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Haedoxans are a series of sesquilignan natural products isolated from the traditional

insecticidal plant Phryma leptostachya. Given their significant insecticidal activity,

haedoxans and related analogs have been considered as potential agents for plant

defense. Moreover, these compounds also exhibit promising antifungal, antibacterial, and

anticancer activities. The present paper is a review of the structure, biological activity, and

chemical synthesis of naturally occurring haedoxan-like molecules.
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INTRODUCTION

Phryma leptostachya is a perennial herb that is widespread in nature (Lee et al., 2002; Park et al.,
2005; Endo and Miyauchi, 2006; Li et al., 2019a,b; Xu et al., 2019). In Chinese culture, the plant has
been used as a traditional Chinese medicine to treat inflammatory diseases, such as itching, allergic
dermatitis, and gout (Jung et al., 2013). In East Asia, P. leptostachya has also been traditionally
used as a natural insecticide (Taniguchi and Oshima, 1972a,b; Ishibashi and Taniguchi, 1998;
Xiao et al., 2012a; Jung et al., 2013), for instance being used to repel mosquitos and flies in the
southwest district of China (Chen et al., 2012). As a result, the secondary metabolites isolated from
P. leptostachya have drawn much attention.

Previous phytochemical investigations showed that this plant is rich in lignans. Among
them, (+)-haedoxan A (1, see Figure 1A), isolated in 1989 by Taniguchi, represents the major
insecticidal ingredient (Taniguchi et al., 1989; Yamaguchi and Taniguchi, 1992a; Seo and Park,
2012). Structurally, this natural product is a sesquilignan, that is, a trimer of C6C3 units (n-propyl
benzene). The skeleton features a furofuran core and a dioxane core with six stereogenic centers.
Haedoxan D (2) and E (3) are from the same natural product family, which structurally differs from
haedoxan A (1) at one of the aromatic rings. (+)-Phrymarolin I (4) and II (5) are also important
ingredients of P. leptostachya extracts. As neolignans, these two compounds are phenylpropianoid
dimers that share the same furofuran core with haedoxans.

Haedoxans exhibit excellent insecticidal activity against several insects, such asMusca domestica
[Culex pipiens pallens (Xiao et al., 2012b)] and Mythimna separata (Xiao et al., 2012a). It is
noteworthy that the insecticidal activity of Haedoxan A (1) is comparable to that of the commercial
synthetic pyrethroids (Taniguchi et al., 1989; Hu et al., 2016). (+)-Phrymarolins I (4) and II (5) also
show considerable synergistic activities with pyrethrin and carbamate pesticides (Park et al., 2005).
Accordingly, haedoxans and phrymarolins could be used as themain insecticidal ingredients in new
botanical pesticides. In addition, the potential utilities of these natural products as lead compounds
in pesticide discovery are also attractive.
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To date, Haedoxan A (1) has only been found in the root of P.
leptostachya at very low concentration (from 0.004 to 0.009%).
Although two total syntheses of headoxan A (1) have been
reported by Taniguchi and Ishibashi, over 20 synthetic steps are
needed to achieve a natural product with moderate selectivities
(Ishibashi and Taniguchi, 1989, 1998). As a result, the availability
of haedoxan A (1) is the main obstacle in its commercialization
process. To address this problem, new synthetic routes
for headoxans with high efficiencies and stereoselectivities
are needed.

SYNTHETIC STUDIES TOWARD
HAEDOXAN-LIKE MOLECULES

In this review, we focus on the chemical synthesis of haedoxans
and some closely related natural products such as phrymarolin
I (4) and II (5). While a number of synthetic studies on
the lignan family have been reported, there have been limited
reports on the synthesis of haedoxans. Since a phenylpropanoid
trimer bears six stereogenic centers, haedoxans are the most
structurally complex members in this family. It is noteworthy
that besides the four contiguous stereocenters, the two chiral
carbons that are remote from the furofuran core might also
be a significant synthetic challenge due to stereocorrelation
problems in the fragment coupling process. As a result, it would
be extremely difficult to control steroselectivites in the total
synthesis of haedoxans.

