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Purpose: The purpose of this study was to identify a taxonomy of epistemic uncertain-
ties that affect results for geographic atrophy (GA) assessment and progression.

Methods: An important source of variability is called “epistemic uncertainty,” which is
due to incomplete system knowledge (i.e. limitations inmeasurement devices, artifacts,
and human subjective evaluation, including annotation errors). In this study, differ-
ent epistemic uncertainties affecting the analysis of GA were identified and organized
into a taxonomy. The uncertainties were discussed and analyzed, and an example was
provided in the case ofmodel structure uncertainty by characterizing progression of GA
by mathematical modelling and machine learning. It was hypothesized that GA growth
follows a logistic (sigmoidal) function. Using case studies, the GAgrowth datawere used
to test the sigmoidal hypothesis.

Results: Epistemic uncertainties were identified, including measurement error (imper-
fect outcomes frommeasuring tools), subjective judgment (grading affected by grader’s
vision and experience), model input uncertainties (data corruption or entry errors),
andmodel structure uncertainties (elucidating the right progression pattern). Using GA
growth data from case studies, it was demonstrated that GA growth can be represented
by a sigmoidal function, where growth eventually approaches an upper limit.

Conclusion: Epistemic uncertainties contribute to errors in study results and are
reducible if identified and addressed. By prior identification of epistemic uncertainties, it
is possible to (a) quantify uncertainty not accounted for by natural statistical variability,
and (b) reduce the presence of these uncertainties in future studies.

Translational Relevance: Lowering epistemic uncertainty will reduce experimental
error, improve consistency and reproducibility, and increase confidence in diagnostics.

Introduction

Geographic atrophy (GA) is a debilitating eye
disease affecting 5 million individuals globally with
expected growth to reach approximately 9 to 10 million
individuals by the year 2040.1 GA appears as lesions
which are the result of dead retinal pigment epithe-
lium (RPE) and photoreceptor cells with closure of the
underlying choriocapillaris.2,3 The presence of these
lesions in the retina can cause irreversible vision loss,
and the size and location of the lesions in the macula
is linked with the degree of vision loss.4,5 The rate

of progression of GA is highly variable and there is
continuing research on possible factors that contribute
to GA and its progression.5

There is currently no objective, quantitative, and
universally agreed model for progression.1,5–7 A lack
of consensus may be due to the unaccounted variabil-
ity in many study findings, which is attributable in part
to uncertainties associated with the accuracy and preci-
sion of various assessment methods.8 Table 1 summa-
rizes the common epistemic uncertainties that occur in
the analysis of GA in research and clinical practice.

Aside from the impact on clinical diagnosis and
management, uncertainty analysis is important
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Table 1. Epistemic Uncertainties in the Analysis of GA

Sources of uncertainty
• Data quality (data entry errors, artifacts, noise, duplication, and data corruption)
• Image quality (contrast, resolution, color, optical aberrations, and sensor noise)
•Measurement error (instrumentation resolution and reproducibility)
• Grader – annotation errors and population variability
• Education and experience
• Visual acuity and concentration
• Fatigue and stress
•Model structure uncertainty (choice of model and parameters)
•Model parameter uncertainty (regression analysis and confidence intervals)
• Sample size and homogeneity (statistical significance)
• Choice of biophysical model versus machine learning model

Figure 1. A taxonomy of uncertainty highlighting the different types of epistemic uncertainty that occur in GA assessment in addition to
statistical variability associated with replications. GA, geographic atrophy.

because progression models and machine learn-
ing can be affected by data quality and human
annotation errors during the course of training and
parameter estimation. Some GA analytic models are
hybrid approaches combining features of biophysi-
cal approaches and machine learning. These include
logistic models and mixed-effects models.

Identification of epistemic uncertainties could (a)
statistically quantify variability not accounted for
by a regression model, and (b) provide information
for reducing these uncertainties (e.g. by experimental
modification, data normalization, and image prepro-
cessing).

