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Abstract

Pathological destructive bone diseases are primarily caused by the failure of a lifelong self-renewal process of the skeletal system called bone
remodelling. The mechanisms underlying this process include enhanced osteoclast activity and decreased generation of the osteoblast lineage.
Intercellular interaction and crosstalk among these cell types are crucial for the maintenance of bone remodelling, either through the secretion
of growth factors or direct cell–cell physical engagement. Recent studies have revealed that exosomes derived from bone cells, including osteo-
clasts, osteoblasts and their precursors, play pivotal roles on bone remodelling by transferring biologically active molecules to target cells,
especially in the processes of osteoclast and osteoblast differentiation. Here, we review the contents of bone-derived exosomes and their func-
tions in the regulatory processes of differentiation and communication of osteoclasts and osteoblasts. In addition, we highlight the characteris-
tics of microRNAs of bone-derived exosomes involved in the regulation of bone remodelling, as well as the potential clinical applications of
bone-derived exosomes in bone remodelling disorders.
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Introduction

Pathological destructive bone diseases [1], including osteoporosis,
osteoarthritis (OA) and rheumatoid arthritis (RA) [2], are associated
with a persistent decrease in the patient’s quality of life [3] and are
also considered to present a major global health problem [4]. These
disorders are primarily caused by the failure of bone remodelling pro-
cesses, including enhanced osteoclast activity or decreased genera-
tion of the osteoblast lineage [1].

Bone remodelling, which takes place in the bone remodelling
compartment, is a continuous and lifelong process of repair of micro-

damage to the bone structure and the replacement of ageing bone tis-
sue [5]. It is a prerequisite for the maintenance of bone mass and the
mechanical strength of bone [6]. In bone remodelling, the destructive
process that involves resorption of bone by osteoclasts is coupled
with a productive process, in which bone is synthesized by osteo-
blasts [7]. Osteoclasts, which share precursors with macrophages,
are derived from haematopoietic stem cells (HSCs) [8] and are unique
in their function of the resorption of bone matrices [9]. In contrast,
along with adipocytes and chondrocytes, osteoblasts and their
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constituent progenitor cells originate from mesenchymal stem cells
(MSCs) [10]. The coordinated regulation of osteoblasts and osteo-
clasts, which is critical for maintaining physiological bone remod-
elling [11], is tightly controlled by modulating molecular signals [12].
A number of studies have focused on the specific factors involved in
bone remodelling to identify new therapeutic strategies for bone dis-
orders [13, 14]. The receptor activator of nuclear factor-jB ligand
(RANKL) and macrophage colony-stimulating factor (M-CSF) [15]
activate various intracellular signalling pathways to regulate the tran-
scription and expression of osteoclast-specific genes [16]. Members
of the transforming growth factor-beta (TGF-b) families are essential
for osteoblast formation [17]. In this process, communication
between osteoclasts and osteoblasts occurs through the secretion of
regulatory factors [18], or via direct physical interactions, such as the
engagement of ephrin/Eph receptors [19]. Additionally, recent studies
have reported that key factors involved in bone remodelling are pack-
aged in spherical bilayered membrane vesicles called exosomes [20].
These organelles function as cell–cell communicators by transferring
biologically active molecules to adjacent or distant cells [21].

Various types of cells, such as epithelial and haematopoietic cells,
secrete exosomes. The latest studies have demonstrated that bone-
related cells, including osteoclast precursors, osteoclasts, MSCs,
osteoblasts and osteocytes, also secrete exosomes [22]. These small
vesicles (average diameter 40–100 nm) are derived from endosomal
membranes after the fusion of multivesicular bodies to the plasma
membrane. Cells can release exosomes from the plasma membrane
by outward budding, which is a calcium-dependent process [23].
Exosomes contain numerous bioactive molecules, which vary accord-
ing to the specific donor cell type. Generally, exosomes are enriched
with protein members of the transmembrane 4 superfamily (CD9,
CD63 and CD81) and tumour susceptibility gene 101 (TSG101) [24].
Although the removal of unnecessary proteins from parent cells is
known to be the primary function of exosomes, their functional char-
acteristics are not completely clear [25]. Exosomes transfer their
luminal components, including proteins, microRNAs (miRNAs) and
enzymes, to their target cells [26]. It is therefore likely that rather than
simply acting as vessels for the removal of cellular debris, exosomes
function as extracellular organelles with paracrine/endocrine roles in
intercellular communication [27].

