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Abstract

Functional forms of biophysically-realistic neuron models are constrained by neurobiological

and anatomical considerations, such as cell morphologies and the presence of known ion

channels. Despite these constraints, neuron models still contain unknown static parameters

which must be inferred from experiment. This inference task is most readily cast into the

framework of state-space models, which systematically takes into account partial observ-

ability and measurement noise. Inferring only dynamical state variables such as membrane

voltages is a well-studied problem, and has been approached with a wide range of tech-

niques beginning with the well-known Kalman filter. Inferring both states and fixed parame-

ters, on the other hand, is less straightforward. Here, we develop a method for joint

parameter and state inference that combines traditional state space modeling with chaotic

synchronization and optimal control. Our methods are tailored particularly to situations with

considerable measurement noise, sparse observability, very nonlinear or chaotic dynamics,

and highly uninformed priors. We illustrate our approach both in a canonical chaotic model

and in a phenomenological neuron model, showing that many unknown parameters can be

uncovered reliably and accurately from short and noisy observed time traces. Our method

holds promise for estimation in larger-scale systems, given ongoing improvements in cal-

cium reporters and genetically-encoded voltage indicators.

Author Summary

Systems neuroscience aims to understand how individual neurons and neural networks

process external stimuli into behavioral responses. Underlying this characterization are

mathematical models intimately shaped by experimental observations. But neural systems

are high-dimensional and contain highly nonlinear interactions, so developing accurate

models remains a challenge given current experimental capabilities. In practice, this

means that the dynamical equations characterizing neural activity have many unknown

parameters, and these parameters must be inferred from data. This inference problem is
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nontrivial owing to model nonlinearity, system and measurement noise, and the sparsity

of observations from electrode recordings. Here, we present a novel method for inferring

model parameters of neural systems. Our technique combines ideas from control theory

and optimization, and amounts to using data to “control” estimates toward the best fit.

Our method compares well in accuracy against other state-of-the-art inference methods,

both in phenomenological chaotic systems and biophysical neuron models. Our work

shows that many unknown model parameters of interest can be inferred from voltage

measurements, despite signaling noise, instrument noise, and low observability.

This is a PLOS Computational Biology Methods paper.

Introduction

Computations in biological neural networks are shaped both by connection topologies and the

response dynamics of individual neurons [1–3]. For single neurons, a versatile and biologically

realistic class of computational models is built on the Hodgkin-Huxley framework—so-called

conductance-based neuron models [4]. Fitting such biophysically realistic neural models to

data is often cast in the framework of statistical inference [5–9], which systematically takes

into account i) noise in the model dynamics and in the observations, and ii) unobservability in

model states. Moreover, inference procedures produce not only an optimal estimate of model

unknowns, but also the distributions of these estimates around their optima, providing a mea-

sure of estimate uncertainty. Various manifestations of statistical inference have been applied

in neurobiological, behavioral, and neuromorphic settings [6, 7, 9–21].

In many settings, the emphasis of statistical inference has been on tracking dynamical vari-

ables, such as the membrane voltage, over time. Algorithms like the Kalman filter [5, 22] or its

many variants [5, 5, 23, 24] solve this state estimation problem recursively, by updating the

optimal estimate sequentially with each subsequent observation. This is computationally cheap

and memory-efficient, requiring only the estimate at the most recent timestep. But extracting

time-varying quantities is only one aspect of the inference procedure, and is not usually the

direct quantity of interest. Rather, it is knowledge of the fixed parameters, such as time con-

stants, channel conductances, baseline ionic concentrations, and synaptic strengths, that is

required to generate predictions to novel stimuli, informing our understanding of brain func-

tion. Recursive filtering methods are not directly applicable when neuron model parameters

are unknown, since the model dynamics, which together with the data determine subsequent

estimates, are not fully specified.

One approach for parameter estimation in filtering is to “promote” parameters to dynam-

ical states, but with trivial dynamics—this keeps parameters approximately constant, while

allowing enough stochasticity to improve estimates [5, 25]. More sophisticated methods com-

bine filtering and parameter inference into an expectation-maximization (EM) algorithm that

updates state and parameter estimates in alternating fashion [5, 26]. However, such techniques

have been limited to the estimation of linear parameters such as ion conductances, rather than

nonlinear parameters such as those governing ion channel kinetics. This is due to the fact that

EM algorithms converge to local minima; with nonlinearities and noise, cost manifolds are

highly nonconvex, precluding reliable estimation.

