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The coronavirus disease 19 (COVID-19) pandemic has resulted in the urgent need to
develop and deploy treatment approaches that can minimize mortality and morbidity.
As infection, resulting illness, and the often prolonged recovery period continue to be
characterized, therapeutic roles for transcranial electrical stimulation (tES) have emerged
as promising non-pharmacological interventions. tES techniques have established
therapeutic potential for managing a range of conditions relevant to COVID-19 illness
and recovery, and may further be relevant for the general management of increased
mental health problems during this time. Furthermore, these tES techniques can be
inexpensive, portable, and allow for trained self-administration. Here, we summarize the
rationale for using tES techniques, specifically transcranial Direct Current Stimulation
(tDCS), across the COVID-19 clinical course, and index ongoing efforts to evaluate the
inclusion of tES optimal clinical care.

Keywords: mental health, neuropsychiatric, TMS, COVID-19, tDCS, TES, NEUROCOVID

INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly infectious virus that
has resulted in a global pandemic of coronavirus disease 19 (COVID-19). Over the course of the
pandemic, understanding is evolving regarding the nature and course of COVID-19 (SARS-CoV-2)
illness as well as its optimal management.

Neuromodulation, which spans a broad range of implanted and non-invasive modalities,
may have a potential role in the treatment of COVID-19 related symptoms. This
potential is theorized based on the known mechanisms of biological action, demonstrated
benefits in non-COVID-19 patients for various known sequelae of COVID-19 illness and
recovery (Lefaucheur et al., 2017; David et al., 2018; Ghosh, 2019; Razza et al., 2020),
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with initial reports of its application in COVID-19 patients
(Azabou et al., 2020; Bonaz et al., 2020; Kaniusas et al., 2020;
Shinjo et al., 2020; Zhang et al., 2020).

The majority of current investigational efforts for the use of
non-invasive stimulation approaches in COVID-19 are focused
on managing acute infection through the modification of
immunological response and to restore respiratory function
via vagus nerve stimulation (VNS; Staats et al., 2020).
VNS techniques include invasive and non-invasive manual
or electrical (transcutaneous) stimulation, with effects of
therapeutic relevance to COVID-19 under clinical investigation
(Staats et al., 2020).

This update provides a summary of current efforts
in the evaluation and application of non-invasive brain
stimulation (NIBS) techniques as interventions in the context
of recovery from COVID-19, focusing on transcranial Electrical
Stimulation (tES) approaches, and particularly transcranial
Direct Current Stimulation (tDCS; Woods et al., 2016) as
well as transcranial Alternating Current Stimulation (tACS;
Antal et al., 2017). We also note related uses of Transcranial
Magnetic Stimulation (TMS; Huang et al., 2009), informing
tES applications. However, of amplified importance during
the COVID-19 pandemic, tES has the advantage of remote
treatment delivery that can be easily scaled (Bikson et al., 2020;
Charvet et al., 2020).

tES/TMS techniques are designed to modulate the activity
of intracranial brain structures and neural circuitry (Peterchev
et al., 2012). These NIBS approaches induce different electric
field patterns (Polanía et al., 2018), with tES less focalized
and more limited in reaching deep brain structures (Miranda
et al., 2013). While tES techniques sometimes involve stimulating
ancillary peripheral or cranial nerves [e.g., Adair et al.,
2020], this review is concerned only with direct non-invasive
brain stimulation.

There are multiple pathways by which tES may address
immediate and long-term COVID-19 morbidity, but subject
to direct experimental testing in COVID-19 patients these
links remain indirect. There is a bidirectional influence
between the brain and immune response (Dantzer, 2018).
Deep brainstem and forebrain regions mediate the immune
response throughout the body and can be potential
targets for non-invasive neuromodulatory approaches.
While it is impractical to activate deep regions selectivity
(e.g., without activating superficial cerebral cortex) using
tES, deep brain regions can certainly be reached by the
electrical current (Dasilva et al., 2012; Huang et al., 2017;
Gomez-Tames et al., 2020; Huang and Zhao, 2020) as
well as through axonal connections between cortical
activated areas (Bestmann et al., 2005; Bestmann and
Feredoes, 2013). The cortical regions conventionally
targeted with tES, such as frontal (Iseger et al., 2020) and
temporal regions (Montenegro et al., 2011), can be used
to influence the systemic immune response and prevent
neuroinflammation (Dantzer, 2018). Furthermore, tES
may be investigated for application in the restoration of
respiratory and musculoskeletal functions during recovery
(Vandermeeren et al., 2010).