In the taxonomy of uncertainty, there are two
broad categories of classification: aleatory uncertainty

and epistemic uncertainty (Fig. 1). Aleatory uncer-
tainty is regarded as irreducible uncertainty and is
the natural statistical variation in data and experi-
mental studies.9 Epistemic uncertainty is due to lack
of knowledge and refers to reducible errors, such as
subjective uncertainty, measurement error, and model
structure uncertainty. Epistemic uncertainty can also
arise due to the limitations of electronic instrumen-
tation and corrupted data.10,11 By identifying signifi-
cant epistemic uncertainties, statistical techniques can
be used to reduce their impacts on the assessment of
GA.

In a previous publication by the authors, various
GA progression models were evaluated in a study of
model structure uncertainty.12 Other types of epistemic
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uncertainty were not investigated. Subsequently, an
online search revealed that epistemic uncertainty in
GA assessment in age-related macular degeneration
(AMD) appears to be a neglected area of research.
No other publications were found on epistemic uncer-
tainty inGA assessment using fundus autofluorescence
images apart from the prior work by the authors. In
the current study, we performed a taxonomic analysis
to identify and categorize other sources of epistemic
uncertainty. In addition, one hypothesis from the previ-
ous paper was also tested (i.e. that although the linear
approximation is generally apparent and sufficient in
most clinical applications, the entire process of GA
progression from start to completion may actually
follow a sigmoidal model).12 The hypothesis was inves-
tigated as a subanalysis of the data in the previous
paper, for subjects with a sufficient number of clinical
presentations.

Methods

Taxonomy of Uncertainty

Epistemic uncertainties are sources of imprecision
that affect GA assessment and hamper the devel-
opment of new and suitable model designs for GA
growth.11,13,14 The presence of these uncertainties, if
sufficient in magnitude, can affect the quality of the
information collected from experiments, leading to
variability in results, lack of reproducibility, and lower
prediction accuracy. Epistemic uncertainties relevant
to GA progression were identified in the assess-
ment process, such as measurement error, subjective
judgment, model input uncertainty, and model struc-
ture uncertainty. The sources of epistemic uncertainty
were organized into a taxonomy and expressed as a
process flowchart to assist in identification and possible
intervention by modifications in experimental designs
and data collection.

The epistemic uncertainties described in this inves-
tigation are relevant to fundus autofluorescence (FAF)
images acquired by the Spectralis HRA + OCT instru-
mentation (Heidelberg Engineering) and the associ-
ated RegionFinder segmentation software. The study
provides insights and information relevant to other
imaging modalities in ophthalmology, such as color
fundus photographs.

Case Study: Model Structure Uncertainty

The patients in this subanalysis for model structure
uncertainty were selected from a GA-affected cohort
collected retrospectively and used in a recent prior

study on GA assessment and progression.12 This study
was approved by the Human Research Ethics Commit-
tee of the Royal Victorian Eye and Ear Hospital
(RVEEH) and conducted in accordance with the Inter-
national Conference on Harmonization Guidelines for
Good Clinical Practice and tenets of the Declara-
tion of Helsinki. Ethics approval was provided by the
Human Research Ethics Committee (HREC: Project
No. 95/283H/15) by the RVEEH. Written informed
consent was obtained from all participants. The cohort
was previously used in the evaluation of GA progres-
sion using quantified epistemic uncertainty for model
structure analysis and consisted of 81 eyes from
45 patients.12 The number of images per eye were
acquired from patients for 3 to 17 visits (i.e. clinical
consultations).

