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Abstract

Although the investigation of the epigenome becomes increasingly important, still little is known about the long-term
evolution of epigenetic marks and systematic investigation strategies are still lacking. Here, we systematically demon-
strate the transfer of classic phylogenetic methods such as maximum likelihood based on substitution models, parsimony,
and distance-based to interval-scaled epigenetic data. Using a great apes blood data set, we demonstrate that DNA
methylation is evolutionarily conserved at the level of individual CpGs in promotors, enhancers, and genic regions. Our
analysis also reveals that this epigenomic conservation is significantly correlated with its transcription factor binding
density. Binding sites for transcription factors involved in neuron differentiation and components of AP-1 evolve at a
significantly higher rate at methylation than at the nucleotide level. Moreover, our models suggest an accelerated
epigenomic evolution at binding sites of BRCA1, chromobox homolog protein 2, and factors of the polycomb repressor
2 complex in humans. For most genomic regions, the methylation-based reconstruction of phylogenetic trees is at par
with sequence-based reconstruction. Most strikingly, phylogenetic reconstruction using methylation rates in enhancer
regions was ineffective independently of the chosen model. We identify a set of phylogenetically uninformative CpG sites
enriched in enhancers controlling immune-related genes.
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Introduction
Sequence-based methods for phylogenetic tree reconstruction
developed more than half a century ago (Sokal and Michener
1958; Fitch and Margoliash 1967; Jukes and Cantor 1969; Fitch
1971) have laid the methodological foundation for much of the
progress in evolutionary genetics. In addition to determining
sequences of speciation events, they have associated genotypes
with phenotypes and investigated critical selection pressures
(Pennacchio et al. 2006; Kosiol et al. 2008; Ge et al. 2013; Gaya-
Vidal and Alba 2014; Roux et al. 2014; Reichwald et al. 2015;
Webb et al. 2015; Sahm et al. 2018; Cui et al. 2019).

It has become increasingly clear that heritable information
does not solely consist of the sequence of the four nucleo-
bases adenine, cytosine, guanine, and thymine (Boffelli and
Martin 2012; Burggren 2016; Yi 2017; Lind and Spagopoulou
2018). Although the functional analysis of chemical DNA
modifications and its associated proteins is gaining pace, little
is known about the long-term evolution and conservation of
epigenomic signals. Among the most important of these epi-
genetic modifications are DNA methylation and post-
translational modifications of histones (Chen et al. 2017;
Michalak et al. 2019). DNA methylation marks, for instance,
are copied to newly synthesized DNA strands by DNA meth-
ylation transferases targeted to the replication foci
(Leonhardt et al. 1992; Vertino et al. 2002; Kar et al. 2012).

Importantly, epigenetic information may not only be passed
on from cell to cell in the soma but also through the germline
from generation to generation (Verhoeven et al. 2016; Perez
and Lehner 2019).

However, it is not necessary to invoke these findings to
take an interest in the phylogenetic information conveyed by
the epigenome. The evolution of epigenomic readers and
writers themselves ultimately affects their function and
changes in the epigenomic landscape may thus be under-
stood as a consequence of this very process. Also, the DNA
sequence context codetermines the epigenomically encoded
information (Xiao et al. 2014; Lowdon et al. 2016). For in-
stance, transcription factor binding sites (TFBS) critical for
complexes involving epigenomic writers and readers implic-
itly link DNA sequence and methylation signal. Conversely, it
is also known that the presence or absence of epigenomic
markers can influence DNA sequence evolution (Xia et al.
2012; Makova and Hardison 2015). Thus, changes in epige-
nomic markers, their respective local sequence context, and
in the composition of epigenomic readers and writers influ-
ence each other and are therefore difficult to disentangle.

Although it is clear that epigenetic marks in principle have
a major influence on gene expression and cell identity, it is still
largely open which marks have which functional significance
where in the genome (Barrero et al. 2010; Kim and Costello
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2017; Xia et al. 2020). As in many other examples (Bergmiller
et al. 2012; Luo et al. 2015; Arun et al. 2016), it is plausible that
the degree of conservation would be a strong indicator for
functional relevance. Furthermore, it could contribute to the
elucidation of the molecular causes of phenotypic differences.
To date, comparatively few studies have compared the epi-
genome of different species, for example, to identify pairwise
differentially methylated regions (Molaro et al. 2011; Zeng
et al. 2012; Mendizabal et al. 2016; Böck et al. 2018). To learn
more about the long-term evolution of epigenomic marks, it
appears necessary to develop new models allowing systematic
evolutionary analyses—as is the case at the genetic level (Xiao
et al. 2014; Lowdon et al. 2016).

Obviously, the central question is whether the evolution-
ary information of individual marks is sufficient to allow
meaningful analyses. In the light of their tissue-specificity
and responsiveness to environmental stimuli, it remains to
be established which epigenomic marks are conserved well
enough over longer evolutionary distances allowing the re-
construction of phylogenetic relationships.

That correct tree topologies can, in principle, be recon-
structed from methylation data was shown by Martin et al.
(2011) using blood samples from several primate species and
a simple distance-based tree method to reconstruct a single
tree from the methylome. Also, Qu et al., whose primary focus
was on hypomethylated regions, reconstructed a single tree
from the whole methylome using a broader species set and a
sophisticated time-continuous Markov chain model. Their
results indicated faster epigenomic evolution in rodent than
in primate sperm (Qu et al. 2018). The work of Hernando-
Herraez et al. was mainly concerned with differentially meth-
ylated regions resulting from pairwise comparisons but also
demonstrated, using a simple hierarchical clustering ap-
proach and great apes blood data, that genomic regions
that showed incomplete lineage sorting on the nucleotide
level recapitulated this on methylation level.