Accumulating evidence supports the endocrine function of the
skeleton [28]. The bone matrix is produced by mature osteoblasts,
which are generated from osteoblast precursors. Osteocytes, which
are terminally differentiated cells of the osteoblast lineage, are
embedded in the mineralized extracellular matrix and are involved in
the regulation of bone remodelling [29]. Osteoblasts and osteocytes
respond to mechanical stimuli by secreting paracrine/autocrine fac-
tors that maintain bone mass [30] through the renewal and differenti-
ation of precursors from the bone marrow (BM) progenitor pool, as
well as bone formation and resorption [31]. These processes occur in
the bone matrix canaliculi, through which nutrients and oxygen pass
from blood vessels to bone cells and signalling molecules are trans-
ported intercellularly, allowing communication between cells deep
within the bone matrix and those at the surface without direct contact
[29]. Recent reports indicate the involvement of bone-derived exo-
somes in regulating bone remodelling, mainly via the transfer of

critical molecules required for the differentiation and communication
of osteoclasts and osteoblasts [32].

The contents of exosomes vary according to their origin. To pro-
vide a better understanding of the mechanisms by which bone-
derived exosomes regulate bone remodelling, we have reviewed the
latest discoveries regarding the changing characteristics and roles of
bone-derived exosomes during the regulation of osteoclast and
osteoblast differentiation. Furthermore, we highlight the characteris-
tics of bone-derived exosomal microRNAs involved in regulation of
bone remodelling as well as the potential clinical applications of
bone-derived exosomes in bone remodelling disorders.

The characteristics and contents of
bone-derived exosomes

Although the processes by which bioactive molecules are packaged
into exosomes are largely unknown, recent reports suggest the exis-
tence of a specific and tightly controlled mechanism [33]. Isolation of
exosomes from mature osteoclasts and precursors revealed they had
similar sizes and morphology, as well as expression of specific mark-
ers, including epithelial cell adhesion molecule [34] and CD63 [35].
Sun et al. [32] indicated that ephrinA2 protein was enriched in osteo-
clast-derived exosomes. Furthermore, ephrinA2 levels in the serum of
osteoporotic mice and patients were found to be significantly up-
regulated. These results suggested that osteoclast-derived exosomal
ephrinA2 is a marker for recognition with osteoblasts, and the
engagement of ephrinA2/EphA2 is essential for exosome-mediated
communication between osteoclasts and osteoblasts. Receptor acti-
vator of nuclear factor jB (RANK) was detected at low levels in the
exosomes from precursors but at much higher levels in mature
osteoclasts [20]. In accordance with the induction of RANKL by bone
resorption factors, such as parathyroid hormone (PTH), RANKL
expression increased significantly in exosomes secreted from PTH-
treated osteoblasts [22]. In addition, PTH caused osteoblasts to
release exosomes containing osteoblast membrane proteins and the
exosome marker flotillin-2 [36]. Proteomic analysis of osteoblast-
derived exosomes [37] revealed that the exosomal proteins are pre-
dominantly involved in protein localization and intracellular signalling
cascade and are mainly located in the plasma membrane and cytosol,
with molecular functions focused on nucleotide binding and structural
molecule activity. Furthermore, exosomal proteins were enriched
among the eukaryotic initiation factor (EIF)2, protein ubiquitination
and integrin signalling pathways. In total, 23 proteins, including EIF
family members, PP1C and PABP, were the mapped to EIF2 signalling
pathway. Osteoblasts were derived from MSCs, thus implicating puta-
tive roles of MSC-derived exosomes in the regulation of bone remod-
elling. Lai et al. [38] identified 857 exosomal proteins within MSC-
derived embryonic stem cell lines. Mesenchymal stem cells-derived
exosomes expressed the characteristic markers, CD13, CD29, CD44,
CD73 and CD105 [39]. Among the 1069 proteins identified in exo-
somes isolated from the MSC-derived osteoblast precursor MC3T3
cell line, 786 proteins are present in the ExoCarta database [37].
Seven messenger RNA (mRNAs), ACIN1, DDX6, DGKA, DKK2, Lsm2,
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RPS2 and Xsox17, showed significant differential expression over
time in exosomes from differentiated human bone marrow-derived
mesenchymal stem cells (HBMSCs), which can be induced to differ-
entiate into mineralized osteoblasts. Furthermore, dysregulated exo-
somal expression of two NF-jB-related genes, ADAM17 and NF-jB1,
was detected in osteogenic differentiated HBMSCs [40]. Differential
expression of some miRNAs was also detected in the exosomes of
mineralizing osteoblasts and HBMSCs, including some that have been
confirmed to be functionally associated with bone remodelling [40,
41].