For the subanalysis, patients with a high number of
clinical presentations were selected for further inves-
tigation. The choice was pragmatic, based on finding
patients with the most visits to provide sufficient data
for regression analysis to test a proposed sigmoidal
growth model. Four patients were found in the cohort
with a double-digit number of clinical presentations
suitable for modeling (ranging between 11 and 17
visits). Further information on the data origins for the
study can be found in the publication by Arslan et al.
(2021).12

Results

Taxonomy of Uncertainty in GA Assessment

In Figure 2, a flowchart shows where epistemic
uncertainties can occur in modeling the GA growth
process. In this section, more details are provided on
the issues of image processing, data quality, and model
structure uncertainty, so thatmore information is avail-
able to inform future research in GA assessment and
progression.

Measurement Error

Measurement errors are associated with limita-
tions and imperfections in the instrumentation, includ-
ing sensor resolution, reproducibility, electronic noise,
artifacts, and distortion. A warm-up time may be
needed for laboratory instrumentation after a cold
start, and there may be batch-to-batch differences in
equipment and differences between manufacturers due
to optics or electronics. All of these errors are poten-
tially reducible.
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Figure 2. Principal uncertainties in the modelling process - from data to results.

Bias in Data

Data collection is based on past knowledge of the
disease and thus there is epistemic uncertainty in the
relevant predictors, such as patient lifestyle andmedical
history. There may be a lack of quality assurance in the
data type and format and whether it is appropriate for
investigation of the disease. The number of covariates
investigated may also be limited by the limited avail-
ability of patient data. For example, the association
between smoking andGA progression has been a long-
standing discussion, but not all institutions have avail-
able smoking data or common formats.15 There may
be drivers of GA and its progression not previously
recognized and therefore past data collected is flawed
or insufficient.

Model Input Uncertainty

Input errors for predictivemodels can be due to data
entry errors (e.g. incorrect entry of dates for patient
visits), transferring software data into spreadsheets
(e.g. exporting RegionFinder results into another

database), data corruption (e.g. issues in reading,
writing, and storing data), and duplication (e.g. multi-
ple entries pertaining to the same data point). Data
quality can be checked and uncertainty is reducible
with rigorous quality assurance and data cleansing
procedures that systematically check for duplications,
negative numbers, or impossible dates.

Subjective Uncertainty

Subjective judgment can also lead to uncertainties
due to bias in expert opinion.16–18 Subjective uncer-
tainties include human judgment used to manually
restrict non-lesion areas, limitations in human vision
in correctly identifying lesions and their bound-
aries, limitations in the current understanding of GA
atrophy, assumptions surrounding the progression of
the disease, and bias in the data collection process.
Repeatability (of the same experiment) and repro-
ducibility (by others) of human-defined annotations
are associated with intraobserver and interobserver
variability (Figs. 3a, 3b).19 Figure 4 is an example
of an FAF image annotated at different time points
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Figure 3. (A) Example of interoperator variabilitywith respect toDice coefficients. Plotted curve producedusing the technique of statistical
bootstrapping (Benke et al. 2018) applied to data from Liefers et al. (2020).27,28 (B) Shows an example of possible intraoperator variability
with respect to segmentation in fundus autofluorescence images. Plotted curve produced using the technique of statistical bootstrapping
applied to experimental data (Benke et al. 2018).27

Figure 4. Example of potential intraobserver variability. These annotations are for the same image conducted by the same grader. The
total area for the original annotation (A) was 7.497 mm2. The total areas for the second (B) and third (C) annotations were 7.770 mm2 and
8.248 mm2, respectively.

by the same grader. Annotation errors in GA by the
grader can be due to limitations in human vision,
knowledge, experience, expectations, fatigue, and
stress.