Building on these results, we systematically investigate differ-
ent models of epigenomic evolution to facilitate insights into
functions of single genes or pathways. Specifically, we transfer
tree reconstruction such as Maximum Parsimony, Maximum
Likelihood (based on substitution models), and distance-based
methods to the level of DNA methylation. Subsequently, mod-
els are applied to simulated data as well as publicly available real
data to analyze their ability to reconstruct correct phylogenetic
trees based on DNA methylation information. Substitution
models arguably promise the greatest potential regarding func-
tionally relevant analyses such as positive selection or acceler-
ated epigenetic evolution in comparison to the genetic level. To
this end, we evaluate different evolutionary scenarios for various
genomic features (e.g., enhancers, gene bodies).

Materials and Methods

Real Data Set
To test the methods we developed, we used publicly available
whole-genome bisulfite sequencing data from blood samples
of four primate species: Homo sapiens (hereafter, human),
Pan troglodytes (chimpanzee), Gorilla gorilla (gorilla), and

Pongo abelii (orangutan) (PRJNA286277; Hernando-Herraez
et al. 2015). The data set consisted of 286–324 million read
pairs per species. With a length of 90 base pairs per read, this
amounts to 17-fold to 25-fold genome coverage, assuming a
genome size of 3 Giga base pairs per species (supplementary
table S1, Supplementary Material online). Supplementary fig.
S1, Supplementary Material online summarizes the process-
ing of the real data; details are given in the supplementary
material, Supplementary Material online.

Identification of Orthologous Defined Regions and
Annotations
Our study distinguishes between four classes of genomic
regions (fig. 1A). The gene body class, reflecting the translated
part of the genome, is differentiated from regulatory regions
embedded in enhancer and two promoter-related regions
reflecting potential differences in selection pressures of meth-
ylation in coding and noncoding sequences. Specifically, we
consider promoter-near regions 2000 base pairs upstream
and downstream of the TIS, respectively. In practice, the
2000-Up-TIS class covers the promotor and untranslated
regions. Coordinates of the translation initiation and end sites
of the human protein-coding genes (n¼ 19,374) were
obtained from the Uniprot track of the University of
California, Santa Cruz (UCSC) table browser for the genome
version hg38 (Karolchik et al. 2004). Coordinates of enhancers
were obtained from UCSCs geneHancer track retaining only
“double elite” enhancers with known interactions
(n¼ 25,572). Coordinates of 9,679 genes and 20,327
enhancers were successfully translated to the three nonhu-
man primates using the UCSC liftover tool (Kent et al. 2010).
For practical reasons, analysis was restricted to elements with
a maximum length of 100,000/50,000 base pairs, respectively
(fig. 1A). For functional analyses, the UCSC hg38 Transcription
Factor ChIP-seq Clusters track, aggregating TFBS from more
than 1,200 experiments in human samples for 340 TFs, was
incorporated into this study.

CpG Alignment
For each region instance, the respective four orthologous
sequences were aligned using Clustalw2, version 2.0.10
(Larkin et al. 2007). Since the alignment of effectively non-
homologous bases in poorly conserved regions may lead to
false phylogenetic inference (Jordan and Goldman 2012), we
used trimAl, version v1.4.rev15 with the parameter “-
strictplus” removing unreliable alignment columns (Capella-
Guti�errez et al. 2009). In addition, only those alignments were
considered for further analysis for which at least 25 evaluable
CpGs remained. The methylation fractions previously deter-
mined in the individual species were then mapped to the
CpGs of the alignment using the known coordinates. This led
to MFA, forming the empirical data basis of this work (fig. 1A).

Evaluation Strategy
The quality of individual tree reconstruction methods under
different parametrizations was measured with increasing in-
put sizes using two benchmarks: 1) the ability to correctly
reconstruct the known primate tree topology and 2) the
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degree of dispersion of the branch lengths thus determined.
For these purposes, all methylation alignments of a region
class were first concatenated (pooling). From this pool, N
alignment columns were drawn for each combination of
the used tree reconstruction approaches (see below) and
N 2 f100; 200; . . . ; 1; 000; 2; 000; . . . ; 10; 000g. The
procedure was repeated 100 times. Subsequently, it was de-
termined how many of the 100 repetitions led to the correct
tree topology (fig. 1B). To measure dispersion in terms of
standard deviation of branch lengths from the mean length,
the correct topology was fixed. Briefly, we expect to observe
that the proportion of correct topologies should increase
with increasing N and the dispersion of branch lengths should
decrease.

Tree Reconstruction Methods
We used three main strategies to reconstruct phylogenetic
trees from the aligned methylation fractions: 1) Markov proc-
ess-based maximum likelihood, 2) parsimony, and 3)
distance-based methods. Here, we particularly focused on
maximum likelihood and investigated different models,
parameterizations, and assumptions based on this method.
For simplicity, in the following one combination is termed the
default method and all alternative methods and parametriza-
tions are compared against it. Figure 2 summarizes the

different tree reconstruction methods used. The methods
developed for tree reconstruction from methylation (or
more generally interval scaled) data were implemented in R
and are available on https://github.com/Hoffmann-Lab/
PhyloEpiGenomics (last accessed August 3, 2021).

Maximum Likelihood
We propose substitution models for the analysis of DNA
methylation fractions analogous to the frequently used
continuous-time Markov process models at nucleotide (e.g.,
Jukes and Cantor 1969; Kimura 1980; Hasegawa et al. 1985),
codon (e.g., Goldman and Yang 1994), and amino acid (e.g.,
Kishino et al. 1990) levels. In contrast to nucleotides, codons,
and amino acids measured on a nominal scale, methylation
fractions are measured on an interval scale. To address this
difference, we introduce a discretization function

d : 0; 1½ � ! f1; . . . ; ng

with n 2 N being the number of model methylation states
and 8 x > y : d xð Þ � dðyÞ.