An alternative to filtering approaches is the optimization of a posterior distribution over,

jointly, the states at all timepoints and the unknown parameters. Optimization-based methods
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have been used to effectively estimate linear parameters in neural models [6, 26–30], as well as

to uncover nonlinear parameters in nonlinear and even chaotic models [7, 17–20, 31–37].

Here, we build on some of these approaches to present a new method for joint state and

parameter estimation in biophysical neural models. Our emphasis is on strongly nonlinear

(including chaotic) models, sparse observations, unknown nonlinear parameters, and extreme

nonconvexity in the state and parameter manifold. We combine two ideas which have recently

been investigated in nonlinear systems estimation: chaotic synchronization [38–40], and

homotopy continuation [7, 33, 41, 42]. Our approach is predicated on a previous observation

that, by coupling measured data directly into the system dynamics, cost manifolds over the

unknown states and parameters become highly regularized [37, 40]. We extend this notion

into an optimal control framework, treating the coupling strength as a control parameter

which we optimize using the Pontryagin minimum principle [43]. What results is a new

dynamical system that represents the evolution of the optimal state estimate in time. We pres-

ent an algorithm to simultaneously find the integral curves of these “estimation dynamics” and

determine the unknown parameters from noisy data. We illustrate our algorithm using syn-

thetic data from both a sparsely observed canonical choatic attractor and a biophysical HH-

type model, comparing to the prior techniques [33, 40].

We find that parameter estimates in nonlinear and chaotic systems are significantly more

accurate than in previous estimation methods, particularly for very sparse observations. Our

technique is able to accurately estimate nonlinear model parameters from short time traces,

improving on prior efforts to uncover linear parameters [26]. Moreover, estimates are consid-

erably robust to both measurement noise and model noise. The latter manifests as noisy cur-

rent inputs, affecting the timing of action potentials, and has not been investigated extensively

in other optimization-based approaches. In sum, our method finds significant improvements

in prediction accuracy over other optimization-based estimation methods, while exhibiting

some tradeoffs in higher computational cost due to additional constraints.

Results

Nudging synchronization for estimating dynamical states

We first consider the problem of estimating the hidden dynamical states of a system with known

dynamics from noisy observations, focusing on a simple technique which will form the basis for

our proposed approach. The system evolves either deterministically via the ODE dynamics

_xðtÞ ¼ fðxðtÞ;ΘÞ ð1Þ

or stochastically under the Langevin dynamics

_xðtÞ ¼ fðxðtÞ;ΘÞ þ ZðtÞ; ð2Þ

where η(t) is uncorrelated Gaussian noise, and for now we assume that all model parameters Θ
are known. The system is sparsely observed, so the dimension L of the observation vector yðtÞ is

generally less than that of the D-dimensional state space xðtÞ ¼ ½x1ðtÞ; x2ðtÞ; :::; xDðtÞ�, e.g. L<
D. For notational simplicity, throughout we represent yðtÞ as a D-dimensional vector with non-

zero elements only in its L observed elements. An unsophisticated but straightforward and com-

putationally attractive way to infer the evolution of both the observed and unobserved variables

is by dynamically coupling the system to the measurements, effectively controlling the system

dynamics with data [38, 40, 45–47]. To do this, we redefine the dynamics as:

_xðtÞ ¼ fðxðtÞ;ΘÞ þ U � ðyðtÞ � HxðtÞÞ � fcontðxðtÞ; yðtÞ;ΘÞ ð3Þ

where U is a constant, diagonal matrix with nonzero elements ull for observed states l, and H
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projects the state space x onto the observed subspace y—i.e. both U and H are DxD but have

rank L. The initial states x(t0), can be initialized randomly, and the dynamics Eq 3 are simply

integrated forward [45]. Information passes from the data to the observed L states through the

linear control term U(y − Hx), then from observed to theD—L unobserved states through the

coupled dynamical equations (Fig 1A). Information therefore passes from data to allmodel

states, observed or not. The strength of the nonzero control terms ull should be set to a value

large enough to synchronize the system to the data, but not so large that the noise in the observa-

tions is magnified [46]. In the geophysics literature, this technique is known as “nudging” [45,

46]. Those familiar with linear filtering or control theory will recognize that the control term, a

linear scaling of the error between data and estimate, is analogous to the innovation term in the

Kalman filter [5, 22]. However, the Kalman gain evolves in time and is chosen to minimize the

residual estimation error at each time step, while U is constant and prescribed upfront. Though

the Kalman prescription is more principled than the choice of U, there is a tradeoff in the

computational costs of storing and manipulating large convariance matrices, not required here.