Optics and Image Processing

Errors in the FAF image acquisition process include
the appearance of dark contrasts, nonuniform illumi-
nation, misaligned image orientation, and blurriness
caused by microsaccades, which include small and
subtle involuntary eye movements. Poor image quality
can further contribute to the development of uncer-
tainty, as artifacts may interfere with the observations
of a grader, who may miss important features in the
image structure.20

RegionFinder software can be used to retrospec-
tively assess GA progression and has preprocessing
operations to address image artifacts, image registra-

tion, shadow correction, and speckle noise removal.21
The use of image registration (i.e. alignment of image
features, such as the optic disc and blood vessels, to
the same coordinates for future image comparisons)
and shadow correction ensure accuracy of captur-
ing disease changepoint detection. However, speckle-
noise removal, while reducing granularity in FAF
imagery can inadvertently highlight existing features,
such as expanding the size of the blood vessels. It can
also remove important information on granularity-like
features of the disease that are not image-acquired
noise but physiological markers of the disease. In place
of standard speckle-noise removal methods, filters
specifically designed to remove granularity noise while
preserving information pertaining to GA would be
more suitable, such as the median filter.22 Preserving
retinal granularities could be useful in understanding
the appearance and progression of lesions and even
hyperfluorescent areas.
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Figure 5. Singular seed versus multiple seed GA annotation. Although a user could annotate a single lesion from a single seed point, as
illustrated in (A), in some instances, this is not feasiblewhen the shapes are not entirely circular. Instead, users can opt to usemultiple seeds in
their GA annotations, as shown in (B). This option also allows for greater control in annotatingwith greater accuracy (e.g. correctly annotating
boundaries). GA, geographic atrophy.

Expert Opinion - Identification of Lesion
Boundaries and Perimeters

The RegionFinder software utilizes a region-
growing algorithm for lesion segmentation and annota-
tion (see Fig. 5). It requires the user to select a “seed”
point within the lesion area, and then, using the mouse
cursor, the seed can be expanded to encompass the
entire area of the lesion based on color similarity.
Graders have noted that using a single seed point is
not always sufficient and multiple seed points may be
needed to effectively cover the area (Fig. 5 illustrates
a lesion annotation using a single seed point versus
multiple seed points). This issue is coupled with the
ability of the end-user to define lesion borders correctly
and stop expanding the seed. Smaller andmore discrete
lesions may be missed during the annotation process.

Expert Opinion – Manual Restrictions of
Non-Lesion Areas

As the optic disc, blood vessels, and fovea all
have similar color intensities to that of GA lesions,

the region-growing algorithm could “spill” from
the lesion into ocular features with similar intensity
(Fig. 6). The RegionFinder software has a restriction
function that allows the end-user to limit expansion
of seeds into non-lesion areas. Additionally, Region-
Finder allows the user to replicate these restrictions
in future images to save time and ensure consistency.
This feature requires human-user input to correctly
differentiate between ocular features, introducing
uncertainty.

Model Structure Uncertainty

An important epistemic uncertainty associated with
modeling time-series data, such as the progression of
GA atrophy, is “model structure uncertainty.” This
error source is distinct from “parameter uncertainty,”
which is associated with model calibration by regres-
sion analysis.12,23 The structure of the model is an
important source of error as it is likely to have implica-
tions in both prediction accuracy and confidence inter-
vals produced by the model.

Some methods available to address structural
problems include model checking (e.g. goodness-of-fit
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Figure6. Manual restrictionof non-lesion areas. (A) Step-by-step lesion annotationwithout anymanual restrictions on the fovea andblood
vessels, and (B) complete lesion annotation withmanual restrictions on fovea and blood vessels. Manual restrictions exist to ensure that the
region-growing algorithm does not “spill” into non-lesion areas.

tests, calibration test, and residual error assessment)
and comparing tested predictions against independent
data.17

In the calibration of a regression model,
unexplained variability due to uncertainty can be
expressed as a function of the coefficient of determi-
nation, r2:

U = 1 − r2,

where

r2 = 1 − SSR
SSO

where the ratio SSR
SSO = sum of square residuals divided

by the total sum of squares in the data.
The metricU is the proportion of total unexplained

variability not accounted for by the regression model.
Traditional statistical regression analysis assumes that
the residuals arise from statistical variability, while
ignoring the contribution from epistemic uncertainty.

Ideally, a model with the lowestU and highest r2 would
be considered themost suitable for aGAgrowthmodel.