Let a model M be defined by the pair M ¼ p;Qð Þ con-
sisting of an initial (and equilibrium) distribution p 2 ½0; 1�n
and an n x n transition probability rate matrix Q ¼ ðQs;tÞ
with 1 � s 6¼ t � n. As usual, the transition probability

FIG. 1. (A) Classes of genomic regions examined in this work. The region classes were defined using the Uniprot annotation of all human protein-
coding genes (2000-Up-TIS, 2000-Down-TIS, Gene body, n¼ 19,374) or geneHancer annotation (Enhancer, n¼ 25,572). The corresponding
genome regions in chimpanzee, gorilla, and orangutan were acquired based on a genome alignment strategy. (B) Workflow and evaluation
strategy. 1) For each region defined in (A) of each gene an MSA of the four species studied in this work was created and the methylation fractions
measured from blood samples mapped to the alignment. 2) From this, the MFA was extracted. 3) We merged these gene-wise alignments to
region-wise alignments. 4) From the region-wise MFAs, we sampled 100 times N columns. 5) From each of the 100 drawings, we reconstructed a
phylogenetic tree. 6) As evaluation criteria, we used, on the one hand, the proportion of trees that correspond to the known great ape topology. On
the other hand, we quantified the dispersions of the branch lengths. The procedure from 4) to 6) was performed for different values of N to
consider the evaluation criteria as a function of the amount of input data.
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matrix PðsÞ for a given branch length s is determined by
numerically finding a solution to

P sð Þ ¼ eQ�s:

The likelihood of a given phylogenetic tree can then be
determined by Felsenstein’s method assuming independent
evolution of CpG sites (Felsenstein 1981). Branch lengths of a
given tree topology are estimated by maximizing the likeli-
hood and the optimal topology is that with the highest like-
lihood. For likelihood maximization, we use an optimized
version of the Broyden–Fletcher–Goldfarb–Shanno method
(Broyden 1970; Byrd et al. 1995).

In this paper, we propose two flavors of evolutionary
models that we call No Jump Model and Co-occurrence
Model. The No Jump Model assumes that the methylation
fractions change smoothly during evolution, that is within
short time intervals the methylation state of a CpG site can
only change to one of the neighboring states (see fig. 2). In
contrast, the Co-occurrence Model also allows transitions to
distant states in short time intervals. Here, the transition
probabilities between two states are made dependent on
how often these two states could be observed empirically
within an alignment column.

To formally define these models, let X ¼ ðXi;jÞ be a given
k x l matrix with the rows corresponding to k homologous
CpG-sites, the columns corresponding to l indices of the spe-
cies examined, and each entry Xi;j 2 ½0; 1� being the mea-
sured methylation fraction of the ith CpG-site in the
species with the index j; 1 � i � k; 1 � j � l. Here, X

will either be drawn from real data, that is the concatenated
alignments of a region class, or from simulated data (see
below).

Subsequently, the number of each methylation state s in
each species a is counted using the function
oa : 1; . . . ; nf g ! N0 with 1 � a � l

oa sð Þ ¼
Xk

r¼1
ds;dðXr;aÞ

with dp;q being the Kronecker delta dp;q ¼
0 if p 6¼ q

1 if p ¼ q

(
.

Based on this, we define the equilibrium frequency
p ¼ ðpsÞ for both, the No Jump and the Co-occurrence
Model as

ps ¼
Pl

a¼1 oaðsÞPn
u¼1

Pl
a¼1 oaðuÞ

:

Accordingly, for the No Jump Model, we define Q ¼ ðQs;tÞ
as

Qs;t ¼
0 if s� tj j > 1

pt else

(

with 1 � s 6¼ t � n. For the Co-occurrence Model, the
number of co-occurrences of all combinations of methyla-
tion states s and t and species a and b is counted using a
function
coa;b : 1; . . . ; nf g2 ! N0 with 1 � a � l; 1 � b � l; a 6¼ b

FIG. 2. Applied tree reconstruction methods. Most of the analyses in this work were performed with a maximum likelihood tree reconstruction
method based on a Markov model of the evolution of methylation fractions. The model is based on a discretization of the floating-point
methylation fractions into five states. No molecular clock is assumed. The design of the transition rate matrix Q assumes that a methylation
fraction status cannot evolve into a nonadjacent status within short time spans (No Jump Model). This means that when the methylation fraction
changes from a state A to a nonadjacent state B during evolution, all states between A and B have been passed through. The combination of the
tree reconstruction method and the properties of the models described is called the default method in the context of this work for simplification.
To better assess the effects of the assumptions of the default method, we compared this method with variations of itself: different number of states,
molecular clock, or a transition rate matrix that allows direct change to distant states. In addition, we have also applied two tree reconstruction
methods that differ fundamentally from maximum likelihood. For this, either evolutionary distances based on the model of the default method
were determined and then neighbor-joining was applied or a parsimony approach was used.
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coa;b s; tð Þ ¼
Xk

r¼1
ðds;dðXr;aÞ�dt;dðXr;bÞ þ dt;dðXr;aÞ�ds;dðXr;bÞÞ:

Let, cs;t ¼ ct;s ¼
Pl�1

a¼1

Pl

b¼aþ1
coa;bðs;tÞPn�1

u¼1

Pn

v¼uþ1

Pl�1

a¼1

Pl

b¼aþ1
coa;bðu;vÞ

be the fraction observed co-occurrences of the states s and t
across the alignment.

Finally, we define Q ¼ ðQs;tÞ for the Co-occurrence Model
as

Qs;t ¼ cs;t� pt

with 1 � s 6¼ t � n. As usual, for both models Qs;s are fixed
such that

Qs;s ¼ �
X
t6¼s

Qs;t:

For this study, we tested the models with different param-
eters and technical settings. Detailed parametrizations for the
No Jump and Co-occurrence models are shown in supple-
mentary figures S2 and S3, Supplementary Material online.
Specifically, we tested models with different state numbers n,
and we used the models both with and without the assump-
tion of a molecular clock.

Maximum Parsimony
The basic idea of Fitch’s Maximum Parsimony algorithm
(Fitch 1971) is to find a set of sequence states at the inner
nodes minimizing the number of necessary changes along the
edges of the tree. We adapted the algorithm to work on the
interval scale. Supplementary figures S4–S6, Supplementary
Material online illustrate the differences between the algo-
rithm and our modification.

