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Abstract

All tumor cell lines that have been tested are defective for Myc auto-repression, and have high levels of Myc produced from
wild type loci and re-arranged loci. Like mammalian Myc auto-repression, Myc protein represses the expression of its gene,
dmyc, in Drosophila. This activity requires Polycomb (Pc), since RNAi for Pc in the embryo eliminates Myc auto-repression.
We have observed that upon depletion of Polycomb in the embryo, levels of one of 18 different chromatin-binding genetic
regulators, Su(z)2, rise dramatically. We pursued the possibility that increased levels of this protein, Su(z)2, interfere with
Myc auto-repression, potentially explaining the loss of auto-repression upon Pc RNAi. We report that embryos expressing
both ectopic Myc and ectopic Su(z)2 fail in Myc auto-repression. Surprisingly, histone H3K27 tri-methylation at the dmyc
locus is inversely correlated with the presence of auto-repression. We show phenotypic consequences of potent dmyc auto-
repression, and their complete reversal by ectopic Su(z)2: dmyc auto-repression induced a diminutive (dm) phenotype, and
upon elimination of auto-repression by Su(z)2, overall levels of Myc increased and completely rescued the phenotype. We
show that this increase in Myc levels caused dramatic activation of Myc activation targets. These data suggest that Su(z)2 is
capable of increasing the potency of Myc activity by eliminating Myc’s feedback regulation by auto-repression. Although
Su(z)2 eliminated Myc auto-repression, we found that Myc repression of other genes is not affected by Su(z)2. These data
suggest a unique antagonistic role for Su(z)2 in Myc auto-repression, and a potential mechanism for cancer-cell specific loss
of Myc auto-repression.
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Introduction

Myc protein is required for cell growth and proliferation in

Drosophila and mammals, and its function is conserved among all

metazoans, with the exception of nematodes [1,2,3]. Myc affects

transcription by inducing or repressing hundreds, if not thousands,

of target genes; Myc protein can bind to 11% of all human

promoters, with some sites bound in almost all cells and some sites

bound only at high Myc levels [4]. Genes regulated by Myc

include those that promote growth and proliferation and inhibit

differentiation [5]. Independent of DNA binding, Myc can affect

the phosphorylation state of the C-terminal domain of RNA

polymerase II, affecting RNA processing and translation [6].

Over-expression of Myc also affects DNA replication, modulating

origin of replication activity and leading to replication stress and

DNA damage [7]. These activities of Myc explain its potent

oncogenic activity.

Although equally important, the mechanism of Myc’s activity of

transcriptional repression is less well understood than its

mechanism of transcriptional activation. Myc is capable of

repressing targets when recruited to a promoter via another

transcription factor, such as Miz-1 [8]. In addition, Myc and its

heterodimerization partner, Max, have been found to bind to

promoters repressed by Myc independently of Miz-1 [9,10,11]. A

truncated version of Myc that fails in transcriptional activation is

still functional in repression, suggesting a mechanism of trans-

repression that is distinct from activation and does not require

Myc’s activation of co-repressors [12]. Newly discovered targets of

Myc repression include a set of microRNA genes, the repression of

which contributes to tumor formation. The promoters of these

genes are bound by Myc protein [13]. Therefore, binding of Myc

to promoters is important for repression, however the mechanism

by which it is recruited there is unknown.

Myc is capable of repressing its own gene, and this auto-

repression is disrupted in all cancer cell lines tested [14,15]. We

have shown previously that the chromatin binding repressor

Polycomb (Pc) is required for Myc to repress its own gene, dmyc,

in Drosophila [16]. Polycomb Group (PcG) proteins are known for

their role in regulation of gene expression necessary for cellular

differentiation, stem cell maintenance, and avoidance of tumor-

igenesis [17,18]. Polycomb group proteins work in large, multi-

subunit complexes that bind to and modify chromatin, silencing

hundreds of loci from flies to mammals [18,19,20,21,22,23,24,25].

