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SUMMARY

Network structures describing regulation between biomolecules have been determined in many bio-

logical systems. Dynamics of molecular activities based on such networks are considered to be the

origin of many biological functions. Recently, it has been proved mathematically that key nodes for

controlling dynamics in networks are identified from network structure alone. Here, we applied this

theory to a gene regulatory network for the cell fate specification of seven tissues in the ascidian em-

bryo and found that this network, which consisted of 92 factors, had five keymolecules. By controlling

the activities of these key molecules, the specific gene expression of six of seven tissues observed in

the embryo was successfully reproduced. Since this method is applicable to all nonlinear dynamic sys-

tems, we propose this method as a tool for controlling gene regulatory networks and reprogramming

cell fates.

INTRODUCTION

Network systems produce dynamics of molecular activity in organisms, and such dynamics are thought to

be the origin of biological functions (Alon, 2007; Oda et al., 2005; Peter and Davidson, 2016). A variety of

cell types originate in the diversity of steady states of gene expression. We recently developed a new theo-

retical framework (linkage logic theory) (Fiedler et al., 2013; Mochizuki, 2008; Mochizuki et al., 2013), with

which key nodes for controlling nonlinear dynamics are identified only from network structure without

assuming quantitative details, such as functional forms, parameters, or initial states. According to this the-

ory, the dynamics of a system is controllable to converge on any solution by controlling a subset of nodes

called a feedback vertex set (FVS). Therefore, if the dynamics of a GRN has multiple steady states, we

should be able to reproduce them and control the dynamics of the system by manipulating the activities

of FVS molecules alone.

In the present study, we applied the linkage logic theory to a GRN that specifies cell fates in embryos of

the ascidian Ciona intestinalis (type A; also called Ciona robusta). The network structure for the specifi-

cation of cell fate has been determined by a genome-wide gene knockdown assay for regulatory genes

that are expressed during embryogenesis (Imai et al., 2006) and was recently updated using data that

had been accumulated after the initial construction (Satou and Imai, 2015). Hence, if the fate decision

is based on the steady states of this network, cell-type-specific gene expression patterns should be re-

produced by manipulating the activities of FVS in the network. Here, we show that the minimum FVSs of

this network contain only five factors and that the dynamics of the GRN is indeed controllable by these

five FVS factors.

RESULTS

Controlling Nonlinear Dynamics of Networks

First, we show the linkage logic theory is applicable to GRNs. A GRN is represented by a directed graph

G= ðV ;EÞ, consisting of a node set V and an edge set E, where nodes represent genes and edges repre-

sent regulatory linkages. The dynamics of gene activities is modeled by a system of ordinary differential

equations. We assume that gene activities, measured in terms of the concentrations of mRNAs or pro-

teins, decay in the absence of supply or synthesis. Suppose that the dynamics of activity xn of gene

n ˛V is written in the form:

_xn = FnðxÞ
= Fnðxn; xIn Þ (Equation 1)
iScience 4, 281–293, June 29, 2018 ª 2018 The Author(s).
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

281

mailto:mochi@riken.jp
mailto:yutaka@ascidian.zool.kyoto-u.ac.jp
mailto:yutaka@ascidian.zool.kyoto-u.ac.jp
https://doi.org/10.1016/j.isci.2018.05.004
https://doi.org/10.1016/j.isci.2018.05.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2018.05.004&domain=pdf
http://creativecommons.org/licenses/by/4.0/


A B C

D E F

Figure 1. Controlling Network Dynamics by FVS

(A) A GRN containing three nodes and three cycles (A / A, A / B/ A, A / C / B / A). Regulatory interaction is

positive for the self-loop in A and either positive or negative for the others. The minimum FVS includes node A.

(B) An ODE system corresponding to the network in (A). The second argument sets in Fns specify regulatory linkages.

(C) Two GRNs containing minimum FVSs marked in red.

(D) The dynamics of regulating nodes determines the dynamics of the regulated node uniquely.

(E) A network without cycles has an empty FVS.

(F) A network with two cycles has an FVS including node a only.
with the ‘‘decay condition’’:

v1Fnðxn; xInÞ< 0: (Equation 2)

The set In4V is the input set of n, a subset of molecules that regulate molecule n, that is, In = fijði/nÞ˛Eg.
The notation v1 implies the first partial derivative with respect to the first argument. The set In
includes n ðn˛InÞ, that is, it is a self-regulatory loop, if vFn=vxn is ‘‘not always negative.’’ Note that even if

vFn=vxn is not negative, we can make the system satisfy the decay condition (2) by adding a positive

term indicating a self-regulatory loop. The sets of In ðcn ˛VÞ directly represent the graphical structure

of the regulatory network. An example of a hypothetical network consisting of three genes is shown in

Figures 1A and 1B.

Under formulations (1) and (2), we proved that sets of key nodes for dynamics are determined from the to-

pology of the network (Fiedler et al., 2013; Mochizuki, 2008; Mochizuki et al., 2013) as FVSs. In graph theory,

an FVS is defined as a subset of vertices in a directed graph whose removal leaves a graph without directed

cycles (Akutsu et al., 1998). In the above hypothetical network, gene A constitutes the minimum FVS (Fig-

ure 1A). Two additional examples are shown in Figure 1C. Here, we give an intuitive explanation of our the-

ory using illustrative examples (see Methods for details). (1) In a simple regulatory system including two

regulator nodes and a regulated node (Figure 1D), if the dynamics of the regulator nodes is given, the dy-

namics of the regulated node is determined uniquely; that is, for any initial state, the dynamics of the node

converges to a single trajectory for a long time. (2) In a GRN without a cycle (Figure 1E), the dynamics of

‘‘top’’ nodes, which receive no regulatory input, converges on the unique equilibrium. By determining

the dynamics of each node downward through the network, the dynamics of a system without a cycle

should converge on a unique equilibrium, which is globally stable. (3) Then, consider a GRN including

two cycles as shown in Figure 1F, the corresponding dynamics of which can have multiple solutions. Say

it has two steady states S1 and S2. Node a is a single element of FVS because the graph without node a
282 iScience 4, 281–293, June 29, 2018
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Figure 2. Gene Regulatory Network for Cell Specification in Ciona

(A) The GRN consists of 92 factors (nodes) and 328 regulatory interactions (edges). The network possessing minimum FVS consists of five nodes. The 12

choices of the node sets are given by choosing a single node from each of five node sets colored light blue, green, pink, gray, and orange. Nodes filled in

yellow are the marker genes, for which we performed observations of activities. See also Figure S1 and S2.

(B) List of nodes in the 12 minimum FVSs.
includes no cycle. Suppose we fix the activity level of node a to be equal to the value at steady state S1 by

experimental manipulation. Then, the remaining nodes constitute a graph without a cycle, and the dy-

namics of these nodes spontaneously converges on the unique steady state, which must be the same as

the steady state S1 in the original system. If instead we fix the activity level of the node equal to the value

of steady state S2, then the dynamics of other genes converges on the unique equilibrium that is equal to

steady state S2. Note that the dynamics of the top nodes, which receive no regulatory input, converges on

the unique equilibrium. Hence, by experimentally manipulating a single node, we can make the system

converge on steady state S1 or steady state S2 as required. When FVSs include multiple nodes, all of

them must be fixed simultaneously to control the dynamics to converge on desired steady states.

The controllability by FVS has a broader meaning than switching between solutions that can be observed in

natural conditions. For any fixed value of nodes in an FVS, the dynamics of other nodes, which are not

included in the FVS, converges on a unique steady state, even if the given value is not chosen from known

natural steady states. This implies that an exhaustive search of steady states is possible under an assump-

tion of discreteness. If we assume that all possible steady states in a given system have binary values, that is,

0 or 1, on an FVS, we can examine all combinations of manipulations of nodes in the FVS. The obtained set

of the states should include all the natural steady states of the system.

