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Abstract

Autism spectrum disorder (ASD) is induced by complex hereditary and environmental fac-

tors. However, the mechanisms of ASD development are poorly understood. The purpose

of this study was to identify standard indicators of this condition by comparing clinical, patho-

physiological, and neurobehavioral features in an autism-like animal model. A total of 22

male Sprague-Dawley rats were randomly divided into control and 500 mg/kg propionic acid

(PPA)-treated groups. Rats were subjected to behavioral tests, gene expression analyses,

and histological analyses to detect pathophysiological and neurobehavioral alterations.

Exploratory activity and non-aggressive behavior were significantly reduced in PPA-treated

rats, whereas enhanced aggressive behavior during adjacent interactions was observed on

day 14 after PPA administration. To evaluate gene expression after PPA administration, we

analyzed hippocampal tissue using reverse transcription PCR. Glial fibrillary acidic protein

was augmented in the PPA-treated group on day 14 after appearance of ASD-like behaviors

by PPA administration, whereas octamer-binding transcription factor 4 expression was sig-

nificantly decreased in the PPA-treated group. Histological evaluation revealed significantly

reduced diameter and layer thickness of granule cells in PPA-treated rats compared with

control rats. We conclude that PPA administration induced abnormal neural cell organiza-

tion, which may have led to autism-like neurobehaviors, including increased aggressive

behavior, reduced exploratory activity, and isolative and passive behaviors.
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Introduction

Autism spectrum disorder (ASD) is characterized by social deficits, repetitive and restricted

behaviors, and alteration of brain development [1]. Several studies have reported an interrela-

tion between brain development and autistic neurobehavior. Additionally, changes in hippo-

campal structures are related to ASD behavior [2]. Generally, neurogenesis in the dentate

gyrus is related to long-term potentiation in memory function [3] and the development of neu-

ropsychiatric disorders [4] after birth. In addition, approximately 15% of granule cells, which

make up the dentate gyrus, are produced during embryogenesis [5]. Therefore, the dentate

gyrus is an important region involved in ASD development. The estimated prevalence of ASD

is about 2.64% in South Korea [6], and the disorder is 3–4 fold more prevalent in males than in

females. Autism is usually diagnosed before 36 months of age. The disorder is highly heritable

and neuropsychiatric, as evidenced by the higher concordance rates in monozygotic (82–92%)

compared with dizygotic (1–10%) twins [7]. ASD is a neurodevelopmental disorder with a

complex etiology that is not fully understood.

Genetic and environmental factors affect the development of ASD [8]. Several studies have

shown that ASD pathogenesis is affected by genetic, metabolic, immunological, gastrointesti-

nal (GI), environmental, and behavioral factors [9–13]. A previous study suggested that metab-

olites, including short-chain fatty acids, produced via fermentation of foods by microbes, may

affect the systemic immune system, hormone secretion, and even the central nervous system

(CNS) of patients with ASD [8, 14]. Many research groups have explored whether gut micro-

biome metabolites induce ASD. In addition, several novel animal models of ASD have been

developed by modulating gut metabolite levels in various ways [15, 16].

Propionic acid (PPA) is a gut metabolite, and its generation is related to clostridials, and

others; microbial changes in response to antibiotics and pro/prebiotics have been reported. In

human patients with ASD, exposure to excessive antibiotics results in altered microbial bioge-

ography, which affects dysbiosis and systemic inflammation and leads to the pathophysiology

of GI diseases and ASD [17]. ASD-like rat models have been generated using various routes of

PPA administration: subcutaneous (500 mg/kg), intragastric gavage (250 mg/kg), intraperito-

neal (250 mg/kg), and intracerebroventricular (4 uL of 0.26 M PPA, pH 7.5). Following PPA

administration, model rats exhibited elevated levels of microglia (CD68 positive) and neuro-

toxic cytokines, including interleukin (IL)-6, tumor necrosis factor (TNF)-α, and interferon-γ,

as well as abnormal neurobehaviors, such as repetitive and impaired social interactions [18–