Pc RNAi in the Drosophila embryo results in the loss of the

majority of trans-repression by Myc, among many other gene

expression changes [16,26]. Along with the decrease in repression

by Myc, we report here an increase in levels of Su(z)2, a PcG

related protein [27,28,29,30] that is required for ectopic Myc-
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induced overgrowth in the Drosophila eye [31]. We show that an

increase in Su(z)2 alone disrupts auto-repression by Myc, but not

Myc repression of other targets. As a consequence of the loss of

auto-repression, we show that elevated levels of ectopic Myc lead

to an increase in Myc activation of its targets. These data provide

the first evidence for a protein that interferes with Myc auto-

repression, leading to elevated Myc levels and subsequent

increases in activation by Myc.

Results

Su(z)2 up-regulation results in the loss of auto-repression
by Myc

Ectopic Myc expression in Drosophila embryos results in the

repression of 80–200 genes, including the Drosophila myc (dmyc)

gene. Depletion of Polycomb by RNAi abrogates auto-repression

and the majority of Myc repression at mid embryogenesis [16,26].

A logical hypothesis for the role of Polycomb in Myc repression is

that it directly binds to and represses these targets. However, this

hypothesis is inconsistent with our previous results indicating that a

PcG protein required for the targeting of Polycomb, Pho, does not

play the same role in repression by Myc. Many Myc repression

targets affected by Polycomb are unaffected by depletion of Pho

[26]. Because Pho physically targets Polycomb to many loci

[32,33,34], we considered the possibility that Polycomb is not

directly targeted to all genes that Myc represses. Therefore, we

hypothesized that the role of Polycomb in repression by Myc is

indirect: Polycomb is required to repress a different gene or genes,

and that repression is required for Myc-induced repression

(Figure 1A).

If the role of Polycomb in repression by Myc is largely indirect,

then our genome-wide expression data [16,26] should provide

information regarding the gene or genes in the Myc-Polycomb

repression pathway. We began a search for candidate genes by

examining gene expression changes in any genes known to be

generally involved in chromatin binding and genetic regulation.

Therefore, we examined gene expression changes of many PcG

and Trithorax Group (TrxG) genes upon Pc RNAi in the embryo.

Among 18 such genes (pho, Psc, E(z), Su(z)2, Scm, ph-d, ph-p,

Sce/Ring, esc, z, Pcl, Asx, ash1, brm, trx, ash2, lid and Trl), only

Su(z)2 levels changed significantly upon Pc RNAi: Su(z)2

transcripts increased 4-fold upon Pc RNAi (Figure 1B, microarray

data are described in Goodliffe et al. 2007). These data indicated

that Pc is required for repression of Su(z)2, which is consistent with

previous reports of cross-regulation among PcG members [35].

We were intrigued by these data, because Su(z)2 is a functional

homolog of the PcG protein Psc, and known to be a potent

repressor when targeted to loci by LexA fusion [29,36,37,38]. Our

data suggested the potential for Su(z)2 to affect auto-repression by

Myc, and despite the unexpected potential for a repressor to

interfere with repression, we pursued the possibility.

We considered two hypotheses: 1) that Pc is required for direct

repression by Myc and Su(z)2 levels are incidental, or 2) that

Su(z)2 blocks repression by Myc and Polycomb is required to

repress the Su(z)2 gene (Figure 1A, where gene Y represents

Su(z)2). To determine whether the latter hypothesis is true, we

obtained flies from the Exelixis collection that contain an XP

insertion near the endogenous Su(z)2 locus (P[XP]d01221,

abbreviated here as Su(z)2XP) [39], leading to its ectopic

expression under the control of Gal4 as detected by RT-PCR

Figure 1. Pc RNAi results in an increase in Su(z)2 levels. A) We suggest two possible scenarios for the role of Pc in Myc auto-repression: Pc is
either directly involved with Myc protein in repression (left), or required to repress a third player, gene Y (right), whose protein product interferes with
Myc repression (right). B) A candidate for gene Y. See Goodliffe et al., 2007, for microarray data generation. Log2 ratios of changes in levels of 19 PcG
and TrxG transcripts are shown, compared to wild type levels (Gal4), in embryos with ectopic Myc (blue), ectopic Myc plus Pc RNAi (red) and ectopic
Myc plus pho RNAi (green).
doi:10.1371/journal.pone.0005076.g001

Su(z)2 Affects Myc

PLoS ONE | www.plosone.org 2 March 2009 | Volume 4 | Issue 3 | e5076



(data not shown). We obtained embryos expressing ectopic dmyc,

ectopic Su(z)2, and the combination of both under the control of

an armadillo-Gal4 driver (see Materials and Methods for genetic

crosses).