In a recent paper by Arslan et al. (2021) on uncer-
tainty in characterization and growth of GA, it was
found in a statistical comparison of regression models
(cf. power law function, logarithmic, exponential, and
quadratic models), that no model tested performed any
better than the linear model for characterizing GA
growth.12,23 It was hypothesized that the linear model
was the slope of a growth model, such as a logistic
(sigmoidal) function, but that there was insufficient
data from typical clinical presentations to elicit this
functional form. The linear model provided an objec-
tivemetric for the rate of GAprogression in the formof
the gradient, which could be used to compare interven-
tions. For the current study, a search of our electronic
health record (EHR) database found patients with
sufficient data to investigate further the issue of model
structure uncertainty. The analyses are described in the
following retrospective case studies using anonymized
data.
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Figure 7. Machine learning in the case study was characterized by a process of pattern recognition and parameter estimation which
produced a model for GA progression. GA, geographic atrophy.

Case Study – Modeling Progression of GA

Patient X in the subanalysis was an elderly female
and the first case investigated. The GA area measure-
ments were acquired over 8 years (i.e. June 2010 to
April 2018) in a total of 16 visits and stored as EHR
data. The second case (Patient Y) was an elderly female
patient at the time of initial presentation. The patient
attended from November 2011 to February 2019 for a
total of 17 visits. The third case study (Patient Z) was
also an elderly female patient at initial presentation.
The patient was seen from June 2012 to June 2019 for
a total of 11 visits. The fourth case study (Patient W)
was a middle-aged male patient at initial presentation
and attended between February 2010 and December
2017 for 14 visits in total. The unusually large number
of clinical presentations for the four patients provided
sufficient data for testing a multiparameter nonlinear
model for progression of GA.

Although a linear model is effective for small data
sets and provides a gradient as a metric for rate of
growth of GA in a clinical setting, a nonlinear model
may provide additional information on disease onset
and end point, if larger datasets are available.24 A
growth curve with turning points can be represented by
a logistic function, such as the sigmoidal model,24

G = C +
[

A
1 + exp(−B(t − M ))

]

where G is geographic atrophy at time t (i.e. date, or
number of clinical presentation). This function is a
regression model with the characteristic parameters of
a sigmoidal model, such as slope (B), inflection point
(M), lower bound (C), and upper bound (A). It is
analogous to the classical hill-slope models used for
dose-response curves.24 Notably, it is a growth function
characteristic of many biophysical models used in the
life sciences.

Figure 8. Example of a logistic regression model for GA progression with parameter estimation by a multi-start gradient-based learning
approach showing close fit to patient data, R2 = 0.99 (P < 0.01), see Table 2. GA, geographic atrophy.
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Figure 9. Example of a logistic regression model for GA progression with parameter estimation by a genetic algorithm showing a close
fit to the patient data - but rolling-off near the shoulder of the curve. In this case, the fit is less effective than the gradient-based learning
model in Figure 8. Again, the gradient of the linear approximation is similar to the gradient at the inflection point of the logistic function.
GA, geographic atrophy.

Figure 10. Using the fitted model in Figure 8, extrapolation of the trend in GA reveals it tapers off at about 7 mm2 after 2023. At the toe
of the curve, it appears that GA begins at about Jan 2009 (where it is less than about 1% of peak GA area), providing potentially useful
information for research on nascent GA. GA, geographic atrophy.

Figure 7 shows a flowchart for a machine learn-
ing approach for a GA progression model character-
ized by parameter estimation using patient data. The
weights of the model would be adjusted iteratively by
a proposed learning algorithm until the performance
index is optimized.25 A nonlinear regression analysis
can be used to find the optimum parameter set.

Machine learning approaches tend to lead to more
complex models than biophysical models.

Figure 8 for Patient X shows a logistic function
model for GA progression with parameter estimation
carried out by a gradient-based learning approach,24
based on initialization at 10 random starting points.