Transcranial Electrical Stimulation has the broad potential
to manage COVID-19 infection, its complications and related
symptoms through four pathways (Figure 1):

1. Acute intervention directly mitigating the infection
through the stimulation of regions involved in the
regulation of systemic anti-inflammatory responses
and/or autonomic responses and prevention of
neuroinflammation and recovery of respiration (Rueger
et al., 2012; Azabou et al., 2020; Fudim et al., 2020);

2. Add-on treatment to augment cognitive and physical
rehabilitation following critical illness (Simpson and
Robinson, 2020), as well as treating acute psychological
reactions (Holmes et al., 2020);

3. Managing persistent post-infectious symptoms such as
fatigue and pain (Baptista et al., 2020);

4. Treatment of outbreak related mental distress including
neurological and psychiatric disorders exacerbated by
surrounding psychosocial stressors related to COVID-19
(Baptista et al., 2020; Castelo-Branco and Fregni, 2020).

Potential Role in Acute Infection and
Illness
tES approaches are targeted to have direct effects on brain
functions which can include modulating perfusion (Zheng et al.,
2011; Stagg et al., 2013; Shin et al., 2020), clearance mechanisms
(Cancel et al., 2018), and the immune response (Rabenstein et al.,
2019). tES, from a theoretical perspective, may be applicable for
preventing acute neuroinflammation or to directly address the
neurological manifestations of COVID-19 infection.

In addition to the more widely characterized systemic
pulmonary and cardiovascular effects (Asadi-Pooya and Simani,
2020), direct CNS involvement and neurologic outcomes
from COVID-19 and its treatment are emerging as an
important focus (Helms et al., 2020a). For example, in a large
Spanish registry, 57% of hospitalized patients had at least one
neurological symptom.

With acute infection, COVID-19 commonly presents with
CNS symptoms such as headache, anosmia, ageusia, and dizziness
(Romero-Sánchez et al., 2020; Zubair et al., 2020). It is possible
that the virus is neurotropic (Asadi-Pooya and Simani, 2020).
Neuroinvasion, particularly via brainstem involvement, may be
directly linked to the respiratory failure syndrome (Li Y.-C. et al.,
2020). A sham-controlled RCT (initiated in 2018, pre-COVID-19
pandemic) is testing the efficacy of tDCS over the primary cortical
motor area on modulating the excitability of the respiratory
neurological pathways for relieving dyspnea in patients admitted
to mechanical ventilation in ICU (Azabou et al., 2020).

Additionally, the systemic inflammation in COVID-19 has led
to neurologic outcomes including impaired consciousness,
delirium, encephalopathy, psychosis, cerebrovascular
events, seizure, Guillain-Barré syndrome, and optic neuritis
(Helms et al., 2020b; Mao et al., 2020; Rogers et al., 2020;
Varatharaj et al., 2020).

There is also a theoretical potential role for tDCS in the
prevention and treatment of thrombosis through the modulation
of the autonomic nervous system (Montenegro et al., 2011;
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FIGURE 1 | Possible application of tES techniques in the context of COVID-19 clinical course.

Schestatsky et al., 2013; Okano et al., 2015). Those patients
treated in the ICU have increased risk of microvascular
thrombosis, venous thrombosis or arterial thrombosis associated
with higher mortality (Fraissé et al., 2020) which demonstrates
the significance of coagulation abnormalities in this population.
Anticoagulant treatment of thrombosis with low molecular
weight heparin tends to be associated with improved prognosis
in extreme COVID-19 patients who meet sepsis-induced
coagulopathy requirements or with significantly elevated
D-dimer (Tang, 2020). Heparins are likely to be a potential
approach in the care of COVID−19 patients as they combat
hypoxia and generalized organ failure with coagulopathies and
because they are likely to reduce cardiovascular arrhythmias and
sudden deaths, both associated with COVID−19 itself and its
pharmacology (Menezes-Rodrigues et al., 2020). Interestingly,
increased sympathetic activity is related to the development of
thrombosis (Brook and Julius, 2000), and sympathetic block
was also suggested as a potential approach to treatment for
thrombosis. Therefore, autonomic nervous modulation has been
used as a complementary therapeutic strategy for thrombosis
(Soni et al., 2012; Schestatsky et al., 2013; Taheri et al., 2019;
Wang et al., 2019).