21]. Additionally, PPA and its derivative, nitropropionic acid, affect hippocampus-related dis-

eases such as ASD and Huntington’s disease [8]. In a previous study, PPA-treated rats exhib-

ited increased expression of oxidative markers (oxidized lipid and proteins) and decreased

activities of glutathione (GSH) and glutathione peroxidase compared with the phosphate-buff-

ered saline (PBS)-treated group [15, 16]. Ossenkopp et al. [22] reported that administering

PPA (500 mg/kg) intraperitoneally to rats weighing 200–300 g produced both taste avoidance

and avoidance behaviors because of its irritant effects. Therefore, in rats, systemic PPA admin-

istration alters behaviors regardless of age.

Valproic acid (VPA), a well-known risk factor for ASD development during the prenatal

phase, has similar structural and pharmacological properties as PPA does [23]. Several studies

reported that intraperitoneal (500 mg/kg) and subcutaneous (400 mg/kg) VPA injections

induced many behavioral changes, including social interaction deficits, reductions in acoustic

pre-pulse inhibition and attention, and increased anxiety-like behavior [24–26]. A recent

study reported that long-term (9–12 days) exposure to VPA (100 mg/kg) in utero resulted in

an increased number of neocortical neurons in rat pups postnatally [27]. Various methods

have been suggested to generate ASD-like animal models, including administration of PPA or

PPA induced ASD-like animal model
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VPA. Both PPA and VPA have similar effects including inhibition of histone deacetylase, alter-

ing carnitine activity and mitochondrial metabolism [23]. However, VPA has several side

effects, including hepatic steatosis [28], hepatotoxicity, hemorrhagic pancreatitis, encephalopa-

thy, and metabolic disorders such as obesity [29].

Clinical approaches have been used to identify the pathophysiological mechanisms of ASD.

Thus, basic research using a standard animal model and neurobehavioral protocols is needed.

The purpose of this study was to identify standard indicators of ASD by comparing clinical,

pathophysiological, and neurobehavioral features following a change in brain structure using

an ASD-like animal model induced by PPA administration.

Materials and methods

Experimental animals and procedure

A total of 22 healthy male Sprague–Dawley rats weighing 80–100 g, were obtained from Dae-

han BioLink (Hoychang Science, Daegu, Korea) and used in all studies. All experimental pro-

cedures for evaluating ASD development were performed on 3-week-old animals. The rats

were randomly divided into either control or PPA-treated (ASD) groups. Animals were

allowed access to standard rodent chow (Hyochang Science) and tap water ad libitum. All ani-

mal study procedures were approved by the Ethics Committee for Animal Care and Use of

Inje University (Approval No. 2014–21), which is certified by the Korean Association of

Accreditation of Laboratory Animal Care. All rats were housed two per cage under controlled

environmental conditions (22 ± 1˚C) and an established light:dark photoperiod (12:12 hr;

lights on: 07:00). The experimental procedures are illustrated in Fig 1.

PPA administration

Sodium propionate (PPA, Sigma-Aldrich. St. Louis, MO, USA) was dissolved in 0.1 M PBS

and administered subcutaneously at a dose of 500 mg/kg (250 mg/mL, 0.26 M, pH 7.4) once a

day for five consecutive days. This dose was selected based on previous studies [14, 20]. Physio-

logically, PPA is a weak acid that readily crosses the blood brain barrier or the gut-blood bar-

rier. Increased PPA levels in organs lead to intracellular acidification [21] and induce systemic

inflammation via upregulation of pro-inflammatory cytokine concentrations in the CNS. The

pH of PPA used was 7.4, which is close to that of the physiological buffer, and a solution with

this pH easily crosses lipid barriers. Therefore, pH 7.4 PPA directly affects the CNS and shows

Fig 1. Schematic representation of experimental design.

https://doi.org/10.1371/journal.pone.0192925.g001
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systemic irritant effects [15, 22]. Rats in the control group were injected with saline. In this

study, post-induction day (PID) represents the day after five times consecutive PPA adminis-

tration into the rats for five days. In addition, body weight and ASD phenotypes were counted

every single day from PID 0 (day 0) in turn. Immune system activation caused by postnatal

PPA administration results in abnormal behaviors and augments the susceptibility of later sys-

temic insults. Additionally, repeated stimulation of immune activation by PPA administration

may change the biogeography of gut microbes, which is related to the production of aversive

metabolites [30, 31].