FVSs of the Gene Regulatory Network for Fate Specification in Ascidian Embryos

We tested the FVS controllability using the GRN to specify cell fates in an ascidian embryo (Imai et al., 2006;

Satou and Imai, 2015). Before the late gastrula stage of Ciona embryos, the cell fate of each blastomere is

restricted to one of seven tissues, epidermis, brain, nerve cord, endoderm, notochord, mesenchyme, or

muscle, which exhibit specific gene expression patterns in their descendants at later stages. Zygotic

expression starts between the 8- and 16-cell stages, and the dynamics of gene expression until the late gas-

trula stage specifies the developmental fates of the above-mentioned seven tissues. The GRN responsible

for specification of these cell fates includes 92 genes and 328 regulatory linkages (Figures 2A and S1). From

an analysis of the structure of the network (see Methods), we identified 12 minimum FVSs, each of

which contained five genes (color outlined in Figure 2). The minimum FVSs are {Foxa.ajNodaljSnail,
FoxdjTwist-r.a/b, NeurogjDelta.b, Zic-r.b, Erk signaling}, where ‘‘j’’ indicates an alternative choice

(3 3 2 3 2 3 1 3 1 = 12 sets; see Figure 2B). The existence of FVSs indicates that the GRN potentially

possesses multiple steady states. If the activity of the FVS factors is assumed to be binary, that is, active

or inactive, all steady states will be obtained by up- and down-regulation of the activities of molecules

in an FVS, as discussed earlier.

In multicellular embryos, GRNs encoded in individual cells are mutually connected through intercellular in-

teractions and function as subnetworks to constitute a larger GRN. In addition, such interactions are

affected by three-dimensional structures unique to various stages of embryos. To avoid such possible ef-

fects, we developed an experimental system of single-cell development by treating fertilized eggs with

cytochalasin B (CytB) (Figure 3A). Although cells in CytB-treated embryos never divide, nuclear divisions

continue, and specification dynamics is considered to proceed (Hudson et al., 2003; Hudson and Yasuo,

2006; Jeffery et al., 2008; Kodama et al., 2016; Meedel et al., 2007; Oda-Ishii and Di Gregorio, 2007; Satoh,

1979; Shi and Levine, 2008; Tokuoka et al., 2004; Whittaker, 1973; Yasuo and Hudson, 2007). We did not

exclude signaling molecules from our analysis, because signaling molecules could work in an autocrine

manner. To identify cell fates by reverse transcription-quantitative PCR (RT-qPCR) and in situ hybridization,

we chose the following genes as markers: Epi1 and Epib for the epidermis, Bco and Rlbp1 for the brain,

Celf3.a and Tubb for the entire neural system, Alp and CG.KH2012.C8.686 for the endoderm, Noto1 and

Fgl for the notochord, Fli/Erg.a and Twist-r.c for the mesenchyme, andMyl and Acta1 for the muscle (Chiba

et al., 1998; Hotta et al., 1999; Imai et al., 2000, 2003, 2004; Kusakabe et al., 2002; Satou et al., 2001; Taka-

hashi et al., 1999; Ueki et al., 1994; Yagi and Makabe, 2001). We confirmed that these marker genes were

indeed regulated byDlx.b, Zic-r.b, Foxa.a, Brachyury, Twist-r.a/b, orMrf, which were included in the above-

mentioned GRN (Figure S2).
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Figure 3. The Experimental System Using Syncytium Embryos

(A) Depiction of the experimental design for testing the prediction of the linkage logic theory.

(B and C) Syncytium embryos treated with CytB expressed epidermal and neural markers. Expression levels of marker genes are shown relative to the

corresponding values in normal 9.5-hr (tailbud-stage) embryos. (B) Mean values and (C) values of individual embryos are shown. In (B), in these experimental

embryos, two markers for the brain and the entire nervous system were predominantly expressed, and an epidermal marker was also expressed. Other

markers were rarely expressed. The axes in (C) show expression of the same tissue marker genes as in (B). Embryos that predominantly expressed the

epidermal marker, a set of the pan-neural and brain markers, and pan-neural marker are shown in green, light blue, and blue, respectively.
To confirm that specification dynamics proceeds in CytB-treated embryos and to examine whether the cell

fate specification in CytB-treated embryos is deterministic, we used RT-qPCR andmeasured the expression

of seven marker genes, Epi1, Bco, Celf3.a, Alp, Noto1, Fli/Erg.a, and Myl, for seven different tissues in

52 embryos at 9.5 hr after fertilization, which corresponded to the tailbud stage in normal embryos (Figures

3B and 3C; Table 1). Expression levels of marker genes were measured relative to the corresponding values

in normal 9.5 hr embryos. Among the 52 embryos, 19, 21, and 3 strongly expressed Epi1, a set of Bco and

Celf3.a, and Celf3.a, respectively. Namely, the marker gene expression patterns in these embryos resem-

bled those in epidermal, brain, and nerve cord cells. Seven embryos expressed marker genes for multiple

tissues, and the remaining two embryos rarely expressed marker genes. Under the manipulation of CytB

treatment, cell specification became nondeterministic, and the resultant diversity of marker gene expres-

sion was smaller than in normal embryos. In contrast, the observation that marker genes were expressed at
iScience 4, 281–293, June 29, 2018 285



Experimental Conditiona

Unperturbed adnze adnZe adNze Adnze aDnze adnZE adnz Z

Expressionb Epi1 (epidermis) 0.63 0.91 0.00 0.00 0.00 0.00 0.00 0.50 0.00

Bco (brain) 2.30 0.08 2.20 0.06 0.15 0.14 0.43 0.18 2.16

Celf3.a (pan-neural) 3.03 0.15 3.61 9.59 0.19 0.17 0.18 0.34 2.60

Alp (endoderm) 0.01 0.02 0.03 0.13 1.94 0.83 0.01 0.04 0.03

Noto1 (notochord) 0.15 0.01 0.01 0.00 0.31 2.07 0.00 0.01 0.01

Fli/Erg.a (mesenchyme) 0.00 0.00 0.00 0.00 0.01 0.00 6.21 0.00 4.76

Myl (muscle) 0.04 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.08

Table 1. Mean Expression Levels of Marker Genes in Nine Representative Conditions
aEach of the experimental conditions is represented by a five-letter code in which up- and down-regulation of Foxa.a, Foxd,Neurog, Zic-r.b, and Erk signaling are

represented by A/a, D/d, N/n, Z/z, and E/e, respectively. See also Table S1.
bExpression levels of marker genes are shown relative to the corresponding values in normal 9.5-hr (tailbud-stage) embryos.
9.5 hr after fertilization suggested that the dynamics of the GRN for cell fate specification proceeded in

CytB-treated embryos.

Dynamics of the Network for Cell Fate Specification Was Controllable by Manipulating the

Activities of the FVS Factors

Among the 12 minimum FVSs, we chose an FVS consisting of Foxa.a, Foxd, Neurog, Zic-r.b, and Erk

signaling because we have morpholino antisense oligonucleotides that are effective for the knockdown

of Foxa.a, Foxd, Neurog, and Zic-r.b (Hudson et al., 2016; Imai et al., 2006). In addition, we used synthetic

mRNAs for up-regulation of the activities of these genes. For the up- and down-regulation of Erk signaling,

we added a recombinant FGF protein and an MEK inhibitor to seawater. Using these experimental tools,

we performed exhaustive manipulation in a binary manner (i.e., up- or down-regulation of these FVS fac-

tors; 25 = 32 combinations) to identify all possible steady states that the system reaches.