In the bottom-up postorder tree traversal, an interval
IðmÞ is assigned to each node m. Leaves are initialized
with

I lð Þ ¼ ½observed number at l; observed number at l�

.
Then, for each inner node m with children x and y, IðmÞ is

determined by

I mð Þ ¼
I xð Þ \ I yð Þ; if I xð Þ \ I yð Þ 6¼1

½min maxðI xð ÞÞ;maxðIðyÞð ÞÞ;max minðI xð ÞÞ;minðIðyÞð ÞÞ�; else

(

.
In the top-down preorder tree traversal, each node m is

assigned a number iðmÞ 2 IðmÞ. For the root r, iðrÞ is chosen
as an arbitrary number within IðrÞ; for all other inner nodes
with parent node state p

i mð Þ ¼
p; if p 2 IðmÞ

arg minx 2 I mð Þ p� xj j; else

(

.
As with the original algorithm, the optimal tree topology is

the one that explains the sequence alignment with the lowest
number of necessary changes overall.

Distance-Based Methods
Distance matrices were determined based on the No Jump
Model described above. Each distance matrix T ¼ ðTa;bÞwith
1 � a � l; 1 � b � l was determined by maximizing
the likelihood for the pairwise distances in the usual way

Ta;b ¼ Tb;a ¼ arg max
s2R�þ

Y
1� i� k

ðpdðXi;aÞ�Pa;bðsÞÞ

for a 6¼ b; and Ta;a ¼ 0 for 1 � a � l. For each distance
matrix T, the corresponding phylogenetic tree was recon-
structed using the Neighbor-Joining algorithm (Saitou and
Nei 1987).

Simulations
Artificial alignments were generated based on the known tree
topology and divergence times of the great apes (Locke et al.
2011). For each artificial alignment column, the tree was tra-
versed in preorder. For each node m, a state was drawn from
ð1; . . . ; nÞ using a probability vector uðmÞ. For the root r,
u rð Þ was set to the equilibrium distribution u rð Þ ¼ p. For
every other node m with the incoming edge e with length se

and the parent node in state s, uðmÞ was set to the s-th row
of the matrix PðseÞ (supplementary fig. S7, Supplementary
Material online). The simulated alignment column then
results from the states assigned to the leaves of this tree.
This simulation approach has been widely used at nucleotide
and codon level (e.g., Rambaut and Grassly 1997; Yang 1997;
Fletcher and Yang 2009).

This general scheme has been extended for the different
concrete analyses. For the comparison of real and simulated
data, noise of different orders of magnitude was added to the
simulated data. For the analyses of long-branch attraction
and resolution limits for reconstruction depending on the
branch length the tree used for the simulation was changed
(see supplementary methods, Supplementary Material online
for details, also for the analysis of site-specificity that was
conducted on real data).

Results and Discussion
On nucleotide data, maximum likelihood-based Markov
models are critical tools for formal testing of evolutionary
hypothesis. This includes the detection of sequences under
positive selection on certain branches of a phylogeny. In order
to address such questions in the epigenome, we first focused
on the evaluation of maximum likelihood reconstructions in
this work. Specifically, we investigated different flavors of this
methodology. A discretization of CpGs according to their
methylation levels is at the heart of the default method
and derivatives thereof. Depending on the methylation, in
our models, a single CpG can assume one of two, five (default
method), or ten states

CpG Methylation Varies Widely between Regions but
Little between Species
To test the functionality of the developed methods, we used a
public whole-genome bisulfite sequencing data set generated
from blood samples of four great apes: human, chimpanzee,
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gorilla, and orangutan (Hernando-Herraez et al. 2015) as well
as to simulated data. On a genome-wide level, methylation
patterns are extremely similar in all species and apparently
dominated by the functional aspects of the four selected
classes of regions (figs. 1 and 2; see supplementary results,
Supplementary Material online for details and fig. 1A for re-
gion definition). Also, the average similarity of the methyla-
tion fractions varies more between the regions under
consideration than between species pairs—reflecting the dis-
tinct functional roles of the regions. Interspecies similarity
ranges from 87.2–90.0% in the gene body to 94.6–95.4% in
the 2000-Up-TIS region (table 1).

To model a null-hypothesis for the analysis of region-spe-
cific similarities, we repeatedly uniformly (n¼1,000) drew ran-
dom pairs of methylation rates from the class-specific
background distributions and calculated expected differen-
ces. Based on this, we found that the level of region-specific
similarity between species pairs is significantly higher than
expected (P < 10�3, table 1). These initial, descriptive results
suggest that the methylation data contain evolutionarily con-
served, phylogenetically analyzable signals. Despite a high de-
gree of similarity probably dominated by region-specific
biological functions, differences at this rather coarse-grained
level already reflect the phylogeny of the great apes.

Tree Reconstruction Works Best for Translation
Initiation Site-Downstream and Gene Body Classes
To get a more detailed view, we compared the classes of
regions in terms of their potential to reconstruct correct
tree topology using the methylation data. With the default
method, the 2000-Down-TIS region contains the highest phy-
logenetic signal (fig. 3C). Notably, this class has by far the
highest proportion of hemi-methylation (0.2–0.8). It seems
plausible that CpGs neither fully methylated nor demethy-
lated across the tissue also have the technical property of
being phylogenetically most informative. It is well docu-
mented that an increase in methylation downstream of the
transcription start site and thus potentially overlapping with
translated regions may have a potent suppressive effect on
gene expression (confer fig. 3 of Ehrlich and Lacey [2013] and
Appanah et al. [2007]). At the same time, the region overlaps
with proximal parts of the gene body where a hypermethy-
lation is frequently associated with strong expression
(Zemach et al. 2010). In conjunction with the high level of
global similarity established above, these results provide fur-
ther evidence that specific phylogenetic information is

embedded in this regulatorily relevant region. In addition to
informative signals in regulatory regions, also interspecies ex-
pression differences may contribute to the surprisingly high
rate of correct reconstructions. The observation that tree re-
construction based on the gene body works second best
supports this notion.