Neurobehavioral testing

Social interaction test. The social interaction test was conducted in a 120 × 120 × 60 cm

black acrylic arena illuminated by a 40 W red lamp. Age- and treatment-matched pairs of rats

with equivalent body weights but from different cages were placed together in the arena for 20

min. This test measured the following five categories of behavior: (1) following/chasing: one

rat following the other within a distance of 2 body lengths; (2) anogenital interactions; (3) adja-

cent interactions: play-fighting, climbing over/under, and adjacent lying; (4) head-to-head

interactions; and (5) total social interaction: time spent engaging in all behaviors in all of the

above categories. The apparatus was cleaned with 50% ethanol between test sessions [32].

Open filed test (olfactory discrimination). Animals were randomly assigned to the test

order and placed in a white acrylic square-form open field arena (100 × 100 × 40 cm). As

reported previously [25], this arena was placed under strong illumination (200 lux). The arena

was divided into 25 squares (each square was 20 × 20 cm): 9 central and 16 peripheral squares.

Each rat was placed in the center of the open field and allowed to explore the environment for

1 min. After that, the number of squares that the rat crossed was recorded by a video camera

for 5 min and divided into the number of outer squares (those adjacent to the walls) crossed

(outer locomotion) and the number of inner squares crossed (inner locomotion). The arena

was cleaned with 50% ethanol between tests.

RNA preparation and reverse transcription polymerase chain reaction

(RT-PCR)

The rats were anesthetized using mixed gasses containing 3% isoflurane with O2 and N2O. The

brain tissues were removed, and the hippocampal region was isolated. The tissues were

homogenized with 1 mL of Tri-reagent (Sigma-Aldrich, St. Louis, MO, USA) to prepare total

RNA. The RNA was reverse transcribed with oligo(dT) 12–18 using reverse transcriptase

#18064–014 (Invitrogen, Carlsbad, CA, USA) and this reaction mixture served as a template

for the PCR. To identify gene transcription, a reaction mixture (50 uL) for PCR was prepared

using 2.0 uL of cDNA synthesis mixture, 40 nM dNTPs, 10 pM of sense and antisense primer,

and 1.25 U of GoTaq1 DNA polymerase (Promega, Madison, WI, USA). PCR was performed

with denaturation at 95˚C for 30 sec, annealing at 60˚C for 1 min, and extension at 72˚C for 1

min in each cycle, followed by a final 10 min extension at 72˚C using C1000 TouchTM Thermal

Cycler (BioRad, Hercules, CA, USA). The following primers were used. Primer sequences:

microtubule-associated protein 2 (MAP2) as a neuronal marker, CAA AGA GAA GGT GGC
AAA GC (F), GTG GGC AAG GGA TTT CTA CA (R); glial fibrillary acidic protein

(GFAP) as an astrocyte marker, TGG CCA CCA GTA ACA TGC AA (F), CAG TTG GCG
GCG ATA GTC AT (R); octamer-binding transcription factor 4 (OCT4) as a stem cell

marker, GAG GGA TGG CAT ACT GTG GAC (F), GGT GTA CCC CAA GGT GAT CC
(R); and tumor necrosis factor (TNF)-α as a pro-inflammatory cytokine marker, CTA CTG
AAC TTC GGG GTG ATC (F), CTT GTC CCT TGA AGA GAA CCT G (R).

PPA induced ASD-like animal model
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Histological evaluation

All rats were transcardially perfused with 0.1 M PBS (pH 7.4), and subsequently fixed with 4%

neutral-buffered paraformaldehyde (pH 7.4) for histological analyses. Brain tissues were removed

from the 4% neutral-buffered paraformaldehyde solution and stored at 4˚C for 2 hr in fixative

solution (post-fixation). Tissues were incubated in a gradient of sucrose solution (15% and 30%)

for 1 day to achieve a cryoprotective effect. Next, tissues were transferred to an embedding mold

fabricated from aluminum foil filled with Tissue-Tek1 OCT compound (Sakura Finetek, Tor-

rance, CA, USA). The mold was rapidly submerged in isopentane cooled with liquid nitrogen.

