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Abstract

Background: The genus Ebolavirus includes five distinct viruses. Four of these viruses cause hemorrhagic fever in
humans. Currently there are no licensed vaccines for any of them; however, several vaccines are under
development. Ebola virus envelope glycoprotein (GP1,2) is highly immunogenic, but antibodies frequently arise
against its least conserved mucin-like domain (MLD). We hypothesized that immunization with MLD-deleted GP1,2
(GPΔMLD) would induce cross-species immunity by making more conserved regions accessible to the immune
system.

Methods: To test this hypothesis, mice were immunized with retrovirus-like particles (retroVLPs) bearing Ebola virus
GPΔMLD, DNA plasmids (plasmo-retroVLP) that can produce such retroVLPs in vivo, or plasmo-retroVLP followed by
retroVLPs.

Results: Cross-species neutralizing antibody and GP1,2-specific cellular immune responses were successfully
induced.

Conclusion: Our findings suggest that GPΔMLD presented through retroVLPs may provide a strategy for
development of a vaccine against multiple ebolaviruses. Similar vaccination strategies may be adopted for other
viruses whose envelope proteins contain highly variable regions that may mask more conserved domains from the
immune system.
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Background
The genus Ebolavirus is a member of the family Filoviri-
dae. Ebolavirus includes five species: Zaire ebolavirus
(Ebola virus, EBOV), Sudan ebolavirus (Sudan virus,
SUDV), Taï Forest ebolavirus (Taï Forest virus, TAFV),
Reston ebolavirus (Reston virus, RESTV), and Bundibugyo
ebolavirus (Bundibugyo virus, BDBV) [1]. Except for
RESTV, the ebolaviruses cause viral hemorrhagic fever
(VHF) in humans. In particular, EBOV infection causes
lethality up to 90% [2,3]. Other than supportive care, there

is no FDA-approved treatment or vaccine for ebolavirus
infections.
Ebolaviruses have been categorized by NIH/NIAID as

Category A Priority Pathogens because they could be mis-
used for the development of biological weapons. The avail-
ability of a vaccine that provides cross-protection against
different ebolaviruses is essential for preparedness against
natural outbreaks and acts of bioterrorism. While there
has been progress in recent years towards development of
ebolavirus vaccines, most vaccine candidates are based on
antigens from one or two ebolaviruses only. Though some
vaccine candidates have demonstrated evidence of cross-
protection, many induce species-specific immune
responses and protection [4-6].
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The viral envelope glycoprotein GP1,2 is either a compo-
nent of, or the sole viral antigen in many ebolavirus candi-
date vaccines. GP1,2 is presented on the surface of virions
as trimers of GP1-GP2 heterodimers that are linked
together through a disulfide bond [7]. The C-terminal
region of GP1, designated as the mucin-like domain
(MLD), is highly variable among different ebolaviruses and
is highly N- and O-glycosylated. The MLD is thought to
form a “glycan cap” that is hypothesized to prevent anti-
body binding to those epitopes shielded from recognition
by the immune system, suggesting that the MLD with its
glycan cap provides a mechanism of immune evasion
[8-10]. In addition, the MLD-glycan cap appears to be a
target for antibody responses to ebolaviruses, and may
thus also serve as a decoy to divert an antibody response
to the more conserved regions of the envelope [11-14].
The MLD is dispensable for GP1,2-mediated virus entry
[7,15-17], and there appear to be no other known func-
tions for the MLD other than immune shielding/evasion.
We hypothesized that deletion of the MLD would expose
the more conserved regions of GP1,2, such as the receptor-
binding site [8,15,18,19], and induce an immune response
to these more conserved regions that may result in cross-
species immunity.
Virus-like particles (VLPs) are ideal immunogens

because 1) they mimic wild-type pathogens in morphology
and thus display antigens in their native conformations;
2) the particle size allows for efficient uptake by antigen
presenting cells; and 3) presentation of the multimeric
form of antigens on VLPs may cross-link B cell receptors
and provide a strong stimulation signal [20,21]. In fact,
both the FDA-approved hepatitis B virus and human
papillomavirus vaccines are based on VLPs [20,22]. DNA
vaccines are also advantageous because they induce both
humoral and cellular immune responses, are easy to man-
ufacture at large scale and at low cost, and are stable at
room temperature, thus obviating the need for a cold
chain for vaccine distribution and storage [23-25]. To
combine the advantages of VLP and DNA-based vaccines,
several studies have used a new vaccination strategy,
whereby the DNA used for immunization encodes pro-
teins allowing for formation of VLPs in vivo. Such DNA
vaccines alone or as part of DNA prime-VLP boost vacci-
nation strategies have been tested and shown to induce
protective immune responses for various viruses, for
example, hepatitis C virus [26-31], but this strategy has
not been tested for ebolavirus [32-38].
Although both wild-type Ebola virus GP1,2 and