The roles of bone-derived exosomes
in bone remodelling

Similar to the function of cytokines and soluble factors, bone-derived
exosomes can recruit BM-derived cells, such as HSCs (precursors of
osteoclasts) and MSCs (precursors of osteoblasts), to the bone
surface [25]. Osteoclast precursor-derived exosomes stimulated the
formation of significantly greater numbers of osteoclasts compared
with the numbers formed in the absence of exosomes. In contrast,
significantly fewer osteoclasts were formed in the presence of osteo-
clast-derived exosomes compared with the numbers determined in
1,25-(OH)2D3-stimulated mouse marrow. RANK levels were much
higher in osteoclast-derived exosomes, and the removal of exosomes
containing RANK significantly alleviated the inhibition of osteoclasto-
genesis [20]. Therefore, RANK-rich exosomes may function as novel
inhibitors by binding competitively to RANKL, thus preventing stimu-
lation of the RANK signalling pathway in osteoclasts [42]. Further-
more, there was no significant change in differentiation of mouse BM
haematopoietic precursors stimulated with recombinant RANKL and
M-CSF to mature osteoclasts following their exposure to exosomes
isolated from osteoclast precursors and osteoclasts [20]. These data
imply that the inhibitory function of RANK-rich exosomes on osteo-
clastogenesis may be alleviated in the presence of high levels of
RANKL.

The roles of exosomes in osteoclasts may provide clues as to
how bone formation and absorption are orchestrated [20]. Exosomes
from BM stromal cells (BMSCs) can also be involved in bone remod-
elling by directly regulating osteoblast proliferation and activity [43].
Mesenchymal stem cells -derived exosomes have been shown to up-
regulate expression of the growth factors, bone morphogenetic pro-
tein 9 (BMP9) and transforming growth factor-b1(TGF-b1) [44], both
of which effectively induce the osteogenic differentiation of MSCs
[45]. BMP9 induces osteogenic differentiation with greater potency
than BMP2 [46]. Mesenchymal stem cells -derived exosomes bind
and tether extracellular matrix (ECM) proteins, such as type I collagen
and fibronectin, to the bone surface and biomaterials. This function
also allows the use of MSC-derived exosomes as biomimetic tools
that induce the differentiation of BMSCs into an osteogenic lineage
[47]. In addition, exosomes are released by the osteoblast itself, thus
establishing a positive feedback mechanism that promotes bone
growth. Exosomes from the mineralizing MC3T3-E1 (mature osteo-
blast cell line) promoted osteogenic differentiation of the ST2

osteoblast precursor cell line, manifested by the up-regulated expres-
sion of osteogenic markers, runt-related transcription factor 2
(RUNX2) and alkaline phosphatase, as well as enhanced matrix min-
eralization [41]. Furthermore, EIF2 in osteoblast-derived exosomes
may also induce MSCs to differentiate into osteoblasts [37]. Bone
remodelling is known to be closely regulated by the interaction
between osteoblasts and osteoclasts. In fact, osteoblast- and osteo-
cyte-derived lysosomal membrane protein 1 (LAMP1)-positive exo-
somes also contain tartrate-resistant acid phosphatase, RANKL and
osteoprotegerin (OPG), which are critical to osteoclast differentiation
[48]. As Deng et al. [22] identified, RANKL-rich exosomes released
from osteoblasts stimulated osteoclast formation. In addition, Omar
et al. and Ekstrom et al. indicated that exosomes secreted from
monocytes, which are derived from HSCs and share precursors with
osteoclasts, stimulated the osteogenic differentiation of MSCs [49,
50]. The recent studies of Li et al. and Sun et al. demonstrated a
novel models of inhibitory effect on osteogenic differentiation by
osteoclast-derived miR-214-containing exosomes [32, 51]. Although
the differentiation of osteoclasts and osteoblasts is under the regula-
tion of bone-derived exosomes (Fig. 1), the cell type from which the
most potent regulatory exosomes are derived and the mechanism by
which the exosomes mediate bone remodelling remain to be investi-
gated [42].

Matrix vesicles (MVs), known to be important in the development
of vertebrate mineralizing tissue, share structures that are homolo-
gous to those that anchor exosomes to the ECM as well as similarities
in morphological appearance and functional activities [52]. Scanning
electron microscope (SEM) observations showed that MVs are either
scattered among collagen fibres, or aggregated on the cell surface
[52]. Recent studies suggest that autophagosomes containing min-
eral nuclei are released from the cell and transported to the plasma
membrane as mineralizing exosomes [53]. This process implicates
autophagic activity in endosomal processing and indicates that miner-
alization starts within vacuoles before export from the cell. Thus, min-
eralization, nucleation and crystal growth are likely to be regulated by
bone-derived exosomes [52].