In 1986, Ishibashi and Taniguchi reported the synthesis of
(±)-phrymarolin II (5), which represents a pioneering study
on the chemical synthesis of haedoxan-like natural products
(Ishibashi and Taniguchi, 1986). As shown in Figure 1B, the
authors started their synthesis with an aldol reaction between
lactone 6 and benzaldehyde 7 to build the left fragment of
phrymarolin II (5). The adduct 8 was protected with a TBS
group, and the lactone was then reduced with LiAlH4 to afford
diol 9. After Upjohn dihydroxylation and oxidative cleavage
with NaIO4, diol 9 was converted to semiacetal 10, which
possesses one of the two tetrahydrofurans in the central fragment
of the natural product. The semiacetal was then oxidized to
corresponding lactone (11) with a quantitative yield. Once
the lactone was established, a two-step reaction sequence was
carried out to realize a β-elimination process. The resulting
α, β-unsaturated lactone 12 was then oxidized with Upjohn
dihydroxylation to give diol 13 at 97% yield. After deprotection of
the TBS group with TBAF, the second tetrahydrofuran ring and
the C6 stereocenter were established through an acid-promoted
etherification reaction. The product 14 was treated with DIBAL-
H to reduce the lactone moiety, and the newly formed diol was
differentiated within four steps to afford chloride 16. Finally, a
CdCO3 catalyzed substitution successfully introduced the right
fragment to give (±)-phrymarolin II (5) with its stereoisomer 17
in a ratio of 1:3 (55% total yield).

In 1988, Ishibashi and Taniguchi improved the previous
synthetic route and reported the total synthesis of (+)-
phrymarolin I [4, (Ishibashi and Taniguchi, 1988)]. This
asymmetric synthesis commenced with the preparation of the

optically pure (+)-4. As shown in Figure 1C, aminolysis of (±)-
6 with (S)-1-phenylethanamine gave two diastereoisomers that
could be separated through chromatography. Then, hydrolysis of
18 followed by lactonization afforded (+)-6 at 58% yield. This
chiral starting material was subjected to the above synthetic route
to give 14 in an asymmetric fashion. Different from the previous
synthesis, 14 was first protected by the TBS group and then
reduced to lactol 20, which was then fluorinated to set the stage
for the subsequent fragment coupling. In the next event, phenol
22 was introduced in the presence of SnCl2 and trityl perchlorate
to provide the coupling product 23 with a diastereomeric ratio of
1:2, favoriting the undesired diastereomer. The mixed products
were desilylated and separated by preparative TLC to afford 24

in 11% yield over two steps. Finally, acylation of 24 provided the
desired natural product (+)-phrymarolin I (4).

One year later, Ishibashi and Taniguchi applied their
developed synthetic route to the total synthesis of (±)-haedoxan
A (1), D (2), and E [3, (Ishibashi and Taniguchi, 1989)].
As shown in Figure 1D, the preparation of the benzodioxane
fragment 33 is not trivial. Their synthesis commenced with
selective methylation and MOM protection of the benzaldehyde
25. After Dakin oxidation and hydrolysis, the resultant phenol
27 was etherificated with bromide 28 to give 29 as the coupling
product. Global reduction with NaBH4 was followed with acid
promoted deprotection to generate 30 at 74% yield. A PPA-
mediated cyclization was then introduced to build the dioxane
ring. Finally, methylation and selective formylation provided the
desired aromatic fragment (±)-33.

With the above fragment in hand, the authors followed their
previous synthesis to carry out an aldol reaction between lactone
6 and aldehyde 33, as shown in Figure 2A. However, although
the reaction worked well, product 34 was obtained as a mixture
of diastereomers due to stereochemical correlation issues. The
adduct was protected with the TBS group and then purified by
chromatography to afford an inseparable mixture of 35 and 36 at
55% total yield. The mixture was then submitted to the known
synthetic route to give fluoride 38 within 11 steps. With this key
intermediate, haedoxin A (1), D (2), E (3) were synthesized in
diastereoselective fashion.