After the material was frozen, the block was wrapped in cellophane and aluminum foil and stored

at -70˚C. Cryosectioning was performed at the optimal temperature (brain: -18˚C to -20˚C) using

a cryostat microtome (Microm HM525; MICROM International GmbH, Walldorf, Germany).

The block face was trimmed to create a round shape, with the long axis oriented vertically. This

orientation facilitated removal of the sections from the knife edge and minimized damage caused

by handling the tissue. After trimming, the tissues were cut carefully (slice thickness: 10 μm), and

a small camel-hair brush was used to guide the section off the block face and transfer it to a gela-

tin-coated slide. The section was left to dry on the slide at room temperature for 15 min. Tissue

sections were subjected to cresyl violet acetate (Nissl) staining, serially dehydrated with ethanol

solutions, cleared with xylene, and mounted with toluidine solution (Fisher Scientific Co., Fair

Lawn, NJ, USA). Each specimen was analyzed using an Olympus microscope digital camera

(Olympus, Tokyo, Japan) connected to a computer. To evaluate the thickness of the granule cell

layer (GCL) and cell diameter, Image-Pro Plus software (Media Cybernetics, Inc., Rockville, MD,

USA) was used. In this software, we adjusted the scale bar to pixel units.

Immunostaining

Rats were anesthetized as described above and perfused transcardially with 4% paraformalde-

hyde in 0.1 M phosphate buffer, pH 7.4, for 15 min. Post-fixation was performed overnight in

4% paraformaldehyde. For fluorescence immunostaining, non-specific labeling was blocked

with 0.1% bovine serum albumin in 0.1% Triton X-100/PBS for 60 min. The following primary

antibody was used and incubated with the tissue overnight at 4˚C: mouse monoclonal anti-

GFAP (1:300, Cell Signaling Technology, Danvers, MA, USA). The slides were then incubated

with goat anti-mouse conjugated to rhodamine (1:500, Molecular Probes, Eugene, OR, USA)

secondary antibody for 60 min. Each specimen was analyzed using an Olympus BX51 micro-

scope and DP70 digital camera (Olympus, Tokyo, Japan) and connected to a computer using

Image-Pro Plus software (Media Cybernetic Inc., Rockville, MD, USA). A three dimensional

(3D) plot type graph was used to determine the number of positive cells.

Statistical analysis

Data were collected from repeated experiments and are presented as the mean ± standard devi-

ation. Student‘s t-tests were used for the statistical analysis, and differences were considered

significant when �p< 0.05 and ��p< 0.01. All analyses were performed using SPSS software

(SPSS ver. 20.0; SPSS Inc., Chicago, IL, USA).

Results

Physiological changes after PPA administration

We assessed alterations in body weight between control and PPA-treated groups during the

whole period of PID (days 0 to 14). PPA-treated rats did not show altered body weight com-

pared with control rats during the early PID period (days 0 to 3). However, there were

PPA induced ASD-like animal model
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significant differences in body weight during the late PID period (days 10 and 14) (�p< 0.05;

Fig 2). We also measured food consumption to determine the correlation between body weight

and food consumption. However, there were no differences between food consumption and

weight loss (S1 Fig).

Open field exploratory activity following PPA administration

We measured exploratory activity in a non-social environment between early (days 0 to 3) and

late PID period (days 7 to 14). PPA-treated rats showed slightly reduced exploratory activity in

a non-social environment during the early PID period. However, they exhibited a significant

attenuation in both total activity from PID 3 and inner-square exploratory locomotion on PID

7 and 14 (��p< 0.01; Fig 3A and 3B). Indeed, PPA-treated rats showed a progressive reduction

in their inner-square exploratory activity during the late PID period (Fig 3C); they also uri-

nated and defecated more than did the control rats during the static period.