We examined a total of 734 embryos by RT-qPCR for seven marker genes including at least 12 embryos of a

single batch for each of the 32 conditions (Figures S3–S6; Table S1). The expression of marker genes was

deterministic in most cases under the manipulation of FVS factors. Namely, the embryos under the same

manipulating condition exhibit almost the same pattern of expression of the marker genes. We applied

sign tests to examine whether a single tissue marker or a set of Bco and Celf3.a was predominantly ex-

pressed in each of the 32 conditions (Figure S7). The expression of marker genes is summarized in Figure 4.

Each of the experimental conditions is represented by a five-letter code in which up- and down-regulation

of Foxa.a, Foxd, Neurog, Zic-r.b, and Erk signaling are represented by A/a, D/d, N/n, Z/z, and E/e, respec-

tively; for example, embryos exhibiting up-regulation of Foxa.a and down-regulation of the other factors

are referred to as Adnze. As shown in Figure 4, in 22 conditions, Epi1, a set of Bco and Celf3.a, Celf3.a,

Alp, Noto1, or Fli/Erg.a was expressed (Figure 4A). Such gene expression patterns were similar to those

in cells of the epidermis, brain, nerve cord, endoderm, notochord, and mesenchyme, respectively. In

contrast, we rarely observed simultaneous expression of markers for multiple tissues in a single embryo.

Figure 4B shows the average relative gene expression in six representative conditions (see also Table 1).

In these six conditions, we also performed in situ hybridization with the same set of markers and an addi-

tional set of markers, Epib, Rlbp1, Tubb, CG.KH2012.C8.686, Fgl, and Twist-r.c (Figures 4C, 4D, and S8).

The results were consistent with those of the aforementioned RT-qPCR. The observation that gene expres-

sion patterns did not basically differ among individual embryos in each condition indicated that manipu-

lation of the activities of the FVS factors was deterministic.

Dynamics of the Network for Cell Fate Specification Was Not Controllable by Manipulating

the Activities of a Subset of the FVS Factors

In contrast to the findings described earlier, the manipulation of activities of a subset of the FVS factors

(Foxa.a, Foxd, Neurog and Zic-r.b, but not Erk signaling) did not drive the GRN dynamics deterministically

into a single steady state. Namely, gene expression patterns differed among the individual embryos that
286 iScience 4, 281–293, June 29, 2018
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Figure 4. Expression of Marker Genes by Manipulation of the Activities of the FVS Factors

(A–C) Marker expression in experimental embryos. Conditions with asterisks were examined in multiple batches. Each of the experimental conditions is

represented by a five-letter code in which up- and down-regulation of Foxa.a, Foxd,Neurog, Zic-r.b, and Erk signaling are represented by A/a, D/d, N/n, Z/z,

and E/e, respectively. (A) Markers predominantly expressed in 32 experimental conditions. See also Figures S3–S7.

(B and C) The RT-qPCR results for six representative conditions shown in magenta are presented in (B) and were further examined by in situ hybridization as

shown in (C). The axes of the first graph are labeled: Ep, epidermal marker; Br, brain marker; PN, pan-neural marker; En, endodermal marker; Nt, notochord

marker; Me, mesenchyme marker; Mu, muscle marker. This configuration is applied to the other graphs. In (C), the results for the original set (upper;

photographs are shown in D) and an additional set of markers (lower; photographs are shown in Figure S8) are shown.

(D) In situ hybridization of the first set of marker genes shown in (C). Gene names are shown on the left. The numbers of embryos we examined and the

percentage of embryos that expressed the markers are shown in each panel. Scale bar, 100 mm. See also Figure S8.
expressed Epi1, a set of Bco/Celf3.a, orCelf3.a (Figure 5A; Table 1), as gene expression patterns differed in

embryos without manipulation of the activities of the FVS factors (Figures 3B and 3C). Similarly, overexpres-

sion of Zic-r.b alone did not determine cell fate uniquely, either; namely, such embryos expressed Fli/Erg.a,

a set of Bco/Celf3.a, or both (Figure 5B; Table 1). These observations were consistent with a proposition of

the linkage logic theory, namely, that manipulation of the whole FVS is necessary to fully control network

dynamics.

Gene Expression Profiles of Induced Notochord and Mesenchyme

Finally, we compared the genome-wide expression profiles of embryos in two conditions (aDnze and

adnZE), in which notochord and mesenchyme markers were predominantly expressed, with those of noto-

chord and mesenchyme cells (Figure 6). For this purpose, we isolated two pairs of presumptive notochord

cells and two pairs of presumptive mesenchyme cells because these isolated blastomeres differentiate into

notochord and mesenchyme autonomously as partial embryos (Kim and Nishida, 1999; Nakatani and Nish-

ida, 1994). Gene expression profiles for these four types of embryo were analyzed by RNA sequencing

(RNA-seq) (Figure 6A). There were 929 genes with significantly different expression levels between noto-

chord and mesenchyme partial embryos (NOIseq p value adjusted for multiple testing <0.001). Among

them, the expression levels of 280 genes were higher in notochord than in mesenchyme (notochord partial

embryo [N-PE]-enriched genes), and those of 649 genes were higher in mesenchyme (mesenchyme partial

embryo [M-PE]-enriched genes). We also compared the gene expression profiles between aDnze and

adnZE embryos and similarly identified aDnze-enriched genes and adnZE-enriched genes. Among

280 notochord-enriched genes, 71 genes were commonly found in aDnze-enriched genes, whereas

only 1 gene was commonly found in adnZE-enriched genes. On the other hand, among 649 mesen-

chyme-enriched genes, 17 genes were found in aDnze-enriched genes and 163 genes were found in

adnZE-enriched genes (Figure 6B). Namely, sets of genes expressed in notochord andmesenchyme partial

embryos are more similar to those in aDnze and adnZE embryos, respectively.

Figure 6C indicates that the 71 genes commonly enriched in aDnze and notochord partial embryos show

quantitatively similar expression levels, as do the 163 genes commonly enriched in adnZE andmesenchyme

partial embryos. Indeed, the correlation coefficients were 0.652 and 0.958 upon excluding one outlier in the

notochord genes (see Discussion). Thus, the expression levels of the above-mentioned specific genes were

also highly reproduced in adnZE embryos and moderately in aDnze embryos.

DISCUSSION

We developed a method to control nonlinear dynamic systems based on FVS, which are identified from the

structure of networks. We confirmed that the dynamics of the GRN for fate specification in early Ciona

embryo is controllable by manipulating the activities of FVS factors. The expression patterns that represent

six of seven cell states observed in the embryo were actually induced in a deterministic manner. The results

are consistent with the expected dynamic behavior of the multipotency of the system.