GPΔMLD are efficiently incorporated into retrovirus parti-
cles, e.g. murine leukemia virus (MLV) [39-41], Ebola virus
glycoprotein-pseudotyped VLPs based on retroviral vec-
tors have not been explored as vaccine candidates. In this
study, we tested the relative immunogenicity in mice of
VLPs based on MLV, termed retrovirus-like particles

(retroVLPs) bearing GPΔMLD of Ebola virus, which were
generated in vitro (retroVLPs) or in vivo after injection of
DNA plasmids that can produce retroVLPs in vivo
(plasmo-retroVLP). In addition, we evaluated the immune
response after immunization with plasmo-retroVLP fol-
lowed by immunization with retroVLPs. For simplicity,
retroVLPs and plasmo-retroVLPs are referred to as VLP
and DNA, respectively, throughout the rest of this report.
We compared these vaccines in mice and demonstrated
that VLP, or the combination of DNA followed by VLP
were both able to induce cross-species neutralizing anti-
body and GP1,2-specific IFN-g production.

Results
Antigen preparation and immunization
VLPs were produced by transient transfection of HEK 293T
cells with two plasmids: one encoding Ebola virus
GPΔMLD (Figures 1A and 1B) and the other encoding the
gag-pol polyprotein precursor of the Moloney murine
leukemia virus (MLV) core and enzymatic proteins (Figure
1C). Since the retroviral vector genome was not used to
produce the VLPs, there is no risk of retroviral vector-
mediated genome integration associated. To maximize the
yield of VLPs and their incorporation of GPΔMLD, the
ratio of the two plasmids used for transfection was opti-
mized to 2:1, gag-pol:env (see Materials and Methods for
description; data not shown). After concentration and par-
tial purification, the VLP preparation was checked for purity
with silver stained SDS-PAGE gels and the incorporation of
GPΔMLD into the VLPs was confirmed by western blot
(Figure 1D). Values for residual endotoxin for VLPs,
plasmids, and CpGs were 0.86 EU/ml, 0.32 EU/ml, and
0.27 EU/ml, respectively.

Antibody response to EBOVGPΔMLD after immunization
of mice
Immunization dose, routes and schedule for immuniza-
tion and sample collection are depicted in Figure 2.
As shown in Figures 3A and 3B, the antibody titer of the

sera pooled from the mice primed twice with DNA and
boosted once with VLP (DNA/VLP group) was approxi-
mately 10-fold that of the mice immunized with DNA
alone (DNA group) (1:2000 vs. 1:256, respectively); there
was no anti-GP1,2 antibody detected in the pooled sera
from either the negative control CpG, or the negative con-
trol CpG/PBS group.
To analyze the dynamics of the antibody response, we

measured at different time points 1:64 dilutions of sera
from the DNA group, and 1:2000 dilutions of sera from
the DNA/VLP group. Figure 3C shows that the response
among the DNA group climbed slowly and reached peak
levels at about 14 weeks. In contrast, response of the
DNA/VLP group peaked between 6-10 weeks then
dipped but then responded well to a boost (Figure 3D).
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These data demonstrate that DNA/VLP induces a
response in mice that is quantitatively and kinetically
superior to that of DNA alone.
The sera collected from mice immunized with VLP

alone resulted in comparable reactivity by ELISA to
both the Fc control protein and the GP1,2 protein.
Therefore, for the group of mice who were immunized
with VLP alone (VLP group), the GP1,2-specific antibody