With the notable exception of enhancers, the proportion
of correctly reconstructed tree topologies converges clearly
toward 1 in all region classes, depending on the amount of
available data (fig. 3C). The result is similar concerning the
second benchmark, that is whether the branch lengths we
determined converge with increasing data volume. This is the
case for all branches of the great apes in all regions studied
(fig. 3D).

Methylation-Based Tree Reconstruction May
Outcompete Nucleotide-Based Reconstruction
For comparison, we juxtaposed methylation-based recon-
struction with classical nucleotide-based reconstructions.
For the gene body and Up-TIS-2000 classes, the fraction of
correctly inferred trees is almost identical for methylation and
nucleotide data. Most strikingly, using methylation data from
the Down-TIS-2000 class reconstruction clearly outcompeted
nucleotide-based reconstruction. Conversely, reconstruction
based on methylation data obtained from enhancer regions
essentially failed (fig. 4A). In the light of high similarities of
methylation fractions in this region (table 1), this result is
most surprising.

To additionally quantify the performance of methylation-
based reconstruction, we generated artificial methylation
fraction alignments (MFAs) in complete analogy to nucleo-
tide- or amino acid-based alignments frequently used in the
assessment of reconstruction algorithms or evolutionary
models (e.g., Rosenberg and Kumar 2001; Zhang et al. 2005;
Shavit Grievink et al. 2010; Zaheri et al. 2014). Using these
MFAs, we reconstructed phylogenetic trees and determined
the fraction of correct topologies (fig. 4A). The procedure was
repeated after adding different levels of artificial noise to the
simulated MFAs. At a noise level between 0.1 and 0.2 stan-
dard deviations, the reconstruction performance of simulated
data is at par with real data derived from gene body and Up-
TIS-2000. Consistently, enhancers perform worse with values
corresponding with noise between 0.2 and 0.4 standard devi-
ations, whereas the Down-TIS-2000 class shows substantially
better benchmarks with values between 0.05 and 0.1 standard
deviations.

In summary, the reconstruction of phylogenetic trees from
DNA methylation data seems to work well. The performance
compared with nucleotide data is astonishing since methyl-
ation can be expected to be subject to frequent changes.
Unlike DNA sequences, they are influenced by circadian
rhythms, environmental factors, or diseases. Clearly, in prac-
tice, the success of a methylation-based reconstruction criti-
cally depends on the amount of available data, for example,
the read coverages achieved in WGBS experiments, the qual-
ity of reference genomes and sequence alignments.
Furthermore, the reconstruction of phylogenies in single
genes is naturally limited by the number of available data

Table 1. Average similarity of methylation fractions between species
in percent.

2000-Up-
TIS

2000-Down-
TIS

Gene
Body

Enhancer

Human–chimpanzee 95.4 93.5 90.0 92.9
Human–gorilla 94.9 92.7 87.9 92.0
Human–orangutan 94.6 92.6 88.7 91.8
Chimpanzee–gorilla 95.0 92.8 87.6 92.1
Chimpanzee–orangutan 94.7 92.7 88.7 91.9
Gorilla–orangutan 94.6 92.5 87.2 91.3
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FIG. 3. (A) Distributions of methylation fractions in the regions and species examined. (B) Methylation and CpG fractions by relative position in
region class. (C) Comparison of regions examined by the fraction of correctly inferred tree topologies. The total number of reconstructed trees per
fixed amount of input data (i.e., Number of CpG loci) was always 100. The dashed line indicates the probability of randomly reconstructing the
correct tree topology (one-third), solid lines interpolate points for visual guidance. (D) Dispersion of branch lengths in the regions examined. The
solid lines represent the mean values of the branch lengths for 100 drawings, and the dashed lines represent the mean values 6 the corresponding
standard deviations. (A, B, D) The given numbers of CpG loci were drawn from the respective region-wise MFAs with the following total numbers
of evaluable CpG loci: Up-TIS-2000–126,560; Down-TIS-2000–134,686; Gene body—441,286; enhancer—271,195.
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points. Although the body of a protein-coding gene has often
more than 10,000 nucleotides, the measurement of the meth-
ylome is restricted to at most a few hundred CpGs (supple-
mentary fig. S8, Supplementary Material online).
Experimental or biological noise may thus easily lead to faulty
reconstructions. Unlike the genome, which is almost identical
in all cells of an individual, the epigenome may reflect tissue-
specific phylogenetical information. Thus, interspecies com-
parisons yield the potential of gaining insights into the evo-
lution of tissues as opposed to the entire organism. The
incorporation of other epigenetic data, for example, histone
modifications, will be helpful to illuminate such processes.

Failure of Tree Reconstruction at Enhancers
We then addressed the question of why tree reconstruction
with methylation data from enhancers performs significantly
worse than in the other regions. Our analyses show that
enhancers have more phylogenetically uninformative CpG
sites. These uninformative sites were found disproportionally
often in enhancers that regulate the expression of IL12 path-
way genes and leukocyte and lymphocyte differentiation (see
supplementary results, Supplementary Material online for
details). Since immunity-related genes themselves are targets
of rapid evolutionary changes (Shultz and Sackton 2019), it is
tempting to speculate that also sudden methylation changes
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FIG. 4. (A) Model versus reality. The performance difference between the simulated data and the real data gives an estimate of how well the model
matches reality. We first pretended that the model of the default method perfectly reflects reality: this model and the known phylogenetic tree of the
great apes were used to generate artificial alignments. We then reconstructed phylogenetic trees from these alignments using the same model and
applied the quality scale of fraction of correctly reconstructed tree topologies. To quantify the difference of model and reality, we additionally applied
defined error terms, that is fractions of the standard deviation of the standard normal distribution, to the artificial alignments before tree reconstruction.
Reconstructions based on the nucleotide sequences obtained from the alignments are given for comparison. (B) Comparison of the different methods (or
deviations of our standard method) by fractions of correctly reconstructed tree topologies. The given numbers of CpG loci were drawn from the
respective region-wise MFAs with the following total numbers of evaluable CpG loci: Up-TIS-2000–126,560; Down-TIS-2000–134,686; Gene body—
441,286; enhancer—271,195. (A, B) The total number of reconstructed trees per fixed amount of input data (i.e., Number of CpG loci) was always 100. The
dashed line indicates the probability of randomly reconstructing the correct tree topology (one-third), solid lines interpolate points for visual guidance.
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within associated regulatory elements contribute to shaping
the evolution of the immune response.