The involvement of bone-derived
exosomal miRNAs in regulating bone
remodelling

The function of exosomal miRNAs has become a focus of research
because of their pivotal role in gene expression regulation. micro-
RNAs are small endogenous non-coding RNA molecules, containing
approximately 22 nucleotides. They are well known as post-transcrip-
tional regulators of messenger RNA (mRNA) expression [54]. Within
the cytoplasm, the enzyme known as Dicer converts pre-miRNA into
miRNA [55], which is loaded into the RNA-induced silencing complex
(RISC) [56]. The RISC binds to the seed region of the target mRNA
[57]. Although the binding complementarity is usually imperfect,
silencing of target mRNA by the associated miRNAs impacts on
between 1% and 4% of human gene expression [58]. After packaging
into exosomes, miRNAs and the RISC are transported through the
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interstitium or even to the peripheral blood [59]. Exosomal miRNAs
are more resistant to ubiquitous RNases, extreme temperatures and
pH levels, and prolonged storage in the extracellular environment. In
addition, plasma membrane fusion and endocytosis are the currently
identified mechanisms that account for the uptake of exosomal miR-
NAs by their target cells, where they exert their biological functions
[59].

Recent research has revealed the involvement of a number of
bone-derived exosomal miRNAs in the regulation of bone remodelling
(Table 1). Forty-three miRNAs were highly expressed in mineralized
MC3T3-E1 exosomes, including miR-30d-5p, miR-133b-3p and miR-
140-3p, which were functionally confirmed to be involved in regulat-
ing remodelling of bone tissues. These miRNAs may participate in

multiple pathways that are important in osteoblast differentiation and
function, such as the Wnt, insulin, TGF-b and calcium signalling path-
ways [41]. Nine miRNAs (let-7a, miR-135b, miR-148a, miR-199b,
miR-203, miR-218, miR-219, miR-299-5p and miR-302b) were up-
regulated in HBMSC exosomes during osteogenic differentiation. In
contrast, five miRNAs (miR-155, miR-181a, miR-221, miR-320c and
miR-885-5p) were significantly down-regulated in exosomal samples.
These down-regulated miRNAs and their cotarget genes are enriched
in the insulin signalling pathway and also the mitogen-activated pro-
tein kinase and phosphoinositide 3-kinase/Akt pathways, both of
which play pivotal roles in osteoblast differentiation [40].

In addition, osteoblastic differentiation-related miRNAs are greatly
increased in mineralizing osteogenic ST2 cells, with 91 up-regulated

Fig. 1 Schematic diagram showing roles of bone-derived exosomes in regulating bone remodelling. Bone-derived exosomes can regulate differentia-

tion of osteoclasts and osteoblasts by transferring biologically active molecules to target cells. Osteoclast precursor-derived exosomes (A) stimulate

the differentiation of osteoclasts and osteoblasts. Osteoclast-derived exosomes (B) reduce the number of osteoclasts formed and osteoblastic bone

formation. Furthermore, osteoclast-derived exosomes containing miR-214 may promote the osteoclast differentiation. Osteoblast-derived exosomes
(C) promote differentiation of osteoblasts and osteoclasts, as well as establish a positive feedback in bone growth. In addition, osteoblast-derived

exosomes containing OPG may inhibit the osteoclast differentiation. Osteoblast precursor-derived exosomes (D) induce MSCs to differentiate into

osteoblasts. Dotted boxes indicate the primary contents of bone-derived exosomes that are involved in bone remodelling. Short black arrows indi-
cate the secretion process. Dotted black arrows indicate the translocation of cells. Solid blue arrows indicate the differentiation process. Solid red

arrows indicate the promotion of cellular processes, and solid green lines indicate inhibition of cellular processes. Dotted lines indicate that the