response was evaluated by western blot from sera at the
10 week time point. Figure 3E shows that EBOV GP1,2-
reactive antibody was detected when sera were diluted
as high as 1:10,000. For comparison, sera collected at
week 10 of the DNA/VLP group were reactive to EBOV
GP1,2 at the 1:5,000 dilution, but only a faint band was
detected with sera diluted to 1:10,000 (Figure 3E). The
dynamics of antibody response in the VLP group was
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Figure 1 Antigens used for immunization. A. Schematic diagram of the full-length GP1,2 of Ebola virus (EBOV GP1,2, GenBank# NC_002549)
that encodes a polyprotein which upon cleavage yields two subunits, GP1 and GP2, linked together through a disulfide bond. GP1 contains the
receptor binding site (RBS) and the highly variable, highly glycosylated, and dispensable mucin-like domain (MLD). GP2 contains an extracellular
domain (ECD), a transmembrane domain (TM) and a cytoplasmic tail (CT). The numbers above the diagram represent the amino acid residue
numbers. B. Schematic diagram of the resulting protein expressed by plasmids used for immunization studies or to derive in vitro VLPs. EBOV
GPΔMLD was deleted in the MLD domain and the cleavage site between GP1 and GP2 [40], so the resulting protein expressed is a single
molecule. C. Production scheme for VLPs. Supernatant from HEK 293T cells containing VLPs was centrifuged through a 20% sucrose cushion to
concentrate and partially purify the VLP, which was further purified to remove endotoxin. D. Verification of EBOV GPΔMLD incorporation into
VLPs. The VLP product was resolved through a NuPAGE 4-12% Bis-Tris gel, the total protein was evaluated with silver staining, and EBOV
GPΔMLD was detected by western blot.
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not tested because for some time points, there was
insufficient serum for the western blots.

Cross-species reactivity of the anti-EBOVGPΔMLD
antibody
To test whether the anti-EBOV GPΔMLD antibody can
recognize the full-length GP1,2 of other ebolaviruses, the
western blot was repeated with the lysate of cells trans-
fected with one of the following plasmids encoding the
full-length GP1,2 of EBOV, SUDV, TAFV or BDBV. As
shown in Figure 4, sera from mice immunized with
DNA/VLP or VLP alone detected the full-length GP1,2 of
all ebolaviruses tested. It was not surprising that the
bands for the lysate from EBOV GP1,2-expressing cells
were the most intense (Figures 4A and 4B), because the
EBOV was the source of the immunogen, and conserva-
tion of the non-MLD domains among the ebolaviruses is
not 100%. As a control for transfection efficiency, we
used the rabbit anti-GP1,2 polyclonal antibody R.F88-2,
because it was previously shown to be cross-reactive to
all GP1,2 s used in this study [42]. Detection of similar
band intensities in all lysates suggests similar levels of
GP1,2 expression, with the exception of TAFV, which is
somewhat lower (Figure 4C). Western blots using sera
collected from control mice sera were negative (data not
shown).
As shown in Figures 4A and 4B, a TAFV GP1,2 frag-

ment of approximately 50 kDa was repeatedly detected
by the immune sera but not by R.F88-2. Since R.F88-2

was raised by injecting a conserved 38-mer GP1,2 pep-
tide (aa72-109, [42]), the epitope on the TAFV fragment
detected by the mice presumably is from a region out-
side of this domain, or the region that R.F88-2 recog-
nizes is conformationally distinct.

Neutralization activity of the sera from immunized mice
The neutralization activity of sera from immunized mice
was first tested using recombinant vesicular stomatitis
virus (rVSV) after replacing its envelope G protein with
EBOV GP1,2 (rVSV-ZEBOVGP) [43]. In the presence or
absence of complement, titers of rVSV-ZEBOVGP were
reduced by 90-100% by sera from the VLP group, and by
50-80% by sera from the DNA/VLP group (Figures 5A
and 5B). Whereas sera from mice immunized with DNA
alone specifically neutralized rVSV-ZEBOVGP in the pre-
sence of complement (40%), no neutralization was
detected in the absence of complement (Figures 5A and
5B). Surprisingly, there was an unexpected decrease in
titer (40%) observed for wild-type VSV control for sera
from mice immunized with DNA, but not for sera from
mice immunized with DNA/VLP (Figure 5C).
It was also unexpected that within the CpG control

group, one out of three mice showed neutralization activ-
ity against wild-type VSV (Figure 5C), which persisted,
albeit at a lower level, in the absence of complement (Fig-
ure 5D). In addition, individual variability was observed
when sera from one of two mice in the DNA group and
one in three individual mice in the CpG group collected at
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Figure 2 Immunization and bleeding scheme. Mice were divided into six groups, ranging from 3 to 10 mice per group: CpG (n = 3), CpG/
PBS (n = 3) and PBS (n = 4) served as the negative controls for DNA (n = 10), DNA/VLP (n = 10) and VLP (n = 10) groups, respectively.
Immunization dose and route of administration for each group is as follows: CpG (16 μg CpG/100 μl/mouse/i.m. injection), PBS (100 μl
endotoxin-free PBS/mouse/i.p. injection), DNA (50 μg of pVR1012-EBOVGPΔMLD + pMLV-GagPol at a 2:1 ratio + 16 μg CpG/100 μl/mouse/i.m.
injection), VLP (33 μg retroVLP/100 μl/mouse/i.p. injection). The DNA, VLP, and CpG were formulated with endotoxin-free PBS. Immunization and
blood collection schedules are shown. Mice were killed (†) at week 39 and 40. The symbols of syringes and blood drops represent immunization
and blood collection, respectively.
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week 37, showing reproducible neutralization activity to
wild-type VSV (Figure 5E).
To confirm and extend the observed neutralization of