We performed our experiments to examine all possible manipulations in a binary control. The obtained

marker gene expression patterns strongly suggest that six tissues were differentiated under at least one

condition of the binary manipulations. This may indicate that qualitative regulation but not quantitative

regulation is sufficient for fate specification of these six tissues in ascidian embryos. The RNA-seq

experiments showed that adnZE embryos and mesenchyme partial embryos express specific genes at

quantitatively similar levels. In contrast, although aDnze embryos and notochord partial embryos

commonly expressed 71 genes specifically, their expression levels were not so well reproduced. This
288 iScience 4, 281–293, June 29, 2018
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Figure 5. Dynamics of the Network for Cell Fate Specification Is Uncontrollable by Manipulating the Activities of a Subset of the FVS Factors

(A and B) Marker gene expression determined by RT-qPCR (A) in adnz-embryos and (B) in Z-embryos. Mean values (left large graphs) and all values for

individual embryos (right small graphs) are shown. The axes of the first graph are labeled: Ep, epidermal marker; Br, brain marker; PN, pan-neural marker; En,

endodermal marker; Nt, notochord marker; Me, mesenchyme marker; Mu, muscle marker. This configuration is applied to the other graphs. Different colors

in the small graphs indicate that different tissue markers are predominantly expressed.
might be explained by the difference in conditions between natural dynamics and the artificial fixation of

FVSs. Under the continuous fixation of an FVS, the expression of some genes may differ from natural

conditions. Indeed, the expression level of Brachyury, which is a key regulatory gene for notochord differ-

entiation (Takahashi et al., 1999) and an outlier shown in Figure 6C, wasmarkedly higher in aDnze (reads per

kilobase of transcript per million mapped reads [RPKM] = 11,897) than in notochord partial embryos

(RPKM = 898).

We could not induce marker gene expression corresponding to muscle in any of the conditions that we

examined. Quantitative manipulation of the FVSs may be required to induce the expression of muscle

markers. Another possibility is that the GRN that we used in this study did not include factors (nodes or

edges) that are responsible for the specification of muscle fate. Indeed, a previous study (Nishida and

Sawada, 2001) showed that a localizedmaternal factor plays an important role in the specification of muscle
iScience 4, 281–293, June 29, 2018 289
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Figure 6. Analysis of Expression Profiles for aDnze and adnZE Embryos

(A) The experimental design for RNA sequencing of partial embryos of notochord and mesenchyme (N-PE and M-PE) and of aDnze and adnZE embryos.

(B) Comparisons between gene fractions enriched in N-PE and M-PE and those enriched in aDnze and adnZE embryos.

(C) Scatterplots showing expression levels of the 71 genes found commonly between gene fractions enriched in N-PE and aDnze embryos and those of the

163 genes found commonly between gene fractions enriched in M-PE and adnZE embryos.
fate. If such factors take more dominant roles than the GRN, controlling GRN alone would not be sufficient

to induce muscle fate.

Differentiated tissues aregenerally thought tobeat steady statesof dynamics of gene activities, and theymay

be established at the tailbud stage inCiona. However, theGRN analyzed in this study includes genes that are
290 iScience 4, 281–293, June 29, 2018



not expressed in such a late stage. Although we analyzed possible steady states of the GRN up to the late

gastrula stage by fixing activities of the FVS factors, it might be difficult to observe these steady states in

the actual development of Ciona. Indeed, expression of the FVS factors except Foxa.a is transient in Ciona

embryos. However, the results of our analysis imply that artificially induced steady states of the GRN are suf-

ficient to specify cell fates at a later stage. One possible explanation for this is as follows. In normal develop-

ment, the dynamics of gene activities may fall into a steady state of the GRN by the late gastrula stage and

thereafter genes downstream of the GRN may suppress the expression of the FVS factors. If this is the case,

steady states for fate decision, which possibly exist in theGRN, are transient and therefore becomeundetect-

ableby integrating regulation at a later stage.Our result suggests that it is practical todecompose aGRN into

subnetworks and to study steady states of the subnetworks to understand cell specification processes.

In normal embryos, the GRN governs specific gene expression temporally and spatially. The important

function of the GRN for specification of cell fates may be to create specific expression patterns of the

FVS genes, which activate cell-type-specific downstream pathways, because a specific combination of

the activities of the FVS factors determined a specific cell fate (Figure 4). Gene expression patterns of

Foxa.a, Foxd, Neurog, and Zic-r.b and temporal and spatial patterns of the activity of the Erk pathway

are mostly consistent with the above-mentioned speculation (Haupaix et al., 2013; Hudson et al., 2003;

Imai et al., 2002a, 2002b, 2004; Ohta and Satou, 2013; Picco et al., 2007; Shi and Levine, 2008; Shimauchi

et al., 2001). The epidermal markers are expressed in adnze embryos. In normal embryos, Foxd, Neurog,

and Zic-r.b are not expressed in the epidermal lineage, and Foxa.a is expressed transiently only in early em-

bryos. In addition, the Erk pathway is not turned on in this lineage before gastrulation. Mesenchyme

markers were expressed in adnZE embryos. In the mesenchyme lineage of normal embryos, Zic-r.b is

strongly expressed and the Erk pathway is activated, whereas Foxa.a and Foxd are expressed transiently

only in early embryos. The notochord maker was expressed in aDnze embryos. In the notochord lineage,

Foxd, Foxa.a, and Zic-r.b are expressed and the Erk pathway is activated. Although this pattern does

not fully support the aforementioned hypothesis, expression patterns of Foxd, Foxa.a, and Zic-r.b proteins

are not known; if Foxd is not degraded for a long time, it is possible that conditions that lead to notochord

differentiation appear in the notochord lineage of normal embryos.

The structural theory provides strong predictions directly from the structure of the network without

assuming other quantitative details of dynamics. Although another theory has been proposed that gives

criteria to choose driver nodes in linear systems structurally (Lin, 1974; Liu et al., 2011), linkage logic is

the first theory to determine key nodes for controlling nonlinear systems only from the structure of net-

works. Theoretically, the strategy is applicable to any nonlinear dynamic system, which includes networks

other than GRNs (Fiedler et al., 2013; Mochizuki et al., 2013; Zanudo et al., 2017), and is particularly useful

for controlling or engineering complex biological networks.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Transparent Methods, eight figures, and five tables and can be found

with this article online at https://doi.org/10.1016/j.isci.2018.05.004.
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Table S1. Mean expression levels of marker genes. Related to Table 1.  
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Epi1 (epidermis) 0.63  0.91  0.00  0.00  0.00  0.00  0.00  0.50  0.00  

Bco (brain) 2.30  0.08  2.20  0.06  0.15  0.14  0.43  0.18  2.16  

Celf3.a (pan-neural) 3.03  0.15  3.61  9.59  0.19  0.17  0.18  0.34  2.60  

Alp (endoderm) 0.01  0.02  0.03  0.13  1.94  0.83  0.01  0.04  0.03  

Noto1 (notochord) 0.15  0.01  0.01  0.00  0.31  2.07  0.00  0.01  0.01  

Fli/Erg.a 
(mesenchyme) 

0.00  0.00  0.00  0.00  0.01  0.00  6.21  0.00  4.76  

Myl (muscle) 0.04  0.00  0.00  0.00  0.00  0.01  0.01  0.00  0.08  
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Epi1 (epidermis) 0.00  0.00  0.00  0.00  0.02  0.01  0.00  0.00  0.00  

Bco (brain) 0.25  0.14  0.12  0.07  0.23  0.42  0.16  0.10  0.15  

Celf3.a (pan-neural) 0.25  1.54  0.16  0.29  5.55  29.05  0.14  0.15  0.38  

Alp (endoderm) 0.02  0.01  0.44  1.53  0.01  0.05  0.09  0.52  1.08  

Noto1 (notochord) 0.00  0.00  0.72  1.97  0.00  0.00  0.36  0.17  0.11  

Fli/Erg.a 
(mesenchyme) 

2.88  1.34  0.00  0.00  0.24  0.00  0.00  0.00  0.00  

Myl (muscle) 0.00  0.09  0.01  0.01  0.01  0.01  0.01  0.01  0.00  
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Epi1 (epidermis) 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00   