Nonbinary Models of CpG Methylation Work Best for
Tree Reconstruction
As shown in figure 4B, the model selection critically impacts
phylogenetic reconstructions based on methylation data. The
default No Jump Model is based on the idea that within short
periods of time it is only possible to switch to adjacent states
(fig. 2). If a change from state A to a nonadjacent state B is to
be made over a more extended period, all intermediate states
between A and B must be transited. With the alternative Co-
occurrence Model, we permit sudden changes to nonadja-
cent states. Interestingly, the Co-occurrence Model consis-
tently performs much worse than the No Jump Model
across all regions. This behavior immediately raises the ques-
tion to which extent such states are also functionally relevant.
In contrast, when increasing the number of states to ten
typically no or only minimal improvement is observed.
Naturally, the precise resolution of tissue-wide methylation
fractions critically depends on the read coverage. Thus, for the
data used in this study, a ten-state model likely is too fine-
grained and over-specified. Once more and better data are
available, however, it would be most exciting to consider
models with more states or even methods able to omit
such discretizations.

The presented default method builds on assumptions fre-
quently made in the analysis of evolutionary relationships. To
investigate the influence of those assumptions, we added a
model with a molecular clock (1), used Neighbor-Joining as a
distance-based method for tree reconstruction (2), and ap-
plied the Maximum Parsimony principle (3; fig. 2). In sum-
mary, tree reconstruction from DNA methylation data faces
similar challenges as tree reconstruction from nucleotide
data. For instance, under conditions of similar evolutionary
rates on all branches, the aforementioned alternative meth-
ods reconstruct the correct tree topology more often than
our default method, but are prone to long-branch attraction
when rates diverge (figs. 4B and 5A, 5B, see supplementary
results, Supplementary Material online for details).

DNA Methylation Is Conserved at the Individual CpG
Site Level
To investigate the degree of local conservation of methylation
fractions, we determined the similarity of methylation for
neighboring CpGs, defined as 1� jXi;a � Xj;aj, where Xi;a

and Xj;b are the methylation fractions at CpG-site i and j in
species a, respectively. This similarity is contrasted with sim-
ilarities of fractions in the spatial neighborhood of each indi-
vidual species. Specifically, we define the 1-neighborhood of a
CpG as the set of the next CpG upstream and the next CpG
downstream (without the CpG in the middle). The 2-neigh-
borhood consists of the next but one CpGs in both directions
(without the three CpGs in the middle) and so on. Expectedly,
the average similarity of methylation decreases with growing
neighborhoods toward a baseline level in all classes of regions.

In the 2000-Down-TIS region, for instance, a similarity level of
about 93% in the 1-neighborhood, decreases to about 80% in
the 25-neighborhood and remains almost constant from then
on (fig. 5C, supplementary fig. S12A, Supplementary Material
online). Strikingly, the class-dependent relationship between
neighborhood and methylation similarities is practically iden-
tical in all of the investigated species. To put this observation
into context, we contrasted the averaged neighborhood sim-
ilarities with the similarity of methylation rates between two
species at a given CpG, that is the in-between similarity. In any
given class, the in-between similarity is at least as strong as the
3-neighborhood across all species. For the species pair hu-
man–chimpanzee, for instance, the in-between similarity is
greater than that of the 1-neighborhood. In other words, our
data indicate that, although separated by millions of years of
evolution, the methylation rate of a CpG in humans is on
average more similar to its orthologous CpG in chimpanzees
than to that of its closest neighboring CpG (fig. 5C, supple-
mentary fig. S12A, Supplementary Material online). To further
investigate this, we have randomly swapped the methylation
fractions of the real ape data set within defined exchange
distances before reconstructing the phylogenetic trees. Even
an exchange distance of one results in a significant decrease in
the proportion of correct topologies, which continues to in-
crease as the exchange distance is enlarged (fig. 5D, supple-
mentary fig. S12B, Supplementary Material online). This
clearly indicates that the methylation on the DNA strand is
conserved with high local resolution. On the flipside, this
result also underscores the dependency of such methyl-
ation-based studies on high-quality alignments—very much
similar to studies based on the nucleotide or codon level
(Jordan and Goldman 2012).

In this context, we addressed the question of whether the
phylogenetic information conveyed by DNA methylation and
MFAs could arise artificially as a mere consequence of the
underlying multiple sequence alignments (MSAs). If the phy-
logenetic information of the MSA was simply carried over to
the MFA, we would expect observing clear correlations be-
tween their abilities to infer correct phylogenetic trees. The
observation that MSA-based reconstruction of phylogenies us-
ing enhancers is at par with other region classes whereas MFA-
based reconstruction fails more frequently (fig. 4A, supplemen-
tary table S4, Supplementary Material online) already indicates
that this is not necessarily the case. To investigate this question
more systematically, however, we compared methylation-
based and sequence-based reconstruction performances sub-
ject to increasing levels of local sequence conservation.
Although the sequence-based reconstruction performance
clearly and expectedly degrades with increased sequence sim-
ilarities, the MFA-based reconstruction is largely unaffected.
Notably, for locally highly sequence-conserved regions it out-
performs sequence-based reconstruction and supports the no-
tion that the 5mC signal investigated here is phylogenetically
informative in its own right (supplementary fig. S13,
Supplementary Material online, see supplementary results
and methods, Supplementary Material online for details).
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Transcription Factors Preferentially Bind to
Epigenetically Conserved Gene Loci
Based on the observations of high interspecies similarity of
CpG methylation (table 1, fig. 3A and B) and successful tree
reconstruction using these data (figs. 3C and 4A), we calcu-
lated gene-wise estimates of the evolutionary rates to illus-
trate potential benefits of studies into epigenomic
conservation. As described above, studies on single-gene level
critically depend on the amount of evaluable data. With the
data set at hand, the criteria for a thorough single-gene-based
hypothesis testing are limited. In the context of this work, we
restrict ourselves to representative examples. CASTOR1 codes
for a component of the MTORC pathways (Saxton et al.
2016) and is an example of a modestly conserved gene