rVSV-ZEBOVGP to other ebolaviruses, the neutralization
activity of the immune sera was also tested using MLV
pseudotyped with the GP1,2 of different ebolaviruses or the
G protein of VSV as a control for specificity. As shown in
Figure 6, the pooled sera of the VLP group neutralized all
ebolaviruses tested by approximately 40-95% at the 1:25
dilution. No neutralization was observed against control
MLV pseudotypes carrying VSV G, indicating the neutrali-
zation observed is specific. The DNA/VLP group sera neu-
tralized the MLV pseudotypes 60-80% for those carrying

the GP1,2 of EBOV, TAFV, or BDBV, but not the SUDV
GP1,2 or control envelopes. The DNA group sera did not
neutralize any of the MLV pseudotyped viruses tested
(data not shown).

Cellular immune response against GP1,2
To assess whether immunization with VLP or DNA can
induce GP1,2-specific cellular immune responses, spleno-
cytes were harvested from immunized mice at week 40,
and then stimulated with three GP1,2-specific peptides or
no-peptide control, and the secretion of IFN-g was
detected by ELISPOT. Consistent with the antibody
response, a small but statistically significant increase in
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Figure 3 Antibody response. Two weeks after the third immunization, sera were collected and pooled for each group. The anti-GP1,2 antibody
titers for the DNA group (A) and DNA/VLP group (B) were determined using a sandwich ELISA. GP1,2-Fc or the negative control Fc was captured
to the ELISA plate using an anti-Fc antibody. Antibody titer was defined as the highest dilutions where the OD of the sample was higher than
0.15 and at least two times that of the control. The same assay was used to determine the dynamics of anti-GP1,2 antibodies for the DNA group
(C, all diluted at 1:64) and DNA/VLP group (D, all diluted at 1:2,000). The syringe symbol indicates the time points when mice were injected with
the indicated immunogen. (E) Sera from mice immunized with DNA/VLP or VLP were collected 2 weeks after the third immunization and
analyzed by western blot against lysates from cells transiently expressing full-length GP1,2 (E, EBOV) or from cells transfected with no plasmid
DNA (M, mock)

Ou et al. Virology Journal 2012, 9:32
http://www.virologyj.com/content/9/1/32

Page 5 of 13



IFN-g-secreting cells was detected in splenocytes har-
vested from both the VLP and DNA/VLP groups, but not
the DNA or negative control groups (Figure 7).

Discussion
In this study we have compared three different vaccina-
tion strategies: VLPs alone, DNA that produces VLPs
in vivo, or DNA followed by VLPs. We evaluated both
the humoral immune response over time after a total of
four immunizations, and the cellular immune response
at week 40 upon completion of all immunizations.
Using a combination of ELISA, western blot analysis,
and two different types of neutralization assays, we were
able to demonstrate that mice immunized with VLPs
bearing the GPΔMLD of a single ebolavirus, EBOV, gen-
erated cross-reactive neutralizing antibodies to the full-
length GP of EBOV, as well as of the other ebolaviruses
SUDV, TAFV, and BDBV. In addition, we showed that
mice immunized with VLPs bearing GPΔMLD devel-
oped a low, but detectable GP1,2-specific cellular
immune response.
Our study did not include a challenge component, and

therefore, we cannot claim that the vaccination strategy

described here is protective. However, the detection of
neutralizing antibodies in the range of 1:25 dilution of
sera is comparable to levels of neutralizing antibodies
observed in rodent and non-human primate challenge
studies where protection was observed, suggesting that
each of these strategies may protect against natural
infection [43,44].
The observation that sera from immunized animals neu-

tralize VSV or MLV pseudotypes carrying full-length
GP1,2, suggests that the induced antibodies recognize full-
length wild-type GP1,2. We had hypothesized that deleting
the highly variable and highly immunogenic MLD may
expose other antigenic determinants that are conserved
and thus more likely to induce cross-reactive immune
response. Our finding that sera from mice immunized
with EBOV MLD-deleted GP1,2 could also cross-react
with GP1,2 of other ebolaviruses by western blot and in
some cases cross-neutralize suggests that indeed this may
be the case.
The immunogenicity of the EBOV MLD-deleted GP1,2