Still, the more pressing issue is that sequential estimators such as nudging and Kalman filters are

not directly suited for the estimation of static parameters. At each timepoint, sequential estima-

tors incorporate new observations with both the running estimate from the previous timestep

and the model predictions; without known parameters, the latter cannot be obtained.

We illustrate nudging synchronization in the chaotic Lorenz96 [44] system in 5 dimen-

sions:

_xd ¼ ðxdþ1 � xd� 2Þxd� 1 � xd þ F

d ¼ 1; ::; 5; xdþ5 ¼ xd
ð4Þ

The Lorenz96 system contains a single parameter F, which for values *8 render the dynamics

chaotic. We assume that only x1 and x4 are observed, with Gaussian measurement noise, so

y ¼ Hx þ RðtÞ ð5Þ

H11 ¼ H44 ¼ 1

R1ðtÞ;R4ðtÞ � N ð0; s2Þ

and the remaining Hij are zero and σ = 1. True states x are generated by integrating Eq 4

numerically with a timestep of dt = 0.01 over t 2 [0, 5], from which observations are generated

using Eq 5 (Fig 1B). Using these observations y, we obtain an estimate x̂ of the true states by

integrating forward the nudged dynamics, Eq 3, with U11 = U44� u set to a fixed value, chosen

between 0 and 100. We initialize our estimate at time t = 0 to the measured data y(0) for the

observed variables x1 and x4, and uniformly between ±5 for the hidden variables. This chaotic

system is hypersensitive to errors in the initial conditions, so without control, u = 0, the esti-

mated trajectory evolves in a manner quite distinct from the true model (Fig 1C). For sufficient

u, e.g. u = 5.0, the data synchronizes the estimates of both observed and unobserved states to

the model, despite large initialization errors in x̂ð0Þ (Fig 1D). A distinct advantage of nudging

is that fine-tuning u is not necessary: within a substantial window of u, between *5−20, the

system closely synchronizes to the true states; however, for u sufficiently large, the control

term now overamplifies the observation noise, degrading the estimates (Fig 1E). The simplicity

of nudging synchronization is apparent: it necessitates only the choice of the gain parameter u,

which can be chosen rather loosely—and requires only a simple forward integration of the

model dynamics.
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Parameter inference in nudging synchronization

In the context of neuroscience, we are less interested in the time course of dynamical state

variables than model parameters such as ion channel conductances and kinetic time con-

stants [18, 19, 48]. One could envision a direct search over parameter space with some appro-

priately chosen cost function. To illustrate why a naive optimization may not be entirely

straightforward, we plot the quadratic cost between the measurements and model,

CðFÞ ¼
P

njjyðtnÞ � Hxðtn; FÞjj
2
, where xðtn; FÞ is the solution of the Lorenz96 model with

forcing parameter F (Fig 2A) and the initial condition xðt0; FÞ is fixed to its true value. The

global minimum of this cost surface for F corresponds to the true parameter Ftrue ¼ 8, but it

resides in a narrow basin of attraction and is surrounded by multiple false minima (Fig 2A).

This irregularity is a consequence of the highly nonlinear nature of the dynamics [37, 40], and

it would be exceedingly difficult to pinpoint the global minimum with conventional optimiza-

tion routines, even in this optimistic scenario in which x(t0) is assumed known and the search

space is effectively one-dimensional.

Fig 1. Nudging synchronizes estimate to observations with lax parameter tuning. A: Hidden states x evolve temporally

under the controlled dynamics via _x ¼ fcontðxÞ, where fcont is the sum of model dynamics and an external data-driven control

term. The control feeds back the difference between x and the observations y, for measured states; it is absent in unmeasured

states. B: Ground-truth trajectories and observations Lorenz96 system in 5 dimensions; only x1 and x4 are observed.