In embryos with ectopic Myc, endogenous dmyc gene

expression was reduced compared to wild type. In contrast,

simultaneous ectopic Myc and ectopic Su(z)2 expression resulted

in a dramatic increase in endogenous dmyc expression compared to

levels in embryos expressing ectopic Myc alone (P = 0.036 by

Student’s t-test, Figure 2A–B). These results suggest that, at the

minimum, Su(z)2 expression interferes with dmyc auto-repression.

Because endogenous dmyc levels were also increased over wild

type levels, ectopic Su(z)2 and Myc together appear to cause an

activation of endogenous Myc in addition to relief of auto-

repression. In fact, increased levels of Su(z)2 alone appear to

induce endogenous dmyc, though to a lesser degree than with

ectopic Su(z)2 and Myc together. These results suggest the

importance of wild type dmyc auto-repression, which when

disrupted, may allow induction of the dmyc gene in the embryo

potentially by the mitogenic signals that are likely to be operating

during embryogenesis.

We considered the possibility that Su(z)2 may interfere with

Myc protein levels, accounting for the failure of auto-repression.

We obtained an antibody specific for Drosophila Myc, and

compared its staining with fluorescent in situ hybridization (FISH)

to dmyc transcripts in wild type embryos (data not shown and Fly-

FISH [40]). Because we observed the same staining pattern with

both FISH and immuno-staining using the anti-Myc antibody, we

examined levels of Myc protein in embryos of four genotypes

(armGal4, armGal4-UAS dmyc, armGal4-Su(z)2XP, armGal4-

UAS dmyc-Su(z)2XP). We found that ectopic Su(z)2 does not

decrease Myc protein levels (Figure 3). In fact, we found that

embryos expressing ectopic Myc have reduced total Myc protein

levels, and those expressing both ectopic Myc and ectopic Su(z)2

have wild type levels of Myc (Figure 3). These results are consistent

with our RT-PCR data and indicate that increased levels of Su(z)2

provide increased Myc protein levels in the absence of auto-

repression.

In these experiments, we found that armGal4 provided low

levels of ectopic Myc compared to wild type levels found in

embryos. As shown in Figures 2–3, total Myc levels are high in

Gal4, non-ectopic Myc expressing embryos. In embryos with

ectopic Myc, endogenous Myc levels dropped dramatically, and

therefore the total Myc levels must have consisted of mostly

ectopic Myc. When the levels of ectopic Myc were lower than Myc

levels that occur in wild type embryos, transgenic, dmyc auto-

repressing embryos had lower total Myc than wild type embryos

(Figures 2 and 3). These data suggest that auto-repression can

reduce the naturally occurring, high levels of Myc to the point that

what remains in those embryos is ectopic Myc. If ectopic Myc is

low, total levels are low in those embryos. Consistent with these

low levels of Myc protein, we observed a phenotypic consequence

of the growth of these animals.