Bco (brain) 0.16  0.11  0.12  0.15  0.12  0.03  0.25  0.09   

Celf3.a (pan-neural) 0.28  0.12  2.27  0.54  0.18  3.63  3.08  0.29   

Alp (endoderm) 0.95  1.69  1.10  0.05  0.12  0.15  0.11  0.04   

Noto1 (notochord) 2.11  0.57  0.12  0.05  0.12  0.01  0.12  0.03   

Fli/Erg.a 
(mesenchyme) 

0.00  0.00  0.00  0.04  0.00  0.00  0.00  0.24   

Myl (muscle) 0.03  0.01  0.00  0.00  0.01  0.00  0.00  0.01   
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Epi1 (epidermis) 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

Bco (brain) 0.15  0.14  0.15  0.12  0.27  0.12  0.13  0.14  0.15  

Celf3.a (pan-neural) 0.09  0.09  0.13  0.14  0.13  0.52  0.08  0.12  0.14  

Alp (endoderm) 0.19  0.83  0.29  0.45  1.20  0.26  0.75  0.64  0.77  

Noto1 (notochord) 0.26  0.33  0.36  1.93  1.30  0.48  0.24  0.80  1.05  

Fli/Erg.a 
(mesenchyme) 

0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

Myl (muscle) 0.01  0.01  0.01  0.01  0.01  0.00  0.01  0.01  0.01  
a. Each of the experimental conditions is represented by a five-letter code in which up- and down-
regulation of Foxa.a, Foxd, Neurog, Zic-r.b, and Erk signalling are represented by A/a, D/d, N/n, Z/z, 
and E/e, respectively.  
b. These results are also included in Table 1.  
c. Expression levels of marker genes are shown relative to the corresponding values in normal 9.5 hr 
(tailbud-stage) embryos. 
  



Table S2. Regulatory interactions in the developmental gene regulatory network in Ciona embryos 

up to the late gastrula stage. Related to Figure 2; Transparent Methods. 

 

 

  



Table S3. Cycles in the network of Fig. 2 determine FVS. Related to Figure 2; Transparent 

Methods. 𝐶𝐶𝑖𝑖 are minimum cycles identified by sets of nodes. An FVS 𝐼𝐼 is given as a set of 

nodes that includes at least one member of all 𝐶𝐶𝑖𝑖, that is, 𝐼𝐼 ∩ 𝐶𝐶𝑖𝑖 ≠ ∅,  ∀𝑖𝑖. The red nodes 

indicate our choice of FVS. 

 

Node C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 
Fgf8/17/18 ∗           
Erk signalling ∗ ∗     ∗ ∗   ∗ 
Fgf9/16/20  ∗          

Foxd   ∗         
Twist-r.a/b   ∗         

Tbx6.b    ∗        
Zic-r.b    ∗ ∗  ∗  ∗   
Wnt5     ∗       

Delta.b      ∗  ∗    
Neurog      ∗      
Efna.d       ∗ ∗   ∗ 
Foxa.a         ∗ ∗  
Snail 
 
 

        ∗ ∗ ∗ 
Nodal          ∗ ∗ 

 

  



Table S4. Gene identifiers for genes used in the present study. Related to Related to Figure 2; 

Transparent Methods. 

Gene Identifier (CG.KH2012) 

Acta1 C1.570 

Admp C2.421 

Alp L153.31 

Bco C9.224 

BHLHA15 C3.308 

Bmp2/4 C4.125 

Brachyury S1404.1 

Cdx C14.408 

Celf3.a C6.128 

Cers.e C3.255 

CG.KH2012.C8.686 C8.686 

Chd (Chordin) C6.145 

Ctnnb (β-catenin) C9.53 

Delta.b L50.6 

Dlx.b L57.25 

Dmrt.a S544.3 

Dusp1/2/4/5 C1.1079 

Ebf3 L24.10 

Efna.b C3.202 

Efna.c C3.52 

Efna.d C3.716 

Elk C8.247 

Emx L142.14 

Eph.a C1.404 

Epi1 C1.188 

Epib C7.154 

Fgf8/17/18 C5.5 

Fgf9/16/20 C2.125 



Fgl C1.832 

Fli/Erg.a C4.539 

Fos C11.314 

Foxa.a C11.313 

Foxb C4.341 

Foxc L57.25 

Foxd C8.890/C8.396 

Foxh.a C9.717 

Fzd4 C6.162 

Gata.a L20.1 

Gata.b S696.1 

Gdf1/3-r C4.547 

Gsx C2.917 

Hand-r C1.1116 

Hes.a C1.159 

Hes.b C3.312 

Hhex L171.10 

Id C7.692/C7.157 

Jun C5.610 

Lefty C3.411 

Lhx3/4 S215.4 

Lmx1 C9.616 

Meis C10.174 

Mesp C3.100 

Mnx1 L128.12 

Mrf C14.307 

Msx C2.957 

Myl C1.1186/C1.20 

Myt1 C1.274 

Neurog C6.129 

Nkx2-1/4 C10.338 

Nodal C1.99 

Nog (Noggin) C12.562 



Noto1 L20.18 

Otp C14.377 

Otx C4.84 

Pax3/7 C10.150 

Pax6 C9.68 

Pem1 C1.755 

Pou4 C2.42 

Prdm1-r.a C12.493 

Prdm1-r.b C12.105 

Rlbp1 C11.439 

Sfrp1/5 L171.5 

Six3/6 C10.367 

Smyd1 S423.6 

Snail C3.751 

Sox1/2/3 C1.99 

Sox4/11/12 C7.523 

Tbx2/3 L96.87 

Tbx6.a L8.11 

Tbx6.b S654.3 

Tfap2-r.b C7.43 

Tp53.a C1.573 

Tp53.b C3.713 

Tubb L116.85 

Twist-r.a/b C5.416/C5.554 

Twist-r.c C5.202 

Wnt5 L152.45 

Wnttun5 C9.257 

Zf249 C4.182 

Zf266 C1.777 

Zic-r.a C1.727 

Zic-r.b L59.12/L59.1/S816.1/S816.4 

  



Table S5. Probes and primers used for quantitative PCR. Related to Related to Figure 3; Figure 4; 

Transparent Methods.  

Gene Fluorescent Probe 
(5’ to 3’) 

Forward primer 
(5’ to 3’) 

Reverse primer 
(5’ to 3’) 

Epi1 

(FAM)-
ATCCTCGATATGAAT
GCGGTTTCCCC-
(TAMRA) 

CCAGACAATGGTGTT
GGAAGAC 

AACGCAGTGGAATT
GAGTCACA 

Bco 

(VIC)-
TCAGATCGATCCGG
TGACCCTTGATACA-
(TAMRA) 

TCGCCATCACTGAAA
GCAACT 

GTGTTTCGCAAGATC
AACCTTGT 

Celf3.a 

(FAM)-
CTCGCCAGTAGCAC
GAACGCCC-
(TAMRA) 

GGCAAACCAACTGCA
AACAA 

CAACCATCAGGCCCT
TCTTTT 

Alp 

(FAM)-
AATCCTATTTTCGGC
GCCGCTCC-
(TAMRA) 

CGGATCACAGCCATG
TTTTTAC 

CGACGAGCTTTGGAT
TATTAACGT 

Noto1 

(VIC)-
CGTTCATGTACGGG
TTTCTTGCAACCA-
(TAMRA) 

GGCTTGCCTGCGAAT
GG 

GAGCACACGACTGC
ATCGTAA 

Fli/Erg.a 

(FAM)-
ACGAGAAGGCGAC
CACCAATACACGA-
(TAMRA) 

TCCTACTACAGGGCA
GGAAGCT 

ACCCAAAGTATGCA
ACGTGTTTT  

Myl 

(VIC)-
CGAGCCATTAACCT
TAACCCAACCATTG
AA-(TAMRA) 