Measurements obtained by adding uncorrelated noise with σ = 1 at each timestep. C and D: True (black) and estimated (blue)

trajectories of the Lorenz96 system, for no nudging control (C) and with x1 and x4 controlled with strengthU11 = U44� u = 5

(D). The controlled system synchronizes closely to ground truth for both the observed unobserved variables. E: Mean-squared

error 1

ND

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
d;nðxdðtnÞ � x̂dðtnÞÞ

2
q

of estimates as a function of control strength; near-minimal errors are achieved over a

relatively wide range of u.

https://doi.org/10.1371/journal.pcbi.1010479.g001
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On the other hand, the cost between the measurements and the controlled dynamics is far

more regular. If we instead consider CuðFÞ ¼
P

njjyðtnÞ � Hxðtn; F; uÞjj
2
, where xðtn; F; uÞ is

generated from the controlled dynamics Eq 3, we find that the cost surface smooths consider-

ably with increasing nudging strength (Fig 2B). For sufficient gain (u = 15), the cost surface is

fully convex, exhibiting a broad minimum around F = 7.81. Thus, the linear control term pro-

portional to u acts to smooth the nonconvexities of the cost surface induced by the chaotic

dynamics. This observation led Abarbanel et al. to propose the following constrained optimi-

zation problem [40]:

CðxðtnÞ;Θ;UðtnÞÞ ¼
X

n

jjHxðtnÞ � yðtnÞjj
2
þ jjUðtnÞjj

2
; ð6Þ

s:t: _xðtnÞ � fcontðxðtnÞ;UðtnÞ;ΘÞ ¼ 0; 8n ð7Þ

where, in contrast to direct nudging, the control terms are now time-dependent, U! U(tn).
In this dynamical state and parameter estimation (DSPE) framework, the dynamical states x

(tn), control terms U(tn), and model parameters Θ are optimized simultaneously. With no con-

trol (U(tn) = 0), this optimization reduces to a naive constrained least squares matching of the

Fig 2. Constraining least-square estimates with controlled dynamics enables robust parameter estimation in chaotic models. A:

Squared-difference between 10D Lorenz96 model trajectory x and measured data y, for various values of forcing parameter F,

assuming that model was integrated forward from the true initial point. Only states x1, x4, x7, x10 were measured. The global

minimum of C(F) (dotted line; F=8), resides in an extremely narrow basin of attraction within a highly nonconvex cost surface. B:

Same as A, but for controlled dynamics (u = 4 and u = 15 for middle and right plots, respectively). Higher controls provide a far

smoother cost function around the global minimum. C: 2D projection of the high-dimensional DSPE cost surface, along F in one

dimension and the line Ul(tn)�u, 8l, n in the other. Here, xd(tn) were fixed at the values generated by integrating the model forward

from its true initial state for the given F. D: Estimated trajectories of x8, using uncontrolled least squares (top; green) and DSPE

(bottom; red). Black line: true trajectory. Shaded regions: SD of estimate across 100 random initializations of the optimization. E:

Histogram of parameter estimates across 100 initializations of the optimization, for least squares (green) and DSPE (red).

https://doi.org/10.1371/journal.pcbi.1010479.g002
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model to the observations. The insight of DSPE is that the cost function becomes smoother for

larger U(t), localizing the estimate to the vicinity of the global minimum, while the quadratic

penalty on U(t) reduces the controls, refining the estimate to the true minimum of the uncon-

trolled dynamics. Thus, one can think of U(t) as opening up new degrees of freedom, allowing

escape from local minima during the optimization procedure. When the optimization has ter-

minated, the optimal U(tn)—which are driven to small values due to the *U2 cost penalty—

are discarded. In this sense, they are essentially an algorithmic device.

We illustrate the regularizing effects of the control parameters by plotting a 2D projection

of the DSPE cost surface, along F and along a 1D projection in the space of U(tn) (Fig 2C):

the surface has a broad minimum for larger control strength, and a complex, rugged surface

as the control strength becomes weaker. To illustrate the performance of the DSPE algorithm,

we compare it against a naive constrained least squares optimization without controlled

dynamics, again using the 10D Lorenz96 system. Across 100 random initializations, both

least squares and DSPE produced comparably accurate estimates of the state variables, with

DSPE being somewhat more accurate near the boundaries of the time window (Fig 2D). The

differences in the estimate of the forcing parameter F, however, were more striking. For

nearly all initializations, DSPE estimated F within 1% of its true value, while the distribution

of parameters estimated by least squares peaked at the true value but were far more dispersed

(Fig 2E).