Social behavior after PPA administration

We evaluated four categories of social behavior between control and the PPA-treated groups

during the whole PID period (days 0 to 14): following and chasing (Fig 4A), adjacent interac-

tion (Fig 4B), anogenital interaction (Fig 4C), and head-to-head interaction (Fig 4D, S1

Video). PPA-treated rats showed significantly attenuated non-aggressive behaviors, including

following and chasing, anogenital interactions, and head-to-head interactions (Fig 4A, 4C and

4D). However, we also observed significantly increased aggressive behavior during adjacent

interactions on PID 14 (Fig 4B). The total number of social interactions decreased significantly

on PID 0, indicating consistent ASD-like behaviors (��p< 0.01; Fig 4E).

Gene expression following PPA administration

Gene expression in the hippocampus of 3-week-old rats following PPA administration was

analyzed by reverse transcription PCR. The expression of microtubule-associated protein 2

Fig 2. Changes in body weight between control and PPA-treated rats. Alteration in body weight between control

and PPA-treated groups during whole PID period (days 0 to 14). PPA-treated rats weighed significantly less than

control rats during the late PID period (days 10 and 14). Data are presented as the mean ± standard deviation (SD).

Cont, control rats; ASD, PPA-treated rats.
�

p< 0.05: vs. Cont.

https://doi.org/10.1371/journal.pone.0192925.g002
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(MAP2), glial fibrillary acidic protein (GFAP), octamer-binding transcription factor 4 (OCT4),

and TNF-αwas measured on PID 0, 7 and 14 in control and PPA-treated rats. The expression

of MAP2, a neuron-specific microtubule-related gene, was not significantly altered between

the control and PPA-treated rats (�p< 0.05; Fig 5A). The expression of GFAP, an astrocyte-

related gene, was significantly increased on PID 14 in the PPA-treated rats (�p< 0.05; Fig 5B).

The expression of OCT4, a neural stem cell-related gene, was significantly decreased on PID 0

and 7 in PPA-treated rats (�p< 0.05 and ��p< 0.01, respectively; Fig 5C). In addition, the

PPA-treated rats showed significantly increased expression of the pro-inflammatory gene

TNF-α compared with the control group (�p< 0.05; Fig 5D).

Histological alterations of the hippocampus following PPA administration

To evaluate the structural changes in the dentate gyrus of hippocampus following PPA admin-

istration, we performed Nissl staining in both control and PPA-treated rats (Fig 6A and 6B).

Furthermore, we measured the thickness of the dentate gyrus of the hippocampus between

PID 0 and the late PID period (days 7 and 14) following PPA treatment. Control rats showed

increased GCL thickness. However, PPA-treated rats exhibited a significantly reduced GCL

thickness compared with control rats on PID 7 and 14 (��p< 0.01; Fig 6C). Regarding the

Fig 3. Comparison of exploratory activity in a non-social environment between control and PPA-treated groups. PPA-treated rats showed significantly reduced

exploratory activity (A) and inner-square exploratory activity (B) during the whole PID period (days 0 to 14). (C) The locomotor activity of the control and PPA-treated

rats was observed using a video tracking system. Data are presented as the mean ± SD. Cont, control rats; ASD, PPA-treated rats.
�

p< 0.01: vs. Cont.

https://doi.org/10.1371/journal.pone.0192925.g003
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granule cell diameter, PPA-treated rats showed a significant reduction during whole PID

period (days 0, 7 and 14) (��p< 0.01; Fig 6D).