TGGATTCGATCAAGTA
GGAGATGTT 

CAATTTTTTGGCAGC
CATATCTT 

  



Transparent Methods 

Linkage logic theory (LLT) 

Formulation 

Consider a directed graph 𝛤𝛤 = (𝑉𝑉,𝐸𝐸) consisting of a node set 𝑉𝑉 and edge set 𝐸𝐸, 

and dynamics on the graph 𝒙̇𝒙 = 𝑭𝑭(𝒙𝒙) (𝒙𝒙,𝑭𝑭 ∈ ℝ|𝑉𝑉|) (Fiedler et al., 2013; Mochizuki, 2008; 

Mochizuki et al., 2013). We assume (i) continuous differentiability of 𝐹𝐹𝑛𝑛, that is, 𝐹𝐹𝑛𝑛 ∈ 𝐶𝐶1, 

and (ii) dissipativity, that is, for any initial condition 𝑥𝑥(0) and for a finite time 𝑡𝑡 ≥ 0, the 

dynamical state 𝑥𝑥(𝑡𝑡) is bounded by a positive constant 𝐶𝐶: |𝑥𝑥𝑛𝑛(𝑡𝑡)| ≤ 𝐶𝐶. Suppose that the 

dynamics of activity 𝑥𝑥𝑛𝑛 of biomolecule 𝑛𝑛 ∈ 𝑉𝑉 is written in the form: 

   
  𝑥̇𝑥𝑛𝑛 = 𝐹𝐹𝑛𝑛(𝒙𝒙)

         = 𝐹𝐹𝑛𝑛�𝑥𝑥𝑛𝑛,𝒙𝒙𝐼𝐼𝑛𝑛�
    (1) 

with the third assumption (iii) decay condition: 

    𝜕𝜕1𝐹𝐹𝑛𝑛�𝑥𝑥𝑛𝑛, 𝒙𝒙𝐼𝐼𝑛𝑛� < 0.   (2) 

In the expression, the bold face notation 𝒙𝒙𝐼𝐼 with subset 𝐼𝐼 ⊆ 𝑉𝑉 denotes the vector 

of components 𝑥𝑥𝑖𝑖 with 𝑖𝑖 ∈ 𝐼𝐼. We explicitly specify self-regulation (𝑛𝑛 ∈ 𝐼𝐼𝑛𝑛) and self-loop 



on the graph 𝛤𝛤, if and only if 𝜕𝜕𝐹𝐹𝑛𝑛/𝜕𝜕𝑥𝑥𝑛𝑛 is ‘not always negative’. Note that we omit the 

self-loop from 𝐼𝐼𝑛𝑛 and 𝛤𝛤, if the self-regulatory influence from 𝑛𝑛 to 𝑛𝑛 is negative (i.e. 

self-repression or decay) and representable by the decay condition. 

Note that the decay condition 𝜕𝜕1𝐹𝐹𝑛𝑛 < 0 does not always imply 𝜕𝜕𝐹𝐹𝑛𝑛/𝜕𝜕𝑥𝑥𝑛𝑛 < 0. If 

total partial derivative 𝜕𝜕𝐹𝐹𝑛𝑛/𝜕𝜕𝑥𝑥𝑛𝑛 is not negative, we can redefine 𝐹𝐹�𝑛𝑛 by including a self-

loop via 𝐼𝐼𝑛𝑛 ≡ 𝐼𝐼𝑛𝑛 ∪ {𝑛𝑛} as: 

𝐹𝐹�𝑛𝑛�𝑥𝑥𝑛𝑛,𝒙𝒙𝐼𝐼𝑛𝑛� ≡ 𝐹𝐹𝑛𝑛�𝒙𝒙𝐼𝐼𝑛𝑛� + 𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑛𝑛. 

Therefore, 𝐹𝐹�𝑛𝑛 instead of 𝐹𝐹𝑛𝑛 with 𝐼𝐼𝑛𝑛 instead of 𝐼𝐼𝑛𝑛 always satisfies the decay 

condition even if 𝐹𝐹𝑛𝑛 itself does not. Thus, the decay condition does not limit the use of the 

formula of an ordinary differential equation. 

 

Theorem and proof 



Under formulations (1) and (2), we proved that a set of key nodes for dynamics is 

determined from the topology of the network (Fiedler et al., 2013; Mochizuki, 2008; 

Mochizuki et al., 2013).  

Definition 1: In a directional graph 𝛤𝛤 = (𝑉𝑉,𝐸𝐸), a subset 𝐼𝐼 ⊆ 𝑉𝑉 of nodes is called 

a feedback vertex set (FVS), if and only if a removal of the set 𝛤𝛤 ∖ 𝐼𝐼 leaves a graph 

without directed cycles. 

Definition 2: In a dynamic system, a subset 𝐽𝐽 ⊆ 𝑉𝑉 of variables is called a set of 

determining nodes, if and only if two solutions satisfy 𝒙𝒙�(𝑡𝑡) − 𝒙𝒙(𝑡𝑡) → 0 (𝑡𝑡 → +∞), 

whenever 𝑥𝑥�𝑛𝑛(𝑡𝑡) − 𝑥𝑥𝑛𝑛(𝑡𝑡) → 0 (𝑡𝑡 → +∞) for all components 𝑛𝑛 ∈ 𝐽𝐽 ⊆ 𝑉𝑉(Fiedler et al., 

2013; Foias and Temam, 1984).  

We proved that these two different concepts are equivalent for the dynamics in a 

network (Fiedler et al., 2013; Mochizuki et al., 2013). In other words, observation of the 

long-term dynamics of the FVS 𝐼𝐼 is sufficient to identify all possible attractors of an entire 

system. Similarly, controlling the dynamics of the FVS (𝒙𝒙𝐼𝐼∗(𝑡𝑡) − 𝒙𝒙𝐼𝐼(𝑡𝑡) → 0) is sufficient to 

drive the dynamics 𝒙𝒙(𝑡𝑡) of a whole system to converge on one of any attractors 𝒙𝒙∗(𝑡𝑡). 



We explain the theorem and sketch the proof in the following. Details of the proof have 

been reported by Fiedler et al. (Fiedler et al., 2013). 

Theorem: In the dynamics on the directed graphs (1) and (2), an FVS of the graph 

is a set of determining nodes regardless of the choice of nonlinear function 𝐹𝐹𝑛𝑛. Conversely, 

if a subset of vertices of the graph is a set of determining nodes regardless of the choice of 

𝐹𝐹𝑛𝑛, it is an FVS.  

Proof: First, we show the if-part (FVS ⇒ determining nodes). The first step is the 

rearrangement of non-FVS. From the definition of FVS, nodes in a complement 

𝐾𝐾(= 𝑉𝑉 ∖ 𝐼𝐼) = {1, … , |𝐾𝐾|} of FVS can be aligned so that a regulating (upper) node has a 

smaller number than a regulated (lower) node. In other words, 𝐼𝐼𝑘𝑘 ⊆ 𝐼𝐼 ∪ {1, … , 𝑘𝑘 − 1} 

(∀𝑘𝑘 ∈ 𝐾𝐾).  

The second step is proof of the convergence of non-FVS under the convergence of 

FVS given. Let the difference of trajectories be 𝑤𝑤𝑛𝑛(𝑡𝑡) = 𝑥𝑥�𝑛𝑛(𝑡𝑡) − 𝑥𝑥𝑛𝑛(𝑡𝑡). Suppose that 

𝑤𝑤𝑖𝑖(𝑡𝑡) → 0 is given for all 𝑖𝑖 ∈ 𝐼𝐼 included in FVS, we show 𝑤𝑤𝑘𝑘(𝑡𝑡) → 0 for all 𝑘𝑘 ∈ 𝐾𝐾 in 

non-FVS via mathematical induction. For the dynamics of the difference of trajectories 

𝒘𝒘(t), the following is induced by the mean value theorem.  