In support of our molecular data, we observed that larvae

heterozygous for Gal4 and UAS dmyc resembled larvae

zygotically null for dmyc [41]. In these experiments, we used a

Gal4 driver that allowed more embryos to survive and hatch into

larvae (P{Gal4}-da.G32, [42]) than survive with armGal4-UAS

dmyc. Many Gal4-da.G32-UAS dmyc embryos hatched into

viable larvae, however these larvae failed to grow, and after

approximately 3 days, died as small larvae (Figure 2C). These

larvae behaved as wandering third instars, and often died attached

to the side of the vial. Larvae heterozygous for Gal4, UAS dmyc

and UAS Su(z)2 together, however, hatched and grew normally,

Figure 2. Su(z)2 disrupts auto-repression by Myc. A) RT-PCR
analysis of endogenous, ectopic and total Myc expression in embryos of
four different genotypes, which are indicated above each lane
(Gal4 = arm-Gal4, Gal4-Myc = armGal4; UAS dmyc, Gal4-Su(z)2 = arm-
Gal4; Su(z)2XP, Gal4-Myc-Su(z)2 = armGal4; Su(z)2XP; UAS dmyc). A 0–
21 hour collection of embryos was used for RNA isolation and for all
subsequent assays. Ras64B was used as a loading control. B) A chart
showing endogenous dmyc expression, the average of biological
triplicates is plotted with standard deviations indicated for four
genotypes of embryos. Expression was quantified using Quantity 1
(Bio-Rad). The blue line denotes a statistically significant change in
endogenous dmyc levels from Gal4-Myc to Gal4-Myc-Su(z)2. C) Living
larvae of the genotypes shown, all grown at low density, aged 4 days
after egg laying at room temperature, and photographed simulta-
neously.
doi:10.1371/journal.pone.0005076.g002

Su(z)2 Affects Myc

PLoS ONE | www.plosone.org 3 March 2009 | Volume 4 | Issue 3 | e5076



completely rescued presumably by the inhibition of auto-

repression by Su(z)2 (Figure 2C). These data illustrate the impact

of strong dmyc auto-repression, which is to induce a dmyc knock-

down phenotype, and that Su(z)2 appears to completely rescue this

mutant phenotype.

General repression by Myc is maintained and possibly
enhanced by Su(z)2

We were curious whether ectopic Su(z)2 interferes with general

repression by Myc at genes other than dmyc. We tested the

expression of 6 known embryonic repression targets of Myc

(Cyp6a8, CG31274, Obp56a, CG12868, CG31445, JhI-26

[16,26]) by RT-PCR using total RNA from embryos of the four

genotypes described above (Gal4, Gal4-UAS dmyc, Gal4-

Su(z)2XP, Gal4-UAS dmyc-Su(z)2XP). Two interesting results

were evident from these experiments.

First, all six genes were repressed in embryos with ectopic Myc,

despite a slight drop in overall Myc levels caused by auto-

repression (Figure 4A–B). This result occurred repeatedly and for

all 6 genes we tested. These data suggest that this set of six genes is

repressed by Myc in a mechanism that occurs before or

simultaneously with Myc repression of its own gene.

Second, these genes were also repressed in embryos with ectopic

Su(z)2, either alone or in combination of ectopic Su(z)2 and

ectopic Myc (Figure 4A–B). These results were also observed

repeatedly for six of six tested genes, and suggest that Su(z)2 not

only fails to interfere with repression by Myc but also appears to

replace it. One possible explanation for repression of these genes in

the presence of ectopic Su(z)2 alone is the status of endogenous

dmyc auto-repression in these embryos. Total Myc levels are

elevated in embryos with ectopic Su(z)2 alone compared to Gal4-

UAS dmyc embryos (Figures 2–3), suggesting the disruption of

endogenous dmyc auto-repression. It is possible that the disruption

of auto-repression causes increased Myc levels at a time when

these genes are sensitive to repression by Myc. Alternatively,

Su(z)2 alone may be sufficient for repression of these targets.

Taken together, our results show that Su(z)2 interferes with auto-

repression by Myc, but Su(z)2 appears not to affect and possibly to

enhance repression of other Myc targets.

Gene activation or repression can be a consequence of or

maintained by specific covalent histone modifications [43]. Tri-

methylated lysine 27 on histone 3 (H3K27-Me3) is a well defined

mark of PcG repression [44] and found to be present at Myc

activation and repression targets in wild type embryos [16,26]. To

test whether Su(z)2 affects this chromatin modification at Myc

repression targets, we performed chromatin immunoprecipitation

(ChIP) using antibodies specific for H3K27-Me3 (Millipore) in

four genotypes. We were surprised to find no difference in

methylation levels of the 6 repression targets in any of the four

genotypes. All six were consistently tri-methylated at H3K27 in all

four genotypes. We were further surprised to find reduced

H3K27-3Me at the dmyc locus in embryos with ectopic Myc

expression, inversely correlated with auto-repression (Figure 4C).