GFAP immunostaining

To evaluate histological changes in the hippocampus following PPA administration, GFAP, a

marker of astrocyte expression in the hippocampus, was analyzed (Fig 5B). The level of GFAP-

positive cells was increased in the PPA-treated compared with the control rats on PID 14 (Fig

7). In addition, there was a significant difference in levels between PID 0 and 14 (p< 0.01; Fig

7B; only a three-dimensional [3D] surface plot is shown)

Discussion

The optimal PPA dose acts as a precursor for glucose production to make energy in ruminants

and affects human physiological actions. Since some foods such as wheat and dairy products

contain PPA as a preservative, such food intake may exacerbate the symptoms of ASD [20]. In

human, PPA is generated through the fermentation of polysaccharides and oligosaccharides

by propionibacteria including bacteroidetes flora, bacteroides, desulfovibrio, and other bacteria

(clostridials) [33–36]. However, feces from autistic patients have an altered microfloral profile,

including alterations in bacteroidetes and firmicutes, compared with those from normal sub-

jects [34]. Recently, several studies have reported that the use of antibiotics, which lead to

Fig 4. Alterations in social interaction between early and late post-induction day following PPA administration. (A, C, D) PPA-treated rats showed significantly

reduced non-aggressive behavior, but (B) increased aggressive behavior during the late PID period (days 7 and 14). (E) All social interactions between the control and

PPA-treated rats are shown. Data are presented as the mean ± SD. Cont, control rats; ASD, PPA-treated rats.
�

p< 0.01: vs. Cont.

https://doi.org/10.1371/journal.pone.0192925.g004
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changes in microflora, affects the regulation of the gut-brain axis and results in neurobeha-

vioral deficits, as well as metabolic and psychiatric disorders, such as anxiety and memory loss

[37–39]. The microbiota is largely influenced by foods. A few foods, such as Swiss cheese,

include PPA, which is also used for weight loss. Large amounts of PPA are used in agriculture

and industry [34].

PPA injection triggers ASD-like behaviors and neuroinflammatory reactions in animals.

Like other mammals, the brains and bodies of neonatal rats develop in concert with motor

skills and behaviors during the first 3 weeks of life. During that time, the injection of PPA acts

like a neurotoxic agent, and rats exhibit abnormal behavioral patterns, such as abnormal social

interactions and anxiety-like behavior. Their brains exhibit inflammation and abnormal neu-

rotransmission and oxidative stress induced by inhibition of Na+/K+ ATPase and increased

Fig 5. Changes in gene expression in the hippocampus between early and the late post- induction day following PPA

administration. Gene expression of a neuron-specific microtubule associated protein (MAP2) (A), an astrocyte marker

(GFAP) (B), a neural stem cell marker (OCT4) (C), and a pro-inflammatory cytokine (TNF-α) (D) following PID 0 and during

the late PID period (days 7 and 14). Data are shown as the mean ± SD. Cont, control rats; ASD, PPA-treated rats.
�

p< 0.05,
��

p< 0.01: vs. Cont.

https://doi.org/10.1371/journal.pone.0192925.g005
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sensitivity of the glutamate receptor [40–42]. PPA may accumulate within certain types of

cells, triggering acidification and thus affecting neurotransmitter synthesis and release. PPA

can cross the blood-brain barrier to reach the CNS [19]. PPA induces mitochondrial diseases

via environmental factors [36], which are associated with GI disorders and directly affect GI

symptoms. In addition, the administration of PPA affects gut motility and smooth muscle con-

traction. ASD patients exhibit GI symptoms, and MacFabe [36] reported that oxidative stress

and abnormal GSH levels were increased in brain tissue, while the activities of antioxidant

enzymes, including superoxide dismutase, catalase, glutathione peroxidase, and GSH reduc-

tase, were reduced in PPA-treated animal models. PPA expression via transient transfection

can epigenetically modulate PC12 cell function [23], and in autistic lymphoblastoid cell lines,

PPA treatment resulted in loss of mitochondrial function in a concentration- and time-depen-

dent manners [43]. Additionally, Frye et al. [43] reported that these changes were related to

increased reactive oxygen species levels and proton leakage. Therefore, we investigated the

effects of PPA on the development of ASD, hippocampal dentate gyrus morphology, and neu-

robehavior in rat pups.