according to our epigenomic measure (fig. 6A), that is the
estimated rate of evolution is almost exactly that of the region
average. Upon closer inspection, however, we observe that
the local methylation level is anticorrelated with the tran-
scription factor binding density, that is the number of differ-
ent binding transcription factors normalized by gene length,
which we determined based on publicly available data
(Karolchik et al. 2004). We also found that the rate at which
a gene’s methylation level evolves is globally anticorrelated
with the binding density of the transcription factors (q ¼
�0.22, P < 2.2 � 10�16, supplementary table S3,
Supplementary Material online). As a second intuitive mea-
sure for assessing functional aspects of epigenomic conserva-
tion, we determined how much the respective gene tree
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FIG. 5. (A) Comparison of selected methods in a long-branch attraction scenario. We generated artificial alignments using the model of our default
method and a modified version of the great apes’ phylogenetic tree. The tree used for alignment generation was modified in such a way that one
terminal branch was given a multiple of its original length. Then, trees were reconstructed from the alignments and the scale of the fraction of
correctly inferred topologies applied. (B) Resolution limits depending on the branch length. The same procedure as in (A) was followed. Here,
however, the known phylogenetic tree of the great apes was used for alignment generation and all branch lengths were multiplied by fixed factors
(Edge factor). (C) Methylation similarity as a function of CpG neighborhood. We define the x-neighborhood of a CpG as the set consisting of the x-
nearest CpG upstream and the x-nearest CpG downstream. Shown are the average similarities (solid line) and standard deviations (dashed line) of
the methylation fractions for all corresponding x-neighborhood pairs. For comparison, the average similarity of the orthologous human–chim-
panzee methylation fractions is also shown (dotted horizontal line, see also Table 1). (D) Local signal resolution/alignment sensitivity. Phylogenetic
trees were reconstructed from the real data set (great apes) using modified methylation fractions alignments. The alignments were modified so
that methylation fractions were exchanged with a certain probability for a random methylation fraction of the same species within the given
exchange distance. (A, B, D) The dashed line indicates the probability of randomly reconstructing the correct tree topology (one-third), solid lines
interpolate points for visual guidance. (A–D) The total number of reconstructed trees per fixed amount of input data (Number of CpG loci) was
always 100. The region examined here was the gene body. The total number of evaluable CpG loci in this region is 441,286.
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FIG. 7. (A) Estimated evolutionary rate of TFBS on CpG-methylation level in great apes versus relative slow-down/acceleration of this rate in
humans. Triangles mark TFBS with statistically significant deviation of the human evolutionary rate (FDR< 0.01, maximum likelihood ratio test,
see Methods chapter Methylation at TFBS). The color codes the mean methylation level across all evaluable CpG sites in the binding sites of the
respective transcription factor. (B) Estimated evolutionary rate of TFBS on nucleotide versus CpG-methylation level. The dashed line indicates a
simple linear regression of the two evolutionary rates. Color-coded are all transcription factors that are part of the pathways listed by the legend
(Pathway Interaction Database; Schaefer et al. 2009). (A, B) Shown are those 297 out of 340 transcription factors from the UCSC hg38 Transcription
Factor ChIP-seq Clusters track (Karolchik et al. 2004) that comprised at least 1,000 evaluable CpG sites.
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FIG. 6. (A) Measured methylation fractions and estimated local transcription factor binding density in the gene body of CASTOR1. The total
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deviates from the average tree of the region class (see
supplementary methods, Supplementary Material online for
details). C16orf86 codes for a probably functional but so far
uncharacterized protein and an example of a strong deviation
(fig. 6B). According to the measure we described and the filter
criteria we used, the gene shows the highest deviation from
the expected tree. According to our model, this deviation can
be attributed almost exclusively to an increased evolutionary
speed in humans. Interestingly, however, methylation levels in
humans were only locally significantly different from other
species between nucleotide positions 180 and 530. These are
partly coding for a fully conserved domain of the unknown
function (pfam15762, DUF4691) and show a relatively high
TFBS density in humans. It is tempting to speculate that in
the other great apes the relatively higher methylation may
lead to a lower transcription factor binding density in this
region.

Hints of Accelerated Epigenomic Evolution for
Polycomb Repressive Complex 2 Protein Binding Sites
Based on our finding that transcription factor binding density
appears to be negatively correlated with our measures for
epigenomic evolution, we were specifically interested in char-
acterizing individual transcription factors in terms of their
evolutionary rates. To do this, methylation rates of aligned
gene body CpGs overlapping with the binding site of a specific
transcription factor (TF) were combined. In total, 297 out of
340 transcription factors comprised at least 1,000 CpG sites—
the chosen minimum to include a TF in this analysis. The
strongest deceleration on the human branch was observed
for RNA-binding-protein 34, RBM34. Although little is known
about the function of this gene, its binding to DNA might be
influenced by the CpG-methylation.