has been previously studied [11,45]. Dowling et al. showed
that wild-type EBOV GP1,2-immunized mice induced anti-
bodies mainly against the MLD. However, 10 out 15 mice
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Figure 4 Cross-species reactivity of anti-EBOV GPΔMLD antibodies. Shown here are western blots using lysates from mock-transfected cells
or from cells transfected with plasmids encoding full-length GP1,2 of EBOV, SUDV or TAFV, blotted with the pooled sera collected 2 weeks after
the third immunization of the DNA/VLP group at 1:2000 dilution (A), the VLP group at 1:2000 dilution (B), or a control anti-GP1,2 rabbit
polyclonal antibody R.F88-2 at 1:10,000 dilution [42] (C)
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immunized with Δ12 (a GP1,2 in which amino acid resi-
dues 312-411 were deleted), eight out of 17 mice immu-
nized with Δ234 (a GP1,2 in which amino acid residues
342-462 were deleted) and five out of 17 mice immunized
with Δ1234 (a GP1,2 in which amino acid residues 312-462
were deleted) survived lethal challenges with mouse-
adapted EBOV, suggesting the MLD is not absolutely
required for inducing protective immunity. In this study,
amino acid residues 316-505 of GP1,2 were deleted. A
potentially significant difference between this study and
the one by Dowling et al. is that the GPΔMLD used in this
study does not contain the cleavage site between GP1 and
GP2, which would help stabilize the GP1,2 trimer and
might stimulate the immune system more efficiently. Mar-
tinez et al. reported that the MLD plays a role in

stimulating dendritic cells [45]. However, antibody and
cellular immune responses were not determined. GP1,2
was not presented in the VLP format in either of the two
mentioned studies.
Each of the three vaccination approaches used in this

study has its own advantages and disadvantages. The
VLP group induced the strongest immune responses in
terms of antibody titer and the number of IFN-g secret-
ing cells. However, the manufacturing of this type of
vaccine is complex and costly. In addition, we observed
non-specific reactivity making certain analyses of the
immune response uninterpretable (i.e., ELISA could not
be used). This is not surprising because retroviruses are
well-documented to incorporate non-viral membrane
proteins into viral particles [46-49]. The DNA group
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Figure 5 Neutralization of rVSV-ZEBOVGP. Either wild-type VSV or recombinant VSV with its envelope G protein replaced with EBOV GP1,2
[rVSV-ZEBOVGP] was pre-incubated with the pooled sera, as indicated from each group at the final concentration of 1:25 dilution in the
presence (A and C) or absence (B and D) of complement. Vero cells were exposed to the virus/serum mixture, and the virus titer was quantified
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had a detectable, but low titer antibody response 2
weeks after the second immunization. Though antibody
was induced in the DNA group and could be detected
by ELISA, its titer was too low to neutralize either
recombinant VSV or pseudotyped MLV viruses at a 1:25
dilution. Lower dilutions were not tested. The titer of

the DNA group may be low due to inefficient VLP pro-
duction in vivo. The DNA/VLP group may be an ideal
choice because that VLP was used only once, thus alle-
viating VLP production cost and avoiding the non-speci-
fic antibody response, while retaining a strong immune
response to all the ebolaviruses tested (Figure 4).
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In support of greater specificity induced by the DNA/
VLP regimen, there were fewer background bands in the
western blots from the DNA/VLP immunized mice than
from the VLP group, probably because of the incorpora-
tion of murine “self antigens” on the in vivo produced
VLPs, compared to human 293T cell-derived antigens on
in vitro produced VLPs. Therefore, in vivo generated VLPs
from DNA immunization would not induce strong anti-
body response to the non-viral components of the VLP
because there was only one exposure of the immune sys-
tem to foreign antigens on the in vitro produced VLPs.
For the VLP alone group, however, there were multiple
exposures of the immune system to foreign antigens on
the in vitro produced VLPs, and therefore, higher antibody
responses to these foreign antigens were observed.
It remains to be confirmed whether the immune

responses induced by the vaccination strategies described in
this study can protect immunized mice from virus chal-
lenge. If so, these strategies may be adopted for other viruses
whose envelope proteins include highly variable domains
that shield the more conserved and potentially immuno-
genic regions from recognition by the immune system. By
deleting the highly variable regions, the relatively conserved
regions of the envelope protein will be exposed and pre-
sented to the immune system through virus like particles.

Conclusion
Cross-species humoral and cellular immune responses
were successfully induced using retrovirus-like particles
(retroVLPs) bearing Ebola virus GPΔMLD. The findings
suggest that GPΔMLD presented through retroVLPs may
provide a strategy for development of a vaccine against
multiple ebolaviruses. Similar vaccination strategies may
be adopted for other viruses whose envelope proteins con-
tain highly variable regions.