Results for nonlinear least-squares regression analysis
suggested convergence to a probable global solution on
the error surface of residuals (R2 = 0.99, P = 0.01 for
r). Note that the gradient of the linear approximation
(broken line) is similar to the gradient at the inflec-
tion point of the logistic function (see also Figure 5 in
Choi et al. [2020]).25 The gradient has been proposed
as a convenient metric for rate of progression in clini-
cal applications.12

Figure 9 for Patient X shows a logistic function
model for GA progression with parameter estima-
tion by a genetic optimization algorithm. This type
of algorithm is used in computer science for global
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Figure11. For Patient Y, comparisonbetween linear and sigmoidalmodels showsa closematchovermid-range (R2 =0.95 for bothmodels).
Extrapolation of the sigmoidal fit suggests GA tapers off at about 20 mm2 after 2028. At the toe of the curve, it appears GA begins at about
June 2006. GA, geographic atrophy.

Figure 12. For Patient W, comparison between linear and sigmoidal models shows a close match over mid-range (R2 = 0.99 for both
models). Trend in GA from the sigmoidal model reveals tapering off at about 14 mm2 after 2023. At the toe of the curve, it appears that GA
begins at around June 2006. GA, geographic atrophy.

optimization and is based on reinforcement rules
inspired by an evolutionary programming approach
(population size 10, mutation rate 0.075, and max
time without change, 30 trials). The results show a
close fit to the patient data - but rolling-off near the
shoulder of the curve. The fit is less effective in this
case than the gradient-based learning model. Again,
the gradient of the linear approximation is similar
to the gradient at the inflection point of the logistic
function.

Figure 10 for Patient X shows extrapolation of the
fitted model (previously plotted in Fig. 8), revealing
that the trend in GA for Patient X tapers off at about 7
mm2 after 2023. At the toe of the curve, it appears that
GA originated at around January 2009 (where it is less

than about 1% of the peak GA area). Before this time,
theremay still have beenGApresent, but not yet visible
in clinical settings. This may provide useful informa-
tion for research on nascent GA. Note that the broken
line shows the slope of a linear regression model for
comparison.24

Figures 11 to 13 show results for Patients Y, Z, and
W, which are consistent with the results for Patient
X, showing that the linear model is a good approxi-
mation to GA progression for each patient (Table 2).
Given sufficient data, however, the sigmoidal model
may provide even closer fits to the data (R2), together
with additional information on possible GA onset and
tapering to limiting values. The results for the four
patients are shown in Table 2.



Epistemic Uncertainties in Geographic Atrophy TVST | November 2021 | Vol. 10 | No. 13 | Article 3 | 11

Figure 13. For patient Z, comparison shown between linear and sigmoidal models (R2 = 0.69 for linear model, R2 = 0.98 for sigmoidal
model). The strong early curvature evident in the scatter plot means that the linear approximation should be applied more effectively after
2015 (where linear R2 = 0.89). GA, geographic atrophy.

Table 2. Results for Modeling GA Progression

Parameters (Sigmoidal) Metrics
Patient
Label

Visits
n C A B R2 (Sigmoidal) R2 (Linear) U (Sigmoidal) U (Linear)

X 16 0.17694 7 0.001516 0.991 0.971 0.009 0.029
Y 17 0.27 20 0.0008 0.951 0.950 0.049 0.050
Z 11 0.03242 2.277065 0.00345 0.978 0.692 0.022 0.308
W 14 0.086306 13.7 0.001485 0.992 0.989 0.008 0.011

Notes: P < 0.001 for R values; patient Z, scatter plot data after 2015 produced linear R2 = 0.8909.

The insights gained from this retrospective case
study relate to uncertainties in the three possible
models (linear approximation, genetic algorithm, and
logistic function). First, it supports the hypothesis from
a recent study that (a) the slope of the linear approxi-
mation is similar to the maximum slope of a sigmoidal
model,24 (b) the gradient is a potential metric for rate
of progression of GA, and (c) the logistic function may
provide additional information on possible onset and
endpoint. In practice, many clinical settings are charac-
terized by data paucity for parameter estimation and so
favor a linear approximation by regression analysis as
an indicator of the rate of GA progression.