Significantly accelerated rates (FDR � 0.01; see Materials
and Methods) were found for about a third of TFs (n¼ 98) in
humans (fig. 7A). Strikingly, this set appears to enrich critical
components of the polycomb repressive complex 2 (PRC2)
complex, namely, YY1, EZH2, HDAC1, HDAC2, BMI1, and
SUZ12 (BIOCARTA PRC2 pathway; FDR¼ 0.092). Binding
sites of the two histone deacetylases are also components
of the significantly enriched telomerase pathway (Pathway
Interaction Database; FDR¼ 0.0026) additionally comprising
accelerated TFBS of XRCC5, MAX, SP1, IRF1, MYC, NBN,
NR2F2, E2F1, SAP30, SIN3A, and SIN3B. The strongest accel-
erations with a more than 50% increased evolutionary rate on
methylation level were found for ZZZ3, chromobox homolog
protein 2 (CBX2), MYB, CDC5L, MIER1, and BRCA1. The zinc-
finger ZZZ3, a component of the Ada-two-A-containing
(ATAC) histone acetyl-transferase complex, has recently
been described to function as a reader of histones regulating
ATAC-dependent promoter histone H3K9 acetylation (Mi
et al. 2018). This indicates that evolutionarily driven changes
of ZZZ3 binding characteristics could have a decisive impact
on species-specific gene expression. The CBX2, also a reader of
histone modifications, is a member of the polycomb repres-
sive complex 1 (PRC1) (Vandamme et al. 2011). It contributes
to the repression of genes by binding to H3K9me3 and
H3K27me3.

One of the strongest evolutionary accelerations on the
methylation level can be observed at the TFBS of BRCA1.
Notably, the gene itself has been found to undergo a rapid
evolution driven by positive selection altering its amino-acid
composition as well its noncoding parts (Pavlicek et al. 2004;
Lou et al. 2014). Involved in double-strand break repair,
BRCA1 is frequently mutated in hereditary forms of human
breast cancers. Thus, our data suggest that the accelerated
evolution of BRCA1 in humans compared with other great
apes (fig. 7A) has a measurable impact on the methylation
landscape around its binding sites. At the same time, on the
sequence level, BRCA1 binding sites evolution appears to be
substantially decelerated (fig. 7B). This marked lack of
covariance potentially supports the functional effects of
changes in the BRCA1 gene itself. Notably, BRCA1’s direct
interaction partner, the estrogen receptor ESR1, exhibits a
comparably high evolutionary rate across all primates on
the methylation level as compared with the sequence of its
binding sites (fig. 7A and B). The systematic comparison of
sequence-based and methylation-based evolutionary rates
reveals an epigenomic acceleration of binding sites for tran-
scription factors involved in neuron differentiation
(GO_NEURON_DIFFERENTIATION, FDR ¼ 0.03) and two
highly connected pathways, AP-1 (FDR ¼ 0.03,
PID_AP1_PATHWAY) and FRA (ii, FDR ¼ 0.02,
PID_FRA_PATHWAY), due to the constitutive components
of the heterodimeric AP-1, including, for example, FOS, the
ATF family, GATA2 and JunB (fig. 7B). The proteins belonging
to the AP-1 family play a critical role in numerous cellular
processes. Notably, in cooperation with other cell-type-spe-
cific factors, it is involved in the activation of cell-type-specific
enhancers (Madrigal and Alasoo 2018). Hence, this result may
be explained by species-specific cell compositions, systematic
environmental or nutritional differences. Nevertheless, it
seems possible that the enrichment of these factors may
point to combinatorial changes of AP-1 composition during
evolution.

Conclusions
Here, we have systematically transferred classical methods of
phylogenetics used to analyze nucleotide and amino acid
sequences to the field of epigenomics. Using empirical data
from great apes, we demonstrated that phylogenetic trees
can be correctly reconstructed from methylation data based
on the fundamental principles of maximum likelihood, par-
simony, and distance-based approaches. The problems and
challenges are similar in many respects to tree reconstruction
from nucleotide data, for example, that parsimony and dis-
tance-based methods are prone to long-branch attraction.
Nevertheless, we found that all examined regions, with the
notable exception of enhancers, contain enough phylogenetic
information on CpG-methylation level to outcompete recon-
struction with nucleotide data. The ability of the enhancers to
escape the evolutionary model can be attributed to a rela-
tively small set of CpG sites. The enrichment of these sites in
quickly evolving immune-related genes highlights the impor-
tance of the epigenome for short-term evolutionary changes.
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Based on the empirical data and simulations, we showed that
methylation levels are conserved at single CpG resolution.
The methylation fraction of a CpG can usually be better
predicted from the methylation fraction of an orthologous
CpG in a species separated by millions of years of evolution
than even from the methylation fraction of the closest CpG in
the same species. We also found evidence that epigenetic
conservation is associated with enhanced transcription factor
binding density. Evolutionary rates on the nucleotide level
were found, as expected, to be highly correlated with evolu-
tionary rates on the CpG methylation level across TFBS.
However, significant deviations from this general trend are
observed for binding sites of transcription factors associated
with neuron differentiation and components of the hetero-
dimeric AP-1 evolving significantly faster on the methylation
level. Multiple examples provide hints that epigenomic
remodelers themselves could be critical components in the
evolution of the human lineage. Significantly elevated evolu-
tionary rate on methylation level in humans compared with
other great apes were found at TFBS of BRCA1, CBX2, ZZZ3,
MIER1, and MYB. On a global level, critical components of the
polycomb repressive complex 2 and members of the telome-
rase pathway show an accelerated CpG methylation evolu-
tion in humans.

In the future, when data are collected for different epige-
netic marks across multiple tissues, these methods should be
helpful to test for accelerated or slowed epigenetic evolution
affecting individual genes. Furthermore, other marks, for ex-
ample, modifications of histone tails, are less codependent on
the genomic context compared with CpG-methylation. Thus,
such investigations may enable the identification of evolu-
tionary effects less vulnerable to selection processes in the
immediate genomic neighborhood. Analyses based on a yet-
to-be-developed comprehensive model of genomic and epi-
genomic evolution promise new insights into mechanisms of
epigenetic gene regulation and possibly the formation of
phenotypes based on these mechanisms.
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Supplementary data are available at Molecular Biology and
Evolution online.
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