In this study, we produced an autism-like animal model using PPA treatment, and mea-

sured time-dependent neurobehaviors, changes in gene expression, and histological alter-

ations. PPA-treated rats exhibited significantly reduced body weight during the late PID

period of ASD (Fig 2). Previous studies reported that short chain fatty acids, such as PPA,

Fig 6. Structural changes of hippocampal tissue in the control and PPA-treated rats. Histological changes in the dentate gyrus of the hippocampus between the early

and late PID period following PPA administration (A, B). Quantitative results for GCL thickness (C) and GC diameter (D). Data are shown as the mean ± SD. Cont,

control rats; ASD, PPA-treated rats; GCL, granule cell layer; GC, granule cell.
��

p< 0.01: vs. Cont.

https://doi.org/10.1371/journal.pone.0192925.g006
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affect weight loss in both animal and human subjects [44, 45]. Additionally, PPA acts as a glu-

coneogenic substrate, and is involved in gluconeogenesis upon entry into the citric acid cycle

[46]. Another possible reason of weight loss in PPA-treated rats is related to abnormal fatty

acid metabolism [23].

Previous studies reported that ASD rats exhibit autism-like symptoms, including impaired

cognition and restricted-repetitive behaviors, in areas of interest to them [14, 20, 21, 25, 26, 47,

48]. PPA-treated rats also displayed time-dependent attenuation of exploratory activity as well

as restricted locomotor activity in outer squares that represent an unfamiliar environment (Fig

3). Shultz et al. [21] reported that intracerebroventricular PPA administration increased repeti-

tive behaviors, movement, and turning behavior. Our analysis of social behavior revealed that

PPA-treated rats showed aggressive social behaviors, including following and chasing, anogen-

ital interaction, and head-to-head interaction, and presented with excessively aggressive

behavior (Fig 4). These neurobehavioral changes may be caused by PPA administration and

Fig 7. Immunostaining of hippocampal tissue with GFAP following PPA administration during early and late post-induction day. GFAP-positive cells (red) in the

hippocampus in control (A) and PPA-treated (B) rats. To quantify the number of GFAP-positive cells, we obtained a 3D surface plot using Image-Pro Plus software.

Cont, control rats; ASD, PPA-treated rats. Scale bar = 200 μm, p< 0.01: vs. Cont.

https://doi.org/10.1371/journal.pone.0192925.g007
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resultant CNS alterations, not only by peripheral irritation. In this study, each cage housed two

rats from the control or PPA-treated rats. Although this housing method would induce the

aggressive behaviors itself, however, the important thing to note was the appearance of altered

behavioral patterns following PPA administration rather than the extent of altered neurobeha-

viors. Additionally, aggressive behavior known as peripheral irritant effects may be generated

by the injection of buffered PPA. To determine the effect of buffered PPA injection on produc-

tion of ASD in an animal model, we performed reverse transcription PCR and histologic

analyses.

In addition, anxiety-like behavior, a representative symptom of ASD, may be generated

through decreased levels of neurotransmitter via downregulated gamma-amino butylic acid

(GABA) synthesis and upregulated GABA transporter activity in ASD-like rats [49]. We inves-

tigated the expression of MAP2, GFAP, and OCT4. The expression of MAP2 was similar

between the two groups. However, the expression of GFAP was significantly reduced on PID

14 in PPA-treated rats compared with control rats. The expression of OCT4 was also signifi-

cantly decreased on PID 0 and 7 in PPA-treated rats (Fig 5). Our results also revealed increased

expression of the TNF-α in the hippocampus of the PPA-treated rats. These results are related

to reduction of neural plasticity or cell size and increased neuronal loss. MacFabe [36] revealed

reactive astrogliosis and microglial activation but found no significant difference in caspase 3

expression in the hippocampus. MacFabe et al. [15] reported that PPA administration was

associated with increased expression of GFAP and may induce astrogliosis, which is consistent

with our study.

Similarly, a previous study suggested that autism-like behavior may be induced by overex-

pression of pro-inflammatory cytokines, such as IL-6, which regulate the organization of neu-

ral cells in the brain [50]. Excessive pro-inflammatory cytokine levels may be associated with

neural cell differentiation and maturation during development [51]. Wei et al. [50] suggested

that IL-6 is an important mediator of autism-like behaviors. When IL-6 was overexpressed,

neural circuit imbalances and abnormalities in synaptic plasticity were evident, followed by

impaired cognition, learning deficits, abnormal anxiety-related behavior, and reduced social

interactions. In this process, increased pro-inflammatory cytokines were implicated in neural

cell death via activation of apoptosis. In a future study, we will focus on identifying neuronal

cell characteristics, such as organization of hippocampal excitatory and inhibitory neurons,

after PPA treatment.