mechanism has not been fully elucidated.
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and 182 down-regulated after coculture with mineralized osteoblast-
derived exosomes. Among the 91 overexpressed miRNAs, 18 were
contained in mineralized osteoblast-derived exosomes, including four
highly expressed miRNAs (miR-677-3p, miR-680, miR-3084-3p and
miR-5100). Only 20% of miRNAs overexpressed in recipient cells
were detected in exosomes from original osteoblasts, suggesting that
the transfer of exosomal miRNAs only contributes partly to the altered
miRNA expression in recipient cells, and other mechanisms that mod-
ulate the miRNA expression of recipient cells might be existed.
Among the miRNAs overexpressed in recipient cells, five up-regulated
miRNAs (miR-667-3p, miR-874-3p, miR-6769b-5p, miR-7044-5p
and miR-7668-3p) cotarget AXIN1, which is a key b-catenin inhibitor.
b-catenin is an essential transcription factor involved in osteoblast
differentiation via the Wnt signalling pathway. AXIN1 expression was
repressed and b-catenin expression was enhanced after transfer of
mineralized osteoblast exosomes, thereby promoting the osteogenic
differentiation of precursors of osteoblasts [41].

Let-7, which is found in exosomes from both mineralized osteo-
blasts and osteoblast precursors, was shown to enhance osteogene-
sis by regulating high-mobility group AT-hook 2 (HMGA2) and AXIN2
[60, 61]. A numbers of bone-derived exosomal miRNAs, such as
miR-30d-5p, miR-133b-3p, miR-199b, miR-221 and miR-885-5p,
have been reported to be involved in the control of osteoblast differ-
entiation by RUNX2. miR-30d-5p and miR-133b-3p, which are known
to inhibit osteoblast differentiation by targeting the RUNX2 gene, were
highly expressed in osteoblast-derived exosomes [62, 63]. In
contrast, miR-221 and miR-885-5p, which function as negative
regulators of osteogenic differentiation by repressing RUNX2, were
down-regulated in exosomes from HBMSCs [40, 64]. miR-199b was
also found to be involved in the control of RUNX2-mediated osteo-
blast differentiation [65]. Mineralization during osteogenic differentia-
tion of human unrestricted somatic stem cells is regulated by
miR-135b [66], which is also involved in impaired osteogenic differ-
entiation of MSCs [67]. Wnt5a, a classical non-canonical Wnt, was
recently reported as a critical component of BMP2-mediated osteo-
genic differentiation [68]. miR-140-3p, which is highly expressed in
osteoblast-derived exosomes, inhibits osteoblast formation by
repressing BMP2 expression [69]. However, miR-218/Wnt signalling
promotes osteoblast differentiation and activity by repressing scle-
rostin, an inhibitor of osteoblast formation released by osteocytes
[70]. miR-196a is the key factor involved in stimulating the prolifera-
tion and activity of osteoblasts [42, 71]. Both miR-196a and miR-218
were up-regulated in MSC-derived exosomes. However, miR-181a,
a positive regulator for osteoblast differentiation [72], was down-
regulated in HBMSCs. Furthermore, miR-335-3p, miR-378b and
miR-677-3p, which were up-regulated in mineralizing MC3T3-E1
cells, are associated with enhanced osteoblast differentiation through
the repression of their target genes [73, 74].

As communicators in bone remodelling, exosomes derived from
the osteoblast lineage contain miRNAs that target key osteoclast dif-
ferentiation factors. miR-503-3p from mineralized osteoblast-derived
exosomes may inhibit RANKL-induced osteoclast differentiation by
regulating RANK expression [75]. In contrast, miR-148a, which is
known to promote osteoclastogenesis by targeting the MAFB gene
[76, 77], was found to be up-regulated in HBMSC exosomes. In

addition, Li, et al. showed that elevated serum exosomal miR-214-3p
is associated with reduced bone formation in both elderly women and
ovariectomized (OVX) mice [51]. Serum exosomal miR-214 levels
were then found to be significantly elevated in osteoclast-specific
miR-214 transgenic mice. The miR-214 enriched in osteoclast-
derived exosomes can be transferred into osteoblasts to inhibit their
activity via ephrinA2/EphA2 [32]. A previous study by Wang et al.
[78] identified that miR-214 inhibits osteoblast function by targeting
ATF4, while their further experiments identified that miR-214 pro-
motes osteoclastogenesis through PI3K/Akt pathway by targeting the
Pten tensin homologue [79]. Therefore, miR-214-containing exo-
somes from osteoclasts may have multiple roles that favour bone
destruction. Future investigations are required to clarify the potential
functions of these exosome-associated miRNAs in regulating bone
remodelling via mechanisms such as paracrine/autocrine signalling or
in communication between osteoclasts and osteoblasts or with other
cell types [40].