These data suggest that embryonic H3K27 tri-methylation at

these loci does not mediate their expression or repression.

However, the reduction of H3K27 tri-methylation of dmyc in

embryos expressing both ectopic Myc and ectopic Su(z)2 is

intriguing. One possibility to explain these results is that Myc auto-

repression utilizes a mechanism that involves removal of PcG

complexes from the locus.

Activation by Myc is enhanced by Su(z)2
We were interested in the downstream consequences of the

elimination of Myc auto-repression by Su(z)2, especially consid-

ering the dramatic phenotypes we observed in larvae. We tested

the expression of three known targets of Myc activation (CG14147,

Figure 3. dmyc auto-repression reduces total Myc protein levels compared to wild type, which is rescued by combining ectopic Myc
with ectopic Su(z)2 expression. Similarly aged embryos of four genotypes are beside one another, with the genotypes of embryos indicated
above each column. Anti-Myc staining is green.
doi:10.1371/journal.pone.0005076.g003
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CG7330 and Fzy [26]) in embryos of the four genotypes utilizing

the armGal4-UAS system as described above. Expression of

ectopic Myc led to auto-repression and therefore reduced

endogenous Myc levels. Upon reduction of endogenous Myc,

total Myc levels, consisting of the remaining endogenous plus

ectopic Myc, were lower in embryos expressing ectopic Myc than

wild type (Figure 5A). As a result, levels of all three tested

downstream activation targets were reduced in the effectively

Myc-knock-down embryos (Figure 5A). In embryos expressing

both ectopic Myc and Su(z)2, total Myc levels were high, similar to

levels in wild type embryos. Accordingly, the levels of all three Myc

activation targets are elevated, similar to their levels in wild type

embryos. We observed these results repeatedly, and using embryos

of various ages. These data show that, in embryos with both

ectopic Myc and ectopic Su(z)2, the loss of auto-repression leads to

an overall increase in Myc levels, which is sufficient to activate

downstream Myc targets. These gene expression changes help

explain the phenotypic rescue of Gal4-UAS dmyc-Su(z)2XP

animals.

We have previously published reports of strong activation by

Myc of hundreds of genes in embryos [16,26]. The difference

between those experiments and the ones we report here is that

levels of ectopic Myc are much lower in our newest experiments

than they have been previously. Because levels of ectopic Myc are

low, and because we still obtain auto-repression of the endogenous

locus, we have lower overall levels of Myc in embryos with ectopic

Figure 4. Ectopic Su(z)2 does not interfere with Myc repression of targets other than dmyc. A) A representative gel of RT-PCR data
showing the expression of six Myc targets of repression in four genotypes, as indicated above each column of bands. Total dmyc expression and
Ras64B expression, a loading and RNA level control, are shown in the bottom two panels. B) The average band intensities indicating levels of
expression and relative standard deviation are plotted for the 8 genes shown in A. Genotypes are indicated along the X axis, and the Y axis shows
band intensities as quantified by Quantity 1 (Bio-Rad). C) ChIP results showing H3K27 tri-methylation of three of the 8 genes shown in A, in the 4
genotypes of the experiment. Ras64B is a negative control. These data show a representative picture of biological triplicates for all 8 genes.
doi:10.1371/journal.pone.0005076.g004
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Myc compared to wild type, as explained above. This results in a

decrease in Myc activation of Myc targets. Therefore, our data

show the consequences of de facto knock-down of Myc levels on

Myc targets, which is that they are de-activated. The results are

consistent with these targets being Myc responsive, since their

levels drop as Myc levels drop. Our data are in agreement with

previous results, and add the novel result that Su(z)2 disruption of

auto-repression can alter downstream Myc function.