Discussion

Epistemic uncertainties in GA assessment can
propagate as error sources in the process of data acqui-
sition, diagnosis, and model development. This results
in greater variability and wider confidence intervals

and therefore less confidence in testing the original
experimental hypothesis. Primary sources of epistemic
uncertainties are data quality, digital image process-
ing, and data annotation errors. Other sources of
epistemic uncertainty include intergrader and intra-
grader variability (which may be reducible by increased
automation), and “model structure uncertainty” when
forecasting progression of GA (reducible by selecting
the correct progression model). The impact of uncer-
tainties in data quality and annotation accuracy will
affect diagnostics by human graders as well as mathe-
matical models for progression and machine learning.

Identification and systematic treatment of specific
epistemic uncertainties will assist in reducing experi-
mental variability.26 For example, with FAF images,
improvements are possible by (1) extending speckle-
noise removal by the RegionFinder segmentation
software and by investigating additional filters, such
as the median filter, which may be more selective
in discrimination between system noise and natural
granularity, (2) applying machine learning to automate
lesion segmentation (reducing human subjectivity in
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the annotation process), and (3) increasing sample
size and the number of feature measurements. These
suggested enhancements could improve delineation of
GA boundaries and therefore segmentation perfor-
mance (i.e. improve the resolution of lesion boundaries
for improved feature extraction by the human grader or
by machine learning). Further reduction in epistemic
uncertainty may be possible by using machine learning
approaches to find new features for discrimination in
the image that may not be readily apparent to human
graders. This could result in greater utilization of avail-
able data and may even lead to information discovery
and insights that were not previously considered.

Further research on model structure uncertainty
in GA progression could progressively minimize this
source of epistemic uncertainty, whereas the quest for
improvingmodel structure may also help to inform and
provide clues to the nature of GAgrowth. The results in
this study suggest that for sparse datasets from clinical
presentations, a linear approximation appears reason-
able for modeling GA progression whereas, given suffi-
cient data, a sigmoidal model may also provide infor-
mation with respect to GA onset and asymptotic
convergence to a plateau.

In summary, epistemic uncertainties affect experi-
mental data quality, image processing results, and data
annotations. This extraneous effect can degrade the
performance of human graders, mathematical models,
and machine learning performance. There are many
sources of uncertainty that can be reduced, especially
with FAF images, if guided by the taxonomy and analy-
sis presented in this study.

Conclusions

In this study, a number of sources of epistemic
uncertainty have been identified in GA assessment
and its progression in fundus autofluorescence images.
Unlike natural statistical variability associated with
experimental error or replications, epistemic uncertain-
ties are reducible because they relate to lack of infor-
mation. In particular, epistemic uncertainties can be
addressed by appropriate experimental design modifi-
cations and data quality assurance.

Epistemic uncertainties can affect grader perfor-
mance and can also affect mathematical models and
machine learning approaches because they are both
dependent on experimental data for parameter estima-
tion. A limited retrospective case study was included
on the issue of “model structure uncertainty” in GA
progression and extends the results and conclusions
reported in a recent study.12

The results for the sigmoidal model are very encour-
aging and suggest further study as it has the advantage
of providing additional information on possible onset
of GA and asymptotic progression to a limiting value
by extrapolation beyond the time-series data (subject
to a specified level of precision). In most clinical appli-
cations, there is a limited number of patient presenta-
tions, suggesting recourse to a linear approximation for
estimating the rate of progression.

In the future, the study of epistemic uncertainty is
likely to be a subject of increasing interest to biostatis-
ticians and clinicians because it relates to additional
factors that are often neglected while reporting study
results subject to natural statistical variability and
experimental errors.
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