataset and the performance is poor 
compared to the supervised SVM method.

Comparing Cluster Separability Measures.  In order to have a sense of how separable the clusters of each 
class are with respect to each other, FDR measures are summarized in Table 6. From Table 6 we can see that as the 
FDR measure increases (relevant vs. Irrelevant and L vs. BM) the classes in each dataset tend to form separable 
clusters while in case of B vs. M where separable clusters are not formed the FDR measure is low. Furthermore, 
in order to visually compare the distribution of different class labels in feature spaces of both datasets, their 
dimensions were reduced using the t-SNE method43. Figure 6 shows the dimensionality-reduced data space of 
the triaging image dataset with every point representing an image patch. Similarly, Fig. 7 shows the data space of 
the nuclei figure classification dataset with every point representing a nuclei figure. Considering Fig. 6, it can be 
seen that the relevant and irrelevant classes form separable clusters in the feature space while considering Fig. 7, 
it can be observed that lymphocyte class is better separated compared to the other two classes. Comparing benign 
versus malignant epithelial classes in the same figure we see that they do not tend to form separable clusters of 
points thus violating the cluster assumption of SSL.

There is a slight imbalance between the classes in both triaging image dataset and nuclei figure dataset. To 
determine whether this affected performance, we repeated the training and testing to check the consistency of 
the classification performance for both datasets, the weight values of the SVM models for minority class were 

Method AUC
Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

Supervised SVM 0.81 42 93 38

ssFCM + SVM 0.59 29 91 24

TSVM 0.85 49 94 45

S3DB + SVM 0.86 53 94 49

Table 3.  Results comparing the performance of the four methods using an overall trained model from triaging 
image dataset using 3 patients data only as labeled set on a totally unseen test set of 2 patient scanned at 10X 
magnification.

Method Task AUC ACC (%) Sens. (%) Spec. (%)

Supervised SVM
L vs. BM 0.97 95 (±0.1) 79 99

B vs. M 0.86 83 (±0.5) 57 92

S3DB + SVM
L vs. BM 0.95 93 (±0.4) 74 97

B vs. M 0.73 74 (±0.5) 7 99

Table 4.  Mean performance of 5-fold cross-validation on nuclei figure classification dataset using S3DB + SVM 
semi-supervised method (n = 13821 labeled nuclei objects and n = 49000 unlabeled ones) and supervised SVM 
method (n = 13821 labeled nuclei objects).

Method Class ACC (%) Sens. (%) Spec. (%)

Supervised SVM

L 92 80 94

B 75 50 92

M 77 91 63

S3DB + SVM

L 87 67 91

B 60 3 99

M 60 97 20

Table 5.  Performance of applying the generated model from dataset used in Table 4 on n = 7958 nuclei objects 
from an independent testing set using S3DB + SVM and supervised SVM methods.

Dataset Classes
Fisher Discriminant 
Ratio (FDR)

Triaging Image Dataset Relevant vs. Irrelevant 0.39

Nuclei Figure Classification
L vs. BM 0.27

B vs M 0.02

Table 6.  Fisher Discriminant Ratio (FDR) measures for different classes from the datasets used in this study.
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set to the ratio of the number of data samples in the majority class to that of the minority class. The classification 
performance was found to be consistent for both the datasets suggesting that the class imbalance did not affect 
the classification performance.

Discussion and Conclusion
In this study, we proposed a cluster-then-label based semi-supervised technique to find the underlying structure 
of the data space and provide this knowledge to train a reliable model. We have compared and validated this tech-
nique with other state-of-the-art supervised and semi-supervised methods for triaging breast digital pathology 
image patches and classifying nuclei figures. We found that when the method is used for the appropriate dataset 
the classification performance is superior and training time is much lower compared to the other semi-supervised 
methods.

Figure 6.  2D visualization of the triaging image dataset feature space using t-SNE43. Every point in this plot 
represents an image patch from the dataset. As can be seen, relevant versus irrelevant images form separable 
clusters in this visualization.

Figure 7.  2D visualization of the feature space from nuclei figure classification dataset using t-SNE43. Every 
point in this plot represents a nuclei figure from the dataset. As can be seen, lymphocyte figures versus the other 
two classes are better separated while benign versus malignant epithelial figures do not form separable clusters.
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Our proposed method did not perform as well as TSVM when only 1 patient data was made available as the 
labeled set for triaging image dataset (Table 2). This is most likely due to the failure in the clustering method 
because an insufficient number of labeled points were made available to it. The method improved as the num-
ber of labeled points increased. Surprisingly, for the triaging image dataset, using the ssFCM method did not 
add any improvements to the classification performance compared to the supervised SVM method. This may 
be because of the fact that ssFCM assumes the underlying shape of clusters come from a Gaussian distribu-
tion; this leads to incorrect label assignment (in the cases where cluster shapes do not come from a Gaussian 
distribution) which in turn produces an incorrect decision boundary. Furthermore, one reason for a better 
performance of our method compared to the other cluster-then-label based techniques is that no assumptions 
are made about the underlying probability distribution of the clusters and so it can cope with clusters of any 
shape and form.

Although the improvements in accuracy of our proposed method compared with other techniques in Table 2 
were not statistically significant after applying a Bonferonni correction, the effect size was large, with improve-
ments of 20.4% and 25.3% in accuracy over the supervised SVM and the ssFCM methods respectively. The 
improvement in accuracy compared with the TSVM method was about 4% but the TSVM was very computation-
ally expensive with each model taking more than 4 days to train.

Looking at Tables 4 and 5 for nuclei classification task, our method has a poor performance compared to the 
supervised SVM. The reason for this poor performance could be because the underlying structure of the data 
points in these datasets does not form proper clusters. This is supported by the FDR measures reported in Table 6 
and t-SNE plot in Fig. 7. As shown in Table 6, the FDR measures for the relevant vs. irrelevant data has a higher 
value compared to L vs. BM and B vs. M data. Furthermore, from Figs 6 and 7 we can observe that relevant vs. 
irrelevant and L vs. BM tend to form clusters of points in the dimensionality-reduced t-SNE plots while B vs. M 
data does not form detectable clusters of points thus violating the cluster assumption of SSL. It is also important to 
note that semi-supervised learning methods are traditionally suitable for applications where only limited labeled 
data are available. This means that SSL methods may not work as well as supervised methods when large amounts 
of labeled data are present1.

In our preliminary experiments30, we systematically examined the effect of k, which controls the number 
of points that lie within the neighborhood of a labeled point, on a subset of our dataset. We found that the per-
formance of our method was stable when a sufficiently large value was chosen for k. The best performance was 
achieved for k = one tenth of the number of points in the dataset.

Although TSVM is one of the top performing implementations of semi-supervised SVM, its performance 
was not found to be better on small-sized synthetic datasets when compared to the Branch and Bound (BB) 
technique21,23. The BB method seems to find the globally optimal solution for semi-supervised learning since it 
efficiently looks through all label combinations in the data space. However, due to its growing search tree basis 
for finding the solution, its train time is reported to be even slower than TSVM making it infeasible to apply on 
datasets with more than 200 data points21.

Our proposed semi-supervised cluster-then-label method showed improved performance over other methods 
for the triaging task, however, it did not perform well in the nuclei classification task. This suggests that although 
semi-supervised approaches may be useful in digital pathology where generating sufficiently large labeled data-
sets is a challenge, additional work is needed to identify whether the clustering assumptions are valid for specific 
tasks.
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