In the following decade, Taniguchi and coworkers applied
their strategy to synthesizing a series of lignan analogs to explore
potential insecticidal compounds (Yamaguchi and Taniguchi,
1991, 1992a,b,c; Yamaguchi et al., 1992a,b). A significant
improvement of the synthetic strategy was published by Okazaki
et al. (1997). In this report, the authors developed a concise
synthetic route toward (+)-phrymarolin I (4). As shown in
Figure 2B, the synthesis commenced with an aldol reaction
using chiral lactone 40 as the nucleophile, which could be easily
prepared from (R)-malate. After reductive opening of the lactone
ring, the tetraol intermediate was treated with HCl solution
to close the tetrahydrofuran ring and give 42. Then, a three-
step reaction sequence, including alcohol protection, Swern
oxidation, and Tebbe olefination, was used to prepare alkene 43.
Diastereoselective dihydroxylatoin followed by Pfitzner-Moffatt
oxidation and desilylation provided chiral lactol 15 at a good
yield. The key intermediate that had been used in the authors’
synthesis of phrymarolin II (5), 15, was subjected directly to an
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FIGURE 1 | (A) Structures of haedoxans and phrymarolins; (B) Taniguchi’s first total synthesis of (±)-phrymarolin II; (C) Taniguchi’s total synthesis of (+)-phrymarolin I;

(D) Taniguchi’s synthesis toward (±)-haedoxan A, D, and E: fragment preparation.
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FIGURE 2 | (A) Ishibashi and Taniguchi’s total synthesis of (±)-haedoxan A, D, and E; (B) Taniguchi and Ishibashi’s asymmetric synthesis of (+)-phrymarolin I; (C)

Ishibashi and Taniguchi’s asymmetric synthesis of (+)-haedoxan A; (D) Ishibashi’s concise synthesis of (+)-paulownin, (+)-phrymarin I, and (+)-phrymarin II.
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acid-promoted replacement reaction with phenol 22 to afford
the coupling product with desired stereochemistry at 15% yield.
Then, a simple acylation reaction of the above product completed
the asymmetric total synthesis of (+)-phrymarolin I (4).

In 1998, Ishibashi and Taniguchi reported their asymmetric
synthesis of (+)-haedoxin A (1, Ishibashi and Taniguchi, 1998).
While the core strategy followed the concept of Taniguchi’s
previous synthesis, this new synthesis featured the use of
chiral synthons to avoid stereochemical correlation problems. As
shown in Figure 2C, chiral compound 33 was first prepared via
an optical resolution strategy from (±)-31. This synthon was
coupled with another chiral building block (S)-6 to give 34 as
the adduct. Key intermediate 47 was then prepared through the
known reaction sequence to set the stage for the last coupling.
Instead of halogenation, the authors used the same key reaction
in their synthesis of (+)-phrymarolin I (4) to install the phenol
fragment directly on the lactol. This reaction provided the desired
natural product, (+)-haedoxan A (1), at 21% yield.

In 2001, Ishibashi published a synthesis of (+)-paulownin,
(+)-phrymarin I, and (+)-phrymarin II (Ishibashi et al., 2001).
The report featured an elegant photochemical reaction that was
developed by Kraus in 1990 (Kraus and Chen, 1990). As shown
in Figure 2D, tetrahydrofuran intermediate 42 was synthesized
through the procedures reported in Ishibashi’s (+)-phrymarolin
I (4) synthesis (Figure 2B). A coupling reaction between alcohol
42 and benzyl trichloroacetimidate 48, followed by a Swern
oxidation, provided the key intermediate 50 at 98% yield.
Ketone 50 was then submitted to the photochemical condition
developed by Kraus and Chen. In this event, a new C-C bond
was formed between the irradiated benzylic position and the
furan carbonyl in a diastereoselective manner to give furofuran
51 and 24 at 40% total yield. Finally, 51 was transformed
into the desired natural product (+)-phrymarin I through a
simple acylation reaction. With this concise synthetic route, the
authors also completed the synthesis of (+)-paulownin and (+)-
phrymarin II. It is noteworthy that compound 24 could serve
as a key intermediate in the synthesis of (+)-phrymalorin I.

However, the diastereoselectivity of the key reaction did not favor
this intermediate.

SUMMARY AND FURTHER PROSPECTS

Haedoxans and related neolignans are a family of natural
insecticidal products with prominent potential applications.
The main problem with the insecticide research process is
the availability of sufficient samples. This review detailed the
synthetic efforts toward haedoxans and phrymarolins in the
past three decades. While these syntheses represent pioneering
investigations on this topic, we are expecting new syntheses of
haedoxans with higher efficiency, higher stereoselectivities, better
step economy and redox economy, and more environmentally
friendly procedures. This review may shed some light to guide
future synthetic efforts on haedoxans.
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