      𝒘̇𝒘(𝑡𝑡) = �𝑭𝑭�𝒙𝒙(𝑡𝑡) + 𝜃𝜃𝒘𝒘(𝑡𝑡)��
𝜃𝜃=0
1

              = �
𝑑𝑑
𝑑𝑑𝑑𝑑

𝑭𝑭�𝒙𝒙(𝑡𝑡) + 𝜃𝜃𝒘𝒘(𝑡𝑡)�𝑑𝑑𝑑𝑑
1

0

                   = �
𝜕𝜕
𝜕𝜕𝒙𝒙

𝑭𝑭�𝒙𝒙(𝑡𝑡) + 𝜃𝜃𝒘𝒘(𝑡𝑡)� ∙ 𝒘𝒘(𝑡𝑡)𝑑𝑑𝑑𝑑
1

0
 = 𝐴𝐴(𝑡𝑡)𝒘𝒘(𝑡𝑡) ,

 

where 

 𝐴𝐴(𝑡𝑡) ≔ �∫ 𝜕𝜕𝑭𝑭
𝜕𝜕𝒙𝒙
�
𝒙𝒙(𝑡𝑡)+𝜃𝜃𝒘𝒘(𝑡𝑡)

𝑑𝑑𝑑𝑑1
0 �. 

The 𝐴𝐴 is a matrix given by integration of each element of the Jacobian of 𝑭𝑭 at 

𝒙𝒙(𝑡𝑡) + 𝜃𝜃𝒘𝒘(𝑡𝑡) with respect to 𝜃𝜃. Note that 𝐾𝐾 does not have any self-regulatory nodes, 

and takes a linear nonautonomous dynamic equation for each 𝑘𝑘 ∈ 𝐾𝐾 as 𝑤̇𝑤𝑘𝑘(𝑡𝑡) =

−𝑎𝑎𝑘𝑘(𝑡𝑡)𝑤𝑤𝑘𝑘(𝑡𝑡) + 𝒃𝒃𝑘𝑘𝑇𝑇(𝑡𝑡) ⋅ 𝒘𝒘𝐼𝐼𝑘𝑘(𝑡𝑡). From the assumption of dissipativity, the nonautonomous 

coefficients 𝑎𝑎𝑘𝑘(𝑡𝑡) ∈ ℝ, 𝒃𝒃𝑘𝑘(𝑡𝑡) ∈ ℝ|𝐼𝐼𝑘𝑘| are bounded by constants 𝑎𝑎0, 𝑏𝑏0 as 0 < 𝑎𝑎0 ≤

𝑎𝑎𝑘𝑘(𝑡𝑡), |𝒃𝒃𝑘𝑘(𝑡𝑡)| ≤ 𝑏𝑏0. Assuming that 𝑤𝑤𝑛𝑛(𝑡𝑡) → 0 is already given ∀𝑛𝑛 ∈ {1,⋯ ,𝑘𝑘 − 1}, we 

show it for 𝑛𝑛 = 𝑘𝑘. By solving the nonautonomous dynamic equation, we have 

  



𝑤𝑤𝑘𝑘(𝑡𝑡) ≤ exp �−� 𝑎𝑎𝑘𝑘(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑡𝑡

0
� |𝑤𝑤𝑘𝑘(0)| 

          + �� exp�−� 𝑎𝑎𝑘𝑘(𝜎𝜎)𝑑𝑑𝑑𝑑
𝑡𝑡

𝑠𝑠
� |𝒃𝒃𝑘𝑘(𝑠𝑠)|�𝑤𝑤𝑗𝑗(𝑠𝑠)�𝑑𝑑𝑑𝑑

𝑡𝑡

0𝑗𝑗∈𝐼𝐼𝑘𝑘

 

≤ exp(−𝑎𝑎0𝑡𝑡)|𝑤𝑤𝑘𝑘(0)| + �� exp�−𝑎𝑎0(𝑡𝑡 − 𝑠𝑠)�𝑏𝑏0�𝑤𝑤𝑗𝑗(𝑠𝑠)�𝑑𝑑𝑑𝑑
𝑡𝑡

0𝑗𝑗∈𝐼𝐼𝑘𝑘

 

→ 0  (𝑡𝑡 → ∞) 

Here, the first term is shown by exp(−𝑎𝑎0𝑡𝑡) → 0, and the second term is shown by 

𝑤𝑤𝑗𝑗(𝑠𝑠) → 0 (𝑠𝑠 → ∞) ∀𝑗𝑗 ∈ 𝐼𝐼𝑘𝑘 ⊆ 𝐼𝐼 ∪ {1, … , 𝑘𝑘 − 1}. In the case of 𝑘𝑘 = 1, 𝐼𝐼𝑘𝑘 ⊆ 𝐼𝐼, trivially 

𝑤𝑤𝑘𝑘(𝑡𝑡) → 0 because 𝑤𝑤𝑗𝑗(𝑠𝑠) → 0 is given ∀𝑗𝑗 ∈ 𝐼𝐼𝑘𝑘 ⊆ 𝐼𝐼. From the above, the first half of the 

theorem is proven.  

Finally, the only-if-part (FVS ⇐ determining nodes) is shown by taking the 

contrapositive, that is, a subset of vertices that is not an FVS is not a set of determining 

nodes. Suppose 𝐼𝐼′ is not an FVS; in other words, 𝛤𝛤 ∖ 𝐼𝐼′ contains directed cycles. By 

appropriate selection of the function of nodes, dynamics can be constructed so that 𝐼𝐼′ is 

not a set of determining nodes. For example, all functions included in 𝐼𝐼′ are taken to be 

simple decay 𝐹𝐹𝑛𝑛�𝑥𝑥𝑛𝑛,𝒙𝒙𝐼𝐼𝑛𝑛� ≔ −𝑥𝑥𝑛𝑛. From this, the behaviour of 𝛤𝛤 ∖ 𝐼𝐼′ cannot be captured 

by 𝐼𝐼′. However, there is a cycle within 𝛤𝛤 ∖ 𝐼𝐼′ and, by choosing these functions, it is 



possible to create diversity in the solutions such as multiple stationary points. In other 

words, 𝐼𝐼′, which is not an FVS, is not always a set of determining nodes for arbitrary 

functions. 

Our theory of controllability has a broader meaning than switching between 

solutions that can be observed in natural conditions. For any given trajectory 𝒙𝒙𝐼𝐼∗(𝑡𝑡) of an 

FVS, dynamics 𝑥𝑥𝑘𝑘∗(𝑡𝑡) of other nodes, which are not included in the FVS (𝑘𝑘 ∉ 𝐼𝐼), 

converges to a unique trajectory for a long time, even if the given trajectory 𝒙𝒙𝐼𝐼∗(𝑡𝑡) is not 

chosen from known natural solutions 𝑠𝑠 ∈ 𝑆𝑆.  

 

Identification of FVSs 

The GRN is shown in Figure 2 and also given as a list of linkages (edges) 

connecting genes (nodes) in Table S2. Note that our theory does not require a distinction 

between positive and negative regulation, except for self-regulation. We omitted linkages 

of self-repression from the decay condition (see treatment of 𝑛𝑛 in 𝐼𝐼𝑛𝑛). Multiple methods 



and algorithms have been proposed to identify minimum FVS from network structures. Our 

algorithm is as follows.  