Materials and methods
Cell culture
Human embryonic kidney cells expressing the SV40 large
T antigen (HEK 293T) (a gift from T. Dull, Cell Genesys,
CA), African green monkey kidney epithelial cells (Vero
cells [ATCC CCL-81]) and African green monkey kidney
fibroblast-like cells expressing the SV40 T antigen (Cos7
cells [ATCC CRL-1651]) were maintained in Dulbecco’s
Modified Eagle’s Medium (DMEM, Lonza, Walkersville,
MD) supplemented with 10% heat-inactivated fetal
bovine serum (FBS, HyClone, Logan, UT), 2 mM gluta-
mine, 100 U/ml penicillin, and 100 μg/ml streptomycin
(Lonza, Walkersville, MD). Cells cultures were grown at
37°C in a humidified 5% CO2 incubator.

Plasmid DNAs
The pVR1012-EBOVGP, pVR1012-SUDVGP, and
pVR1012-TAFVGP plasmids encode EBOV, SUDV, and

TAFV GP1,2, respectively, and were kindly provided by
Gary Nabel (Vaccine Research Center, NIH, Bethesda,
MD) and Anthony Sanchez (CDC, Atlanta, GA).
pVR1012-EBOVGPΔMLD encodes the EBOV MLD-
deleted GP1,2 and was described previously [40]. pBDBV
GP1,2 encodes wild-type BDBV GP1,2 and was previously
described [42]. pMLV-GagPol is a Moloney murine leu-
kemia virus (MLV)-based gag-pol expression plasmid
and pRT43.2nlsbgal is a MLV-based packageable gen-
ome encoding b-galactosidase and a nuclear localization
signal [50]. pVSV-G is a commercial plasmid from
Clontech (Mountain View, CA), encoding the G glyco-
protein of Vesicular stomatitis virus (VSV).

Peptides
The following EBOV GP1,2 peptides were synthesized and
Reverse Phase HPLC-purified at the FDA CBER Core
Facility: ZGP-1 (VSGTGPCAGDFAFHK, amino acid 141-
155) [51], ZGP-4 (LYDRLASTV, amino acid 161-169) and
ZGP-5 (EYLFEVDNL, amino acid 231-239) [52].

VLP and CpG production and characterization
VLPs were produced by cotransfecting 16 μg of pVR1012-
EBOVGPΔMLD and 8 μg pMLV-GagPol into HEK 293T
cells at a density of 5 × 106 cells/100 mm cell culture dish
by using 60 μl per dish of Lipofectamine 2000 (Invitrogen,
Carlsbad, CA). Supernatants were collected 48 and 72 h
post transfection, clarified through 0.45 μm-pore size fil-
ters, and concentrated by Amicon Ultracel 100 k centrifu-
gal filters (Millipore, Billerica, MA). The concentrated
VLP-containing supernatants were centrifuged through a
20% (wt/vol) sucrose cushion in TNE buffer (10 mM Tris
[pH 8.0], 1 mM EDTA, 100 mM NaCl) at 82,705 × g in a
Beckman XL-90 ultracentrifuge using a Beckman SW28Ti
rotor. The resulting pellets were resuspended in endo-
toxin-free phosphate-buffered saline (PBS) (Teknova,
Hollister, CA) and stored at -80°C. A total of ten batches
of VLPs were generated, pooled together and total protein
concentration was measured using the Bio-Rad DC Pro-
tein Assay Kit (Bio-Rad, Hercules, CA). Western blot and
silver stain analyses were performed to characterize the
purity and makeup of the purified VLPs. Briefly, 10, 1, and
0.1 μg of the samples were denatured for 5 min at 95°C in
1× NuPAGE LDS Sample Buffer and 1× NuPAGE Sample
Reducing Agent (Invitrogen, Carlsbad, CA), electrophor-
esed on a pre-cast NuPAGE 4-12% Bis-Tris gel at 200 V
and transferred to a PVDF membrane (Invitrogen, Carls-
bad, CA) for 90 min at 30 V. The membrane was probed
with 35 ng/ml of an anti-GP1,2 rabbit polyclonal antibody
R.F88-2, which was raised by injecting a conserved 38-mer
GP1,2 peptide (amino acid residues 72-109) [42], followed
by incubation with goat anti-rabbit IgG conjugated with
horse radish peroxidase (HRP) diluted at 1:10,000
(Thermo Scientific, Rockford, IL), developed with Western
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Lightning™ Plus Chemiluminescence Reagent (PerkinEl-
mer, Waltham, MA), and subsequently exposed to a
Kodak BioMax MR Film (Carestream Health, Rochester,
NY). Likewise, a silver stain analysis was performed using
the SilverQuest™ Silver Staining Kit (Invitrogen, Carlsbad,
CA) according to the manufacturer’s instructions. Phos-
phorothioate CpG ODN 1555 (5’-GCTAGACGTTA
GCGT-3’, underlined portion represents the active CpG
motif) was synthesized at the CBER core facility. Endo-
toxin was removed using the ToxinEraser™ Endotoxin
Removal Kit and residual endotoxin was measured using
the ToxinSensor™ Chromogenic LAL Endotoxin Assay
Kit, following the manufacturers’ manuals (GenScript,
Piscataway, NJ).