Role in Post-acute Recovery of Function
Neurological consequences often result from the management
of severe COVID-19 illness, for instance following intubation
(Guo et al., 2020; Helms et al., 2020a; Needham et al., 2020).
COVID-19 infection can cause serious injury to cranial nerves
and peripheral nerves (Fotuhi et al., 2020), resulting in muscle
weakness, muscle injuries, facial paresis, sensory ataxia, flaccid
diplegia, or tetraplegia (Gutiérrez-Ortiz et al., 2020; Toscano

et al., 2020). Intubation during the acute phase of the disease
may decrease neurological drive from the motor cortex to the
diaphragm (Sharshar et al., 2004), and hamper extubation and
recovery of normal respiration. Further, for patients living with
neurological disorders, COVID-19 infection and its treatments
may also exacerbate these preexisting conditions, for instance
increasing disease activity symptom experience following acute
systemic inflammation (Benussi et al., 2020).

There is a large and growing body of work demonstrating
benefits of tES for neurorehabilitation (Brunoni et al., 2014;
Cioato et al., 2016; Sasso et al., 2016; Aftanas et al., 2018; Leffa
et al., 2018). In addition, tES applied as an add-on technique with
cognitive or physical rehabilitation improve training outcomes,
as widely demonstrated in a range of neurological conditions
including post-stroke recovery (Babyar et al., 2016; Sebastian
et al., 2016; Bornheim et al., 2020; Yan et al., 2020), multiple
sclerosis (MS; Charvet et al., 2018; Pilloni et al., 2020), and
Parkinson’s disease (Agarwal et al., 2018; Ganguly et al., 2020).

As results of the acute neurological events related to COVID-
19 infection, functional outcomes of patients surviving an ICU
admission report also a high prevalence of speech, language and
cognitive-communication disorders (Avula et al., 2020). tDCS
has been previously applied concurrently with speech therapy for
language recovery in aphasia (Galletta et al., 2016; Fridriksson
et al., 2018, 2019).

Role in Managing Persistent
Post-infectious Symptoms – Pain and
Fatigue
More than 87% of COVID-19 patients report at least one
persisting symptom 60 days following initial recovery
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(Carfì et al., 2020), with the most frequent being fatigue,
dyspnea and pain. tES treatments have been established as a
treatment approach for reducing fatigue (Lefaucheur et al.,
2017), for instance in athletes (Okano et al., 2015) and in
neuroimmune conditions such as multiple sclerosis (Charvet
et al., 2018) and post-polio syndrome (Acler et al., 2013), possibly
due to the restoration of autonomic imbalance (Chaudhuri
and Behan, 2004; Louati and Berenbaum, 2015; Okano et al.,
2015). The efficacy of tES for pain management has also been
well-characterized (David et al., 2018; Baptista et al., 2019),
including specifically reducing musculoskeletal pain [e.g., in
fibromyalgia and arthralgia (Castillo-Saavedra et al., 2016;
Silva-Filho et al., 2018)]. tDCS can also reduce pain (Staud, 2008;
Miglis, 2018) and is under investigation for treating dyspnea
(see Table 1).

Role in Managing Acute and Chronic
Psychological Conditions and for Mental
Health
Perhaps the most direct application of tES in the management
of COVID-19 is for mental health. To date, the most
extensive evidence for tES efficacy is in the management
of neuropsychiatric conditions such as anxiety, PTSD,
and depression (Razza et al., 2020). For those with acute
infection, and particularly with history of hospitalization and
ICU stay for critical illness, there can be a “post-intensive
care syndrome” as a combination of acute psychological
distress, such as post-traumatic stress disorder and features
of acute anxiety and/or short- and long- depression
(Rogers et al., 2020). To date, there has been a case
report showing that tDCS over DLPFC can be a potential
and adjuvant therapy for post-COVID-19 acute anxiety
(Shinjo et al., 2020).

Further, there are increasing concerns about the mental health
(e.g., anxiety, mood) consequence of COVID-19 pandemic,
resulting from the illness (Nguyen et al., 2020), or more generally
the stressors and society (medical care) disruptions associated

with the COVID-19 pandemic (Li Z. et al., 2020). tES has
established efficacy to treat mental illness (Kekic et al., 2016;
Sagliano et al., 2019), with potential proposed applications in
mitigating the mental health consequences related to COVID-19
(Bikson et al., 2020; Castelo-Branco and Fregni, 2020; Caulfield
and George, 2020).