Optimally-controlled dynamical parameter inference

We now present our main results. We have seen that DSPE is built naturally on nudging syn-

chronization, enforcing controlled dynamics as constraints in a global optimization over states,

parameters, and time-dependent controls. Here, we suggest that the control variables, rather

than acting as an algorithmic device to regularize the optimization procedure, could be instead

specified in a more principled manner, by viewing DSPE as the foundation for an optimal con-

trol problem. In this framework, the optimal estimate can be derived using the Pontryagin

minimum principle. Using the DSPE cost function Eq 6, expressed in continuous time,

C ¼
Z T

0

dtLðx;UÞ ¼
Z T

0

dt
1

2
jjHx � yjj2 þ jjUjj2

� �

; ð8Þ

and the controlled dynamics Eq 3, we apply the minimum principle in the usual way (Methods

for derivation) to obtain an expression for the optimal control (assuming U is diagonal for

readability; this can be relaxed trivially):

Ull ¼ � pl½y � Hx�l; ðfor xl observedÞ: ð9Þ

This control can be used to derive the dynamics obeyed by the optimal estimate and the conju-
gate momenta pd in time:

_x�d ¼ fdðx�;ΘÞ � p�dð½y � Hx��dÞ
2

_p�d ¼ �
@fðx�;ΘÞ
@x�d

� p� þ ½HTðy � Hx�Þ�dð1 � ðp
�

dÞ
2
Þ

ð10Þ

where the asterisk refers to the fact that the integral curves of these equations represent locally

optimal trajectories. Since this dynamical system describes the evolution of the optimal esti-

mate, we call it the estimation dynamics. Note that the estimation dynamics form a boundary

value problem rather than an initial value problem [49]: xd in the null-space of H are unob-

served, so their values at t = 0 are unspecified. A wealth of studies have been devoted to solving
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control systems of this class, using polynomial approximations—so-called collocation meth-

ods—or instead using shooting methods, which solves the initial value problem perturbatively

until the boundary conditions are matched [50]. Our problem has the added complication that

with unknown parameters, the dynamics could not be integrated forward in either case.

Instead, we propose an algorithm for simultaneously estimating x; p, and Θ that leverages

some desirable aspects of the original cost function Lðx;UÞ in a practical implementation. We

first use the optimal control condition Eq 9 to express L, Eq 8, in fx; pg space:

~Lðx; pÞ ¼
P

l
1

2
ð½y � Hx�lÞ

2
ð1þ ðplÞ

2
Þ

� �
ð11Þ

This is the original cost function to be optimized, now written in x, p. Since the estimation

dynamics Eq 10 fully define the optimal trajectory, ~L contains no new information [49]. Nev-

ertheless, this function must be stationary along locally optimal trajectories. Further, it is con-

vex in the space of observable x and associated p, so its minimum is global in those directions,

and highly degenerate in the unmeasured directions.

We could therefore use the solutions of min~L as a starting point for the more complicated

task of satisfying the highly nonlinear estimation dynamics. Specifically, we could begin by

optimizing ~Lðx; pÞ, subject to a loose enforcement of Eq 10. The resultant path and parame-

ters would then be used as the initialization for a subsequent minimization of ~Lðx; pÞ subject

to Eq 10, now enforced to a tighter degree. We call this method “optimally-controlled

dynamical state and parameter estimation” (OC-DSPE), and schematize it in Algorithm 1.

The idea of OC-DSPE is that the enforcement of the nonlinear dynamics breaks the convexity

in a gradual manner, allowing the global minimum to be systematically tracked—in much

the same spirit as the control variable directions in the DSPE cost manifold (vertical direction

in Fig 2C). This iterative procedure lies in a class of nonlinear techniques called homotopy
continuation, where the solutions of one system are tracked by iterating from a simpler sys-

tem with known solutions [41]. Incorporating this flavor of homotopy continuation into

nonlinear estimation was the basis of a number of studies, in particular quasi-static varia-
tional assimilation [51]and variational annealing [7, 32–34]. The latter has been shown to

be quite effective in tracking highly chaotic systems, as well as in highly under-observed neu-

ron models with many unspecified nonlinear parameters. A more recent study illustrated

benefits in nonlinear system estimation by extending variational annealing to Hamiltonian

manifolds [49], in much the same spirit as Algorithm 1. OC-DSPE differs from these other

homotopy continuation techniques essentially in its integral equations Eq 10, which are

derived from a set of controlled state space dynamics. In previous formulations, the dynamics

are uncontrolled.