We first identified nodes (genes) that are not regulated by others and nodes that do 

not regulate other nodes, and removed these nodes and connecting edges from the gene 

regulatory network repeatedly because removal of these nodes does not affect the 

identification of FVSs.  

We next identified independent directed cycles in the graph by a ‘depth-first search 

algorithm’, starting from all nodes, examining paths through directed edges and recursively 

choosing all emanating edges at branching points. We repeated this process until it came 

back to the starting point (identification of a cycle) or reached a cycle that had already been 

identified. We chose a cycle with a smaller number of nodes if a pair of cycles exhibited an 

inclusion relationship. For each cycle, we identified a set of nodes 𝐶𝐶𝑖𝑖 = {𝑛𝑛1𝑖𝑖 ,𝑛𝑛2𝑖𝑖 , … ,𝑛𝑛𝑚𝑚𝑖𝑖
𝑖𝑖 } 

(𝑖𝑖 = 1,2, … , 𝑖𝑖max) passed through by that cycle. The 𝐶𝐶𝑖𝑖 with 𝑖𝑖max = 11 for the gene 

regulatory network of Ciona intestinalis is shown in Table S3. Finally, we identified sets 

(Is) of nodes in which at least one member of all 𝐶𝐶𝑖𝑖 (𝑖𝑖 = 1,2, … , 𝑖𝑖max) was included: 𝐼𝐼 ∩

𝐶𝐶𝑖𝑖 ≠ ∅ for all 𝑖𝑖. We found that 12 𝐼𝐼s were the smallest sets, each of which contained five 



genes. These 𝐼𝐼s were the minimum FVSs. The minimum FVSs are {Foxa.a|Nodal|Snail, 

Foxd|Twist-r.a/b, Neurog|Delta.b, Zic-r.b, Erk signalling}, where ‘|’ indicates an 

alternative choice. 

 The computer code for identifying minimum FVSs is available on 

https://github.com/kmaed/searchfvs. 

 

Comparison with alternative method 

Another study has already provided a criterion to choose driver nodes based on 

network information. The formulation and proof are given for a linear or linearized system, 

based on standard control theory (Kalman, 1963; Liu et al., 2011).  

𝒙̇𝒙(t) = A𝒙𝒙(t) + B𝒖𝒖(t) 

Here, 𝒙𝒙(𝑡𝑡) ∈ ℝ𝑁𝑁 is the state vector, 𝒖𝒖(𝑡𝑡) ∈ ℝ𝑀𝑀 is the input vector, A is an 

𝑁𝑁 × 𝑁𝑁 matrix, and B is an 𝑁𝑁 × 𝑀𝑀 matrix. The network structure is reflected in the 

distribution of nonzero entries in the matrix A. Kalman’s controllability is defined as the 

full rankness of controllability matrix, namely:  



rank[B AB A2B … A𝑁𝑁−1B] = 𝑁𝑁. 

Lin (Lin, 1974) gave proof of the controllability of a linear system by introducing 

the concepts ‘cactus’ and ‘spanned by a cactus’. Later, Liu et al. (Liu et al., 2011) adapted 

the method to many examples of regulatory networks by an algorithm using different 

terminology, ‘maximum matching’. The minimum number of inputs or driver nodes needed 

to maintain full control of the network is determined by the ‘maximum matching’ in the 

network, that is, the maximum set of links that do not share both start and end nodes. A 

node is considered to be ‘matched’ if a link in the maximum matching points at it; 

otherwise, it is unmatched. If there are directed paths from the input to all matched nodes, 

then the system is controllable by driving unmatched nodes.  

There are multiple differences between our theory (FVS control) and that proposed 

by Liu et al. (i) Our theory is applicable for any nonlinear dynamic system, even if the 

nonlinear functions are unknown. (ii) We use the same FVS for both observation and 

control. The equivalence of sets for observability and controllability realizes ‘observation-

base control’. We achieve this control by prescribing the behaviour 𝒙𝒙𝐼𝐼 on FVS 𝐼𝐼 to their 

previously observed trajectory 𝒙𝒙𝐼𝐼𝑠𝑠, 𝒙𝒙𝐼𝐼(𝑡𝑡) − 𝒙𝒙𝐼𝐼𝑠𝑠(𝑡𝑡) → 0. The procedure is much closer to the 



idea of ‘reprogramming’ regulatory networks in life sciences. (iii) Moreover, the aim and 

meaning of ‘control’ differ between the two methods. Liu et al. sought to steer the network 

state 𝑥𝑥(𝑡𝑡) from any initial state 𝒙𝒙0 to any target state 𝒙𝒙𝑇𝑇 in a linear space. Instead, we 

seek to steer 𝒙𝒙(𝑡𝑡) from any initial state 𝒙𝒙0 to any target solution 𝒙𝒙∗(𝑡𝑡) of the original 

system (1), (2). 

  

Animals, whole-mount in situ hybridization, and gene identifiers 

Ciona intestinalis (type A; also called Ciona robusta) adults were obtained from the 

National Bio-Resource Project for Ciona in Japan. cDNA clones were obtained from our 

EST clone collection (Satou et al., 2005). Whole-mount in situ hybridization was 

performed as described previously (Satou et al., 1995). Gene identifiers according to the 

nomenclature rule (Satou et al., 2008; Stolfi et al., 2015) are shown in Table S4.  

 

Gene knockdown and overexpression 

All morpholino antisense oligonucleotides (MOs) (Gene Tools, LLC) used in the present 

study block translation. These MOs have been used previously and their specificity has 



been evaluated (Imai et al., 2006). For synthetic mRNAs, coding sequences of Foxa.a, 

Foxd, Neurogenin, and ZicL were cloned into pBluescript RN3 (Lemaire et al., 1995), and 

synthetic mRNAs were transcribed using the mMESSAGE mMACHINE T3 Transcription 

Kit (Thermo Fisher Scientific). Each of the MOs was prepared at a concentration of 0.4 

mM, and each mRNA was prepared at a concentration of 0.5 μg/μL. Mixtures of MOs and 

mRNAs were injected into eggs in volumes of 30 pL. Injection of a control MO against E. 

coli lacZ (5′-TACGCTTCTTCTTTGGAGCAGTCAT-3′) at a concentration of 1.6 mM or 

control lacZ mRNA at a concentration of 2 μg/μL yielded larvae with normal morphology. 

For the arrest of cell division, embryos were incubated in seawater containing 2.5 μg/mL 

cytochalasin B (Sigma). For up- and down-regulation of Erk signalling, we treated embryos 

with 10 ng/mL human recombinant basic FGF (Sigma, F0291) and 2 μM of the MEK 

inhibitor U0126 (Calbiochem). Reverse transcription followed by quantitative PCR was 

performed using the Cells-to-CT kit (Thermo Fisher Scientific). Each experimental embryo 

was placed into a single tube and reverse-transcription was performed in accordance with 

the manufacturer’s instructions. Quantitative PCR was performed using the TaqMan 

method with primers and probes shown in Table S5. 

RNA sequencing (RNA-seq) 

For the RNA-seq experiments, notochord partial embryos, mesenchyme partial embryos, 

aDnze embryos, and adnZE embryos were collected. Two partial embryos were obtained 

from presumptive notochord (A7.3 and A7.7) and mesenchyme (B8.5 and B7.7) cells 

isolated using glass needles. RNA-seq experiments were performed as described previously 



(Tokuhiro et al., 2017). NOISeq (Tarazona et al., 2011) was used to identify differentially 

expressed genes. We used adjusted p-values for multiple testing to identify differentially 

expressed genes, setting a threshold of 0.001. 

Data Availability 

The RNA-seq data is available under the SRA accession number, DRA006310. 
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