Animals and vaccination experiment
Female BALB/c (H-2d) mice, aged 6-8 weeks, were
obtained from Charles River Laboratories (Germantown,
MD) and divided randomly into six vaccination groups.
For VLP immunizations, mice were injected intraperitone-
ally (i.p.) with 33 μg of VLPs in 100 μl endotoxin-free PBS.
For DNA immunizations, mice were injected intramuscu-
larly (i.m.) with a combination of 50 μg of DNA
(pVR1012-EBOVGPΔMLD + pMLV-GagPol at a 2:1 ratio)
and 16 μg CpG in 100 μl endotoxin-free PBS. For CpG
immunizations, mice were injected with 16 μg CpG in 100
μl endotoxin-free PBS via the i.m. route. The mice were
either immunized with VLPs, DNA, a combination of
DNA and VLPs, CpG or endotoxin-free PBS (Figure 2).
Two weeks after each injection, blood samples were col-
lected by nicking the tails with #10 Carbon Steel Surgical
Blades (Braintree Scientific, Braintree, MA) and collecting
blood in BD Microtainer tubes (Becton, Dickinson and
Company, Franklin Lakes, NJ). Blood was allowed to clot
for 1-2 h at room temperature, centrifuged at 8,600 xg for
3 min, and the resulting serum in the supernatant was col-
lected and stored at -20°C. The animal protocol and pro-
cedures were approved by Institutional Animal Care and
Use Committees at the Center for Biologics Evaluation
and Research (protocol #2009-04) in animal facilities
accredited by the Association for Assessment and Accredi-
tation of Laboratory Animal Care International. All experi-
ments were performed according to institutional
guidelines.

ELISA
Immuno 96 MicroWell plates (Nunc, Rochester, NY)
were coated with 50 μl of 1 μg/mL anti-human Fc IgG
antibody (Kirkegaard & Perry Laboratories, Gaithersburg,
MD) in PBS overnight at 4°C. The next day, plates were
washed once with PBS and blocked with 100 μl of 3%
Bovine Serum Albumin (BSA) in PBS for 1 h at 37°C.
Plates were then incubated with 50 μl of either Fc or
GP1,2-Fc (1 μg/ml) [43] in TBS-T (Tris-buffered saline,

0.1% Tween-20) for 90 min at 37°C. After washing 2×
with TBS-T, 50 μl of each serum sample diluted in
TBS-T, as indicated in the figures and legends, was
added and incubated for 1 h at 37°C. Plates were then
incubated with 50 μl horseradish peroxidase (HRP)-con-
jugated goat anti-mouse IgG diluted at 1:500 (Pierce,
Rockford, IL) for 40 min at 37°C after 2 washes with
TBS-T. After washing 4× with TBS-T, 100 μl/well of the
ABTS substrate (Kirkegaard & Perry Laboratories,
Gaithersburg, MD) was added for 3 min at room tem-
perature and plates were read on a VICTOR3 V plate
reader (Perkin Elmer, Shelton, CT) at 405 nm.