Figure 5. Increased Su(z)2 provides for activation of Myc targets, and a reduction in their H3K27 tri-methylation. A) RT-PCR analysis
showing expression of three Myc activation targets (indicated on the left side of the gel pictures) in embryos of 4 different genotypes (indicated
above the lanes). Average band intensities (Quantity 1) of biological triplicates are plotted on the right, with relative standard deviations indicated. B)
ChIP assay showing histone H3K27 tri-methylation at five Myc activation targets (indicated to the left of the gel pictures) in embryos of genotypes
indicated on top. Data shown on the left are plotted in a stacked column chart; the y-axis is the density of each PCR product divided by the density of
the input sample PCR product, and the values for each gene are stacked together for each of the four genotypes. These data show a representative
set of biological triplicates.
doi:10.1371/journal.pone.0005076.g005
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Ectopic Su(z)2 alters histone H3 lysine 27 methylation at
Myc targets

We have shown previously that embryonic targets of Myc

activation are tri-methylated at H3K27 [26]. To test whether Su(z)2

affects H3K27 chromatin modification at Myc activation targets,

we performed chromatin immunoprecipitation (ChIP) using

antibodies specific for H3K27-Me3 (Millipore). We used embryos

aged 0–21 hours, maintaining identical conditions to our RT-

PCR experiments shown in Figure 5A, and used ChIP DNA as

template for PCR amplification of several genes: CG14147,

CG7330, Cyp309a2, SamDC and 128up. The first two represent

the set that were activated with ectopic Myc and Su(z)2

(Figure 5A). Cyp309a2 is activated by Myc at mid embryogenesis

but not later [Goodliffe, unpublished and 16,26], and SamDC and

128up have both been reported to respond to Myc in Drosophila

and have Myc bound at their promoters [45].

In the absence of ectopic Myc, four out of five Myc activation

targets were methylated at H3K27 (Figure 5B). Upon ectopic Myc

induction, and under conditions of de-activation caused by a

reduction in total Myc levels (as in Figure 5A), all five loci showed

increased H3K27 methylation (Figure 5B). These results indicate

that reduced Myc levels lead to increased H3K27-3Me at Myc

activation targets. Consistent with a Su(z)2-induced increase in

total Myc levels, HeK27-Me3 decreased in embryos having both

ectopic Myc and Su(z)2 (Figure 5B). These data are consistent with

our RT-PCR results and indicate that activation of these targets

involves reduced H3K27 tri-methylation, and that ectopic Su(z)2

may impact this reduction. Interestingly, at three of the five loci,

ectopic Su(z)2 alone reduces H3K27-Me3 levels compared to their

levels in Gal4 embryos (CG14147, Cyp309a2, 128up).

Discussion

Su(z)2 has two mammalian homologs: Bmi-1 and Mel-18

[29,38]. Bmi-1 was originally isolated as a collaborator with Myc

in tumorigenesis [46,47], and Myc has been shown to directly

activate Bmi-1 [48]. Interestingly, Mel-18 behaves as a tumor

suppressor by repressing oncogenes Bmi-1 and c-myc in mammals

[49,50]. However, Mel-18 and Bmi-1 have both been shown to

increase proliferation and survival of cancer cells [51].

We have shown that auto-repression of dmyc expression in

embryos is a potent mechanism that can persist throughout

embryogenesis, and that Su(z)2 disrupts this mechanism. These

results explain, in part, the role of Polycomb in Myc auto-

repression, which involves suppression of Su(z)2 expression. We

had previously reported that Pc RNAi up-regulated many genes

that are also up-regulated upon increased total Myc levels [16]. Our

data suggest that the intermediate between those sets of genes is

likely to be Su(z)2: Su(z)2 levels increase without Pc, followed by

the disruption of dmyc auto-repression, leading to an increase in

Myc levels and the subsequent activation of Myc targets.