Algorithm 1 Optimally-controlled dynamical state and parameter estimation (OC-DSPE)
Given measured data yn and annealing parameters βmax, α, λ0
for q = 1, . . ., Q, in parallel do
Sample xq uniformly from presumed dynamical range
Sample pq uniformly from presumed range
Sample Θq from prior distribution

end for
for β = 1, . . ., βmax do
λ  λ0 αβ

for q = 1, . . ., Q in parallel do
gxðxq; pq;ΘÞ :¼ discretization of ½ _xqd � fdðxq;ΘÞ þ p

q
dð½y � Hxq�dÞ

2
�

gpðxq; pq;ΘÞ :¼ discretization of ½ _pqd þ
@fðxq ;ΘÞ
@xTqd
� pq � ½HTðy � HxqÞ�dð1 � ðp

q
dÞ

2
Þ�

fxq; pq;Θg :¼ arg min½Lðxq; pqÞ þ lgxðxq; pq;ΘÞ þ lgpðxq; pq;Θ
q
Þ�
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return xq; pq;Θq

end for
end for

Numerical experiments of OC-DSPE with 10-dimensional Lorenz96 model

We first apply OC-DSPE to the Lorenz96 system in 10 dimensions with unknown forcing

parameter F, performing 100 optimizations with different initial guesses (Methods for imple-

mentation details). We first show illustrative plots of the state estimates, assuming M = 4 states

are observed. For the observed x1, the state estimate averaged over all 100 estimations is well-

localized around the true trajectory (Fig 3A; top plot). The unobserved state variable is

markedly less accurate (Fig 3B; top plot), but does approximate certain regions well (i.e.

t* 4−6), suggesting that the chaotic instabilities are less pronounced in those regions around

the attractor. Of course, since the trajectories depend on the parameters, the accuracy of the

states is often correlated with that of the parameters. If we plot the state estimates for which

the forcing parameter is estimated close to its true value, jF̂ � Ftruej < 0:05, we find that the

states are nearly indistinguishable from the true trajectories, beyond an initial synchronization

region, t>*1 (Fig 3A and 3B; bottom). This initial synchronization region is not surprising.

The optimal control quickly nudges the estimate toward the observed data, even if the state at

the beginning of the estimation window t = 0 is highly inaccurate. Once synchronized, the

optimal control maintains the estimate near the true trajectory at minimal control cost U2.

Next, we focus on the accuracy of parameter estimates and compare i) OC-DSPE, ii) DSPE,

and iii) constrained least squares (see Methods for details of the implementation of each

method). We repeated the 100 estimations for Z = 100 distinct estimation windows around the

Lorenz attractor to get a better representation of the estimation in regions where the chaotic

instabilities are both strong or weak. We first plot the distribution of estimated parameters

when M = 5 states (xd; d odd) are observed. For M = 5, the estimated parameters are highly

localized around the true value for all techniques (Fig 3C). The advantage of OC-DSPE

becomes more apparent with fewer measured states. In particular, with M = 2 observed states,

the estimates for all parameters are substantially more dispersed (Fig 3D). Only OC-DSPE,

however, is centered near the true value; DSPE in particular is highly dispersed giving errone-

ous parameter estimates as low as 0. This illustrates that OC-DSPE, while computationally

more demanding (the state space is doubled and the equations require more derivatives), can

produce substantially more accurate parameter estimates in very sparsely observed chaotic

systems.

To further quantify the robustness of the estimation procedure, we calculated the

estimated parameter as a function of the error between observations and estimates,

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

njjHx̂ðtnÞ � yðtnÞjj
2

q

(Fig 3E). Here, we chose, for each of the Z estimation windows,

the optimal parameter estimate among the 100 initializations. This gives a “best-case” estimate

for each dataset, and quantifies how this optimal parameter estimate depends on the errors in

the dynamical states. Though all 3 algorithms produce accurate F̂ when the estimation error is

minimal, OC-DSPE is far more tightly centered on the true parameter value even as the state

error increases. This indicates that for OC-DSPE i) the optimal parameter estimate could be

found more reliably with less initializations and ii) the optimal estimate can be identified with

more reliably in practice, where the only error metric available is E.