Western blot
Cell lysates for western blots were prepared by transiently
transfecting 5 × 106 HEK 293T cells/100 mm cell culture
dish as previously described [53] except for the following
modifications: cells were transfected with 24 μg per plate
of either pVR1012-EBOVGP, pVR1012-SUDVGP,
pVR1012-TAFVGP or pBDBVGP. A mock transfection
was also performed with no plasmid DNA. Total protein
concentration in the cell lysates was measured by using
the Bio-Rad DC Protein Assay Kit (Bio-Rad, Hercules,
CA) and 20 μg were loaded in each lane on a pre-cast
NuPAGE 4-12% Bis-Tris gel, electrophoresed, and trans-
ferred to PVDF membranes, as previously described [53].
The membranes were incubated with one of the following:
pooled sera from the VLP group diluted at 1:2,000, pooled
sera from the DNA/VLP group diluted at 1:2,000 or an
anti-GP1,2 rabbit polyclonal antibody R.F88-2 diluted at
1:10,000 [53] Secondary antibody incubation was per-
formed using HRP-conjugated goat anti-mouse IgG
(1:5,000) or goat anti-rabbit IgG (1:10,000) (Thermo Scien-
tific, Rockford, IL) and developed following the same pro-
tocol as above. Another western blot was also performed
to titrate the pooled sera from the VLP and DNA/VLP
groups at the dilutions of 1:2,000, 1:5,000 and 1:10,000.

Neutralization of rVSV-ZEBOVGP
The recombinant VSV virus expressing the EBOV GP1,2
[rVSV-ZEBOVGP] or the wild-type VSV were generated
as described previously [43]. Briefly, BSR-T7 cells were co-
transfected with pBS-N, pBS-P, pBS-L, and pVSV-
EBOVGP or pVSVFL(+). After 48 h of incubation at 37°C,
supernatants were collected, titrated on Vero E6, and
stored at -80°C. For neutralization, VeroE6 cells were
seeded at 50% confluency in 6-well plates and incubated at
37°C overnight. rVSV-ZEBOVGP or wild-type VSV (100
pfu) in 45 μl of medium, which was prepared with or with-
out 5% guinea pig complement (Accurate Chemical Corp.
Westbury, NY), was mixed with mouse serum at the final
concentration of 1:25 dilution and incubated overnight at
4°C. Normal mouse serum pre-diluted at 1:25 was used as
the negative control. On the next day, the virus-serum
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mixtures were added to the cells and incubated for 1 h at
37°C. Each serum was tested in duplicate samples. After
washing two times with medium, the cells were overlaid
with medium containing 1% Bacto-agar and incubated at
37°C. After 48 h, the cell monolayers were fixed with 10%
TCA and stained with 1% crystal violet for 30 min. Plaque
numbers were used to calculate the titer.

Neutralization of MLV pseudotyped virus bearing
envelopes from different viruses
Retroviral vector pseudotypes were generated by cotrans-
fecting HEK 293T cells as previously described [53] but
modified by using the following plasmids: 10 μg of
pRT43.2nlsbgal, 2.5 μg of pMLV-GagPol and 5 μg of the
expression plasmid pVR1012-EBOVGP, pVR1012-
SUDVGP, pVR1012-TAFVGP, pBDBVGP, or pVSV-G.
One day prior to neutralization, 4 × 104 cells/well of Vero
were seeded in 24-well cell culture plates. The next day,
the vector pseudotypes were thawed on ice, incubated
with serum at the final concentration of 1:25 dilution for
1 h at 37°C, supplemented with 8 μg/mL polybrene
(American Bioanalytical, Natick, MA) and 200 μL of this
mixture replaced the medium on Vero cells. After an over-
night culture, supernatants were removed from the wells
and replaced with 1 ml of complete culture media. 48 h
after transduction, cells were fixed and histochemically
stained for b-galactosidase activity, and the titer was quan-
tified by microscopic enumeration of blue forming units
(BFU), as previously described [54].

Interferon (IFN)-g ELISPOT assay
Erythrocytes from mice splenocytes were depleted by
incubating in 1× BD PharmLyse Buffer (Becton, Dickinson
and Company, Franklin Lakes, NJ) for 5 min at room tem-
perature according to manufacturer’s instructions. The
splenocytes were then used in an IFN-g ELISPOT assay as
previously described [55] except for the following modifi-
cations: 500,000 splenocytes per well were stimulated with
50 μl of 2 μg/ml ZGP-1, ZGP-4, ZGP-5 or a no-peptide
negative control and 0.5 μg/ml biotinylated anti-mouse
IFN-g (Clone R4-6A2) (BD Pharmingen, Franklin Lakes,
NJ) was added per well in the staining process. Three
replicates were used for each combination.

Statistical analysis
To evaluate statistical significance of the ELISPOT results,
we evaluated both within-group and between-group treat-
ment difference. For the within-group comparison, three
replicates for each sample were averaged and the differ-
ence between these averaged responses with respect to
treatment was tested using the paired t-test. For the
between-group comparison, the treatment difference for
each mouse was obtained by taking the difference between
treated vs. untreated averaged response (averaged over

three replicates). This individual treatment difference was
then used to compare the treatment effect between
groups. Two-sample t-test was used for each two-group
comparison.
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