Conclusions and perspective

Here, a new aspect of the roles of bone-derived exosomes in bone
remodelling has been elucidated. The content of bone-derived exo-
somes, including the proteins, mRNAs and miRNAs, varies according
to different parent cells. Therefore, bone-derived exosomes exert mul-
tiple roles in bone remodelling (Fig. 1). Exosomes originating from
osteoclast precursors activate differentiation of osteoclasts and
osteoblasts. In contrast, RANK-containing exosomes from osteo-
clasts inhibit osteoclast formation. Osteoclast-derived exosomes also
inhibit osteoblast formation or might promote osteoclastogenesis in
terms of the high expression of miR-214. Furthermore, exosomes
isolated from osteoblast precursors promote the formation and activi-
ties of osteoblasts, while exosomes derived from mature osteoblasts
either induce the differentiation of MSCs into mineralizing osteoblasts
and osteocytes or establish positive feedback among osteoblasts
themselves. In addition, osteoblast-derived exosomes containing
OPG may inhibit the osteoclast differentiation. Thus, osteoblast-
derived exosomes may exert antagonistic or synergistic activities on
osteoclasts through transporting their contents. We can imply and
then infer that the exosomes from mineralizing osteoblasts, as well as
precursors of osteoclasts and osteoblasts are principally involved in
promoting bone remodelling by facilitating either osteogenesis or
osteoclastogenesis. However, the mature osteoclast-derived exo-
somes are likely to be inhibitory factors for bone remodelling through
alleviating osteoclast differentiation and osteoblast formation.

Bone-derived exosomal miRNAs are thought to be important in
regulating gene expression involved in the differentiation and commu-
nication between multiple cell types responsible for bone formation
and resorption. Recent studies have shown that Wnt5a enhances
osteoclast formation through b-catenin-dependent signalling [80].
RUNX2 is a key transcription factor that regulates osteogenesis, while
osteocytes secrete sclerostin (encoded by the SOST gene) to inhibit
the activity of osteoclasts and osteoblasts [81]. According to the liter-
ature, many of the key factors that regulate osteoclasts and osteo-
blasts are targeted by the different miRNAs contained within specific
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bone-derived exosomes, such as RUNX2, BMPs and sclerostin [42].
However, exosomal miRNAs from the same parent cells may have
opposing functions in terms of osteoclast differentiation and osteo-
blast activity. Thus, this implies that bone-derived exosomes may not
perform functions such as cell–cell interaction during the regulation
of bone remodelling that are completely in accordance with those of
the parent cells. microRNAs alterations in the recipient do not match
the abundance of miRNA in the donor exosomes [41], suggesting that
components of osteoblast-derived exosomes other than miRNAs may
also alter the miRNA profile of recipient cells [41]. The endosomal
sorting complexes required for transport (ESCRT) machinery func-
tions as a link between miRNAs and exosomes. In this system, the
RISC acts together with the ESCRT complex to load miRNAs into exo-
somes [59]. miRNAs form an integral part of the RISC complex,
which mediates the efficient transfer of the miRNA to its target in the
recipient cell. Furthermore, exosomes incorporate precursor miRNAs
(pre-miRNAs) in complexes with Dicer, TRBP and AGO2 proteins, to
facilitate their processing in a cell-independent manner [82].

The cargo of tumour-derived exosomes vary according to the can-
cer types and tumour characteristics [83, 84], and are more relevant
in malignancy than benign bone diseases. Therefore, information on
the crosstalk between cancer cells and the bone microenvironment
through exosomes is not discussed in the present paper, even though
it is important to consider its effect on bone homeostasis. In terms of
the multiple and complex interactions between types of bone cells
reviewed herein, further investigations are needed to fully elucidate
the contents and potential modulatory roles of bone-derived exo-
somes in regulating bone remodelling, especially the comprehensive

protein and miRNA contents of osteoclast-derived exosomes as well
as which types of bone-derived exosomes play dominant roles in the
regulation of bone remodelling and under what circumstances they
would be activated. Encapsulation by the lipid bilayer of the exosomal
membrane protects proteins and miRNAs from degradation [85] and
they can be assayed in small peripheral blood samples [33]. Thus,
the different expression level of specific contents of bone-derived
exosomes might serve as a promising diagnostic and/or prognostic
tool to detect early-stage bone disorders. Furthermore, engineered
exosomes represent a promising system that can be used for the tar-
geted delivery of RNAi molecules, while avoiding detection by the
immune system [86]. In this way, the transfer of particular ESCRT
machinery or miRNAs might facilitate the treatment of bone diseases
that are related to aberrant bone remodelling, such as RA, OA and
osteoporosis.
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