Finally, we consider the role of the auxiliary momenta variables p in OC-DSPE, a feature

absent in direct optimization schemes. In the control-theoretic sense, p represent the marginal

cost of violating the constraints given by the system dynamics (Eq 7). Regions in which p are

appreciable correspond to regions in which the state estimate could easily deviate from the
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controlled dynamics, suggesting a lack of estimation accuracy (Fig 3E). Do deviations in p also

have some bearing on the reliability in the parameter estimate? In other words, is there a corre-

lation between some statistic of p and the estimation errors in F? Indeed, plotting the magni-

tude of p averaged over time and dimension as a function of F̂ � Ftrue shows a prominent dip

Fig 3. OC-DSPE exhibits enhanced parameter estimation accuracy in sparsely-observed chaotic models.

Illustration of parameter estimation in chaotic Lorenz96 system using optimally-controlled dynamical state and

parameter estimation (OC-DSPE). A: Illustrative estimate of observed variable x1(t) when 4 states are observed, for 100

estimations randomly initialized (top), and for only those estimations in which the parameter was estimated to high

accuracy (bottom; jF̂ � Fj < 0:05). Grey: standard deviation of all estimates; Dotted: true state. B: Same as A, for the

unobserved variable x3(t). C: Histogram of parameter estimates over 100 initializations, for 100 datasets initialized

throughout the 10D Lorenz96 chaotic attractor, for 5 observed variables and using 3 different estimation routines (least

squares, the original DSPE algorithm, and OC-DSPE). Parameter estimates are tightly clustered around the true value

of 8.17. D: Same as C, for only 2 observed variables. Estimated F̂ is more widely dispersed, but centered on the true

value only for OC-DSPE. E: Estimated parameter F̂ versus error in observed states x averaged over space and time. For

low state error, estimated parameters are close to the true value for all 3 estimation routines. Tor larger state errors,

proximity to the true value occurs only in OC-DSPE, indicating a larger degree of robustness in estimation accuracy. F:

Dependence of |pd(tn)|, averaged over dimension i and time n, on error in parameter estimate, F̂ � F, for 5 (leftmost

plot), 4, 3, and 2 (rightmost plot) observed states. In all cases, the minimum average |p| occurs at very close to the true

F, indicating that the values of the conjugate momenta can act as a proxy for identifying the optimal parameter

estimate.

https://doi.org/10.1371/journal.pcbi.1010479.g003
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at zero parameter estimate error (Fig 3F). Though this dip is more prominent for larger

observability (leftmost plot in Fig 3F)), it is still present even for very sparse observability

(rightmost plot in Fig 3F)). This indicates that the statistics of such artificial “conjugate” vari-

ables can provide a further consistency check on the accuracy of the estimation.

Numerical experiments with the Morris-Lecar model

Our primary system of interest is a biophysically realistic neuron modeled on the Hodgkin-

Huxley framework. We use the Morris Lecar (ML) system [1], a reduced 2-state variable spik-

ing neuron model in which the gating variable w(t) drives changes in the neuron membrane

voltage V(t), and which has 12 static parameters (Methods). We first use OC-DSPE to estimate

only the linear conductances gi, which dictate the regimes of neuron excitability; we hold the

other parameters fixed at their correct values. Observations yðtÞ ¼ fVobsðtÞg are generated by

adding uncorrelated Gaussian noise� N ð0; sÞ to the ground truth voltage VtrueðtÞ, where we

investigate σ = 2 mV and σ = 10 mV. The stimulating current is held at a constant value (Fig

4A). To illustrate the robustness of the algorithm to parameter uncertainty, we let the optimi-

zation bounds on the unknown conductance parameters span 2 orders of magnitude, from 0

to 200. To cross-validate our predictions, we forward integrate the dynamics from the final

time estimate state V̂ ðTÞ; ŵðTÞ using the estimated parameters ĝ i but a pseudo-noisy current

spanning a range of input currents (Fig 4A). We use Q = 25 initializations in Alg. 1.

For small measurement noise, σ = 2, most of the Q runs give highly accurate estimates of

both the states V(t) (Fig 4B and 4C) and parameters gi (Fig 4D). For the poorest fit, gi is suffi-

ciently inaccurate such that spike events are occasionally missed. For higher measurement

noise, σ = 10 mV, about 10% of the dynamic range, many predictions have