Humans and animals with ASD exhibit altered functions and structures in various brain

areas, such as the cortex (i.e., prefrontal cortex [52], anterior cingulate cortex, insular cortex

[53]), and hippocampus [8, 15, 36, 54–56]. Likewise, an increased number of neurons and

altered density and connectivity of the dendritic spine have been reported in humans and ani-

mals with ASD [55]. Additionally, altered levels of various molecules including NMDA,

AMPA, Shank, MECP, and PTEN, in global brain regions have been reported [57, 58]. In our

histological analysis, PPA-treated rats showed a time-dependent reduction in GCL thickness

and GC diameter (Fig 6). Saitoh et al. [59] reported smaller cross-sectional areas of the dentate

gyrus and the Cornu Ammonis (CA) region 4 in patients with ASD than in normal subjects,

with the most remarkable differences evident in those aged 2–4 years. Thus, disrupted neuro-

development could promote disturbances in the differentiation and maturation of hippocam-

pal neural cells. In addition, the increased number of astrocytes may lead to astrogliosis and

abnormal synaptogenesis (Fig 7). Consequently, the hippocampi of adolescent rats may be

organizationally immature or suffer from arrested neurodevelopment and physiological pro-

grammed cell death, such as apoptosis [60].

Patients with ASD may be affected by mitochondrial disease. Common biomarkers have

been discovered between patients with ASD and those with mitochondrial disease. In
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particular, the brain of PPA-induced ASD-like animal models and patients with ASD revealed

augmented long-chain acylcarnitines caused by abnormal fatty acid metabolism, which has

been associated with loss of mitochondrial function via the tricarboxylic-acid cycle [43, 48, 61].

Additionally, an abnormal pattern of acylcarnitine levels may affect glutathione metabolism in

PPA-induced ASD animals [61]. To investigate the mechanism between PPA injection and

ASD, altered cells in the CNS should be confirmed. In addition, pyrosequencing of microbes is

needed to elucidate the potential correlation between PPA injection and propionibacteria. In

this study, we obtained some interesting findings related to neurobehavioral deficits, including

social interactions in ASD-like animal models [20]. We revealed that psychologic, physiologic,

and histologic changes are induced by PPA administration in terms of mitochondrial dysfunc-

tion, abnormal acylcarnitine levels due to impaired fatty acid metabolism, and altered glutathi-

one metabolism.

Therefore, we conclude that daily PPA administration for 5 consecutive days may modulate

certain pathological changes and contribute to the development of autism. One previous study

reported that PPA was detected in blood samples up to 60 min after its subcutaneous injection

[62]. In this study, a rat ASD model was developed by subcutaneous PPA administration at a

daily dose of 500 mg/kg (250 mg/mL, 0.26 M, pH 7.4) for 5 consecutive days. We showed

altered gene expression, abnormal behaviors, and histological changes. Therefore, we suggest a

modified method for production of an ASD animal model.

Crawley [63] insisted that the ideal autism animal model must have at least three diagnostic

symptoms characteristic of clinical patients, including abnormal social interactions deficits in

social communication. Our study performed to expand the field by utilizing ASD-like animal

models by PPA administration. We hope that the animal model with high validity established

in this study is expected to clarify the diet-related mechanisms, gastrointestinal issues, micro-

biota, and metabolites in patients with ASD.

In conclusion, autism is a severe neurodevelopmental disorder characterized by impaired

social interactions, deficits in verbal and non-verbal communication, repetitive behavior, and

restricted interests. However, the etiology of the disorder remains poorly understood. This

study suggests that PPA administration may induce critical changes involving abnormal neural

cell organization followed by autism-like neurobehaviors, including increased aggressive

behavior, reduced exploratory activity, and isolative and passive behavior.
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