We are intrigued that a repressor interferes with repression, and

specifically the auto-repression of the dmyc gene and not other

Myc repression targets. Our results suggest different mechanisms

for dmyc auto-repression and repression by Myc in general. In the

former case, the expression of Su(z)2 somehow interferes with

auto-repression mediated by ectopic Myc, and in the latter case,

Su(z)2 appears not to affect and possibly replace repression by

ectopic Myc. Because it is unlikely that a potent repressor such as

Su(z)2 directly interferes with repression, we suppose that its role in

interference with auto-repression is indirect. There may be a gene

that is responsive to the combination of elevated Su(z)2 and

elevated Myc, and this gene product may interfere with auto-

repression.

We have not ruled out the possibility, however, that the over-

expression of Su(z)2 caused it to replace Psc in the Polycomb

Repressive Complex 1 (PRC1). Although Psc and Su(z)2 have

been shown to be functional homologs in that complex [37], an

embryonic Su(z)2-PRC1 complex may be targeted differently than

a PRC1 complex containing Psc, and therefore potentially remove

other components of the PRC1 complex from the dmyc locus. It is

also possible that increased Su(z)2 protein levels titrate members of

PRC1, causing non-functional complexes to accumulate and

interfere with functional complexes.

We use whole embryos for our experiments because we are

interested in the endogenous, embryonic mechanisms that allow

an embryo to tolerate high levels of Myc. We have shown that

auto-repression is potent and can induce a dmyc knock-down

phenotype. We suspect that the wild type role of Su(z)2’s

interference of dmyc auto-repression is important for the

prevention of complete silencing of dmyc. Embryos require Myc

protein for growth, and our results show that Su(z)2 helps maintain

expression of dmyc, providing Myc levels necessary for embryonic

growth and proliferation.

Materials and Methods

Drosophila stocks and crosses
We crossed females homozygous for a Gal4 driver (armGal4

[52] or Gal4-da.G32 [42]) to males homozygous for UAS dmyc

[53], Su(z)2XP (P[XP]d01221, see flybase.org for further infor-

mation), and UAS dmyc-Su(z)2XP. As controls, we crossed Gal4

females to Gal4 males.

Microarray data normalization and analysis
The microarray data plotted in Figure 1 has been published

previously; see Goodliffe et al. (2007) for normalization and data

treatment.

RNA isolation and RT-PCR
We conducted crosses as described, and collected embryos on

grape juice agar plates (Genesee) supplemented with live yeast.

Total RNA was isolated using TRIzol (Invitrogen), and RNA

samples were DNAse treated (Promega) prior to RT-PCR. We

used AccessQuick RT-PCR system (Promega) to amplify target

transcripts from RNA, and quantified band intensities using

Quantity 1 (Bio-Rad). PCR cycles were minimized to examine

expression changes within the linear range (24–25 cycles,

depending on the primer set).

We isolated RNA from embryos aged 0–21 hours, and

examined expression levels of endogenous dmyc expression using

a primer set that amplifies the 59 untranslated region of dmyc,

which is absent in the UAS dmyc transgene [16]. To amplify

ectopic myc expression, we used a primer that binds to the 9E10

epitope tag present on the transgenic transcript. All experiments

were done in biological triplicates, with no more than 25 PCR

cycles.

Chromatin immunoprecipitation
ChIP was performed as described previously [16,26]. We used

antibodies at a 1:100 concentration, amplified target genes using

GoTaq Hot-Start polymerase (Promega), and quantified band

intensities using Quantity 1 (Bio-Rad). Anti-H3K27-3Me is

obtained from Millipore, 07-449.

Embryo fixation, staining and microscopy
Embryos were fixed in formaldehyde/PBS, and stained using

1:250 concentration of anti-Myc (Santa Cruz) in PBS/0.1%
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Triton X-100/5% BSA. Secondary antibodies were used at a

1:500 dilution (AlexaFluor 488 anti-rabbit, Invitrogen). Embryos

were mounted in SlowFade Gold with DAPI (Invitrogen), and

imaged using a Motic BA400 compound microscope, Lumen 200

Illumination Systems epi-fluorescence, Spot Cooled CCD mono-

chrome camera and software. We photographed all embryos with

identical bulb intensity and acquisition settings.
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