The COVID-19 pandemic and mitigation efforts have been
associated with elevated distress in general, provoking a surge of
addictive behaviors, new and relapse, including misuse or abuse
of alcohol, and/or drugs (Dubey et al., 2020). Particularly those
with substance use disorders present immune system, respiratory
and pulmonary changes that may increase susceptibility to
COVID-19 infection (Dubey et al., 2020). Among the resources
available to assist individual in the recovery, tES and TMS have
been used in a growing number of studies for its therapeutic
potential in treating substance use disorder (e.g., nicotine,
alcohol, and cocaine; Coles et al., 2018; Ekhtiari et al., 2019).

General population, health-care workers, as well as patients
in post-acute recovery, report high rates of sleep disorders
(e.g., acute insomnia) related mainly to changes in stress levels
and anxiety (Huang and Zhao, 2020). In this context, recent
studies investigated using tDCS to modulate top-down control of
emotion regulation with positive mediating effect on sleep (Valle
et al., 2009; Zhou et al., 2020).

Importantly, tDCS has been developed for home use, with
remote supervision, providing an advantage for access to
treatment (Charvet et al., 2020) and ensuring continuity in the
treatment (Bikson et al., 2020). In addition to the portability
for remote administration, tES techniques are considered safe
and well-tolerated (Bikson et al., 2016; Chhabra et al., 2020).
However, even as tDCS is considered to be safe, it remains
investigational for many of the potential applications in COVID-
19. Trials of tES in patients with acute and/or severe illness
(Riggs et al., 2018), should consult relevant literature on tES
trials including in those with conditions such as myocarditis or
thrombotic stroke.

Table 1 summarizes some ongoing or recently completed
efforts across the four intervention pathways described:

TABLE 1 | Ongoing and completed research studies across the four intervention pathways.

COVID-19 intervention
pathways

Aim of the trial Stimulation protocol /Target area Status (Reference/Clinical
trial ID number)

Acute intervention (1) Sham-controlled RCT evaluating
efficacy of tDCS on dyspnea in patients
admitted to ICU

Low intensity anodal and cathodal
tDCS (30 min)
Primary motor cortex

Study initiated in 2018, no
specific to COVID-19
Azabou et al., 2020,
NCT03640455

Managing acute and chronic
psychological condition (3–4)

Case report evaluating the effect of
tDCS on relieving severe anxiety in
COVID-19 patient

Five sessions of anodal tDCS (20 min,
2 mA) post 9 days of ICU
DLPFC (F3–F4 montage)

Case report (Study completed)
Shinjo et al., 2020

Managing acute and chronic
psychological condition (4)

CT evaluating the effect of at-home
tDCS-Limited Total Energy (tDCS-LTE)
on major depressive symptoms in in the
context of COVID-19 pandemic

20 sessions of anodal tDCS (20 min,
2 mA)
DLPFC (F3–F4)

Ongoing CT (Recruiting)
FDA investigational device
exception (IDE) clinical trial

Managing mental health (4) Sham-controlled RCT evaluating the
potential of tDCS in protecting older
adults from cognitive and mental health
effects during pandemic outbreaks

Anodal tDCS (20 min, 2 mA) paired with
cognitive/educational training
DLPFC (F3–F4)

Ongoing RCT where a
COVID-19 related aim was
added (NCT02851511)

Frontiers in Human Neuroscience | www.frontiersin.org 4 November 2020 | Volume 14 | Article 595567

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-595567 November 7, 2020 Time: 19:24 # 5

Pilloni et al. tES to Manage COVID-19 Symptoms

CONCLUSION

As with any medical intervention, the use of tES will depend
on informed decision by the caregiver team applied at the
appropriate stage relative to other treatments. Any use of tES
is subject to regulatory factors and must be informed by, and
responsive to, the current state of research. The COVID-19
pandemic has generated special urgency to discover and deploy
new treatments. tES warrants investigation and has an extensive
record of safety and tolerability across clinical studies completed
to date. However, in the absence of any clinical studies in
COVID-19 illness, its safety and tolerability in this specific patient
population has yet to be established.

Ongoing research challenges in tES are comparable to those
faced for other treatments (e.g., individual variability in response
to pharmacotherapy), and these unknowns must be judicially
balanced against the immediate clinical need for validated
new treatments during the COVID-19 pandemic. It is not
realistic for multi-center controlled pivotal trials of tES to
be completed for COVID-19 applications within this urgent
timeframe. However, as we review, the extensive referenceable
clinical data in comparable conditions, a mechanistic basis, and
emerging trials in COVID-19 subjects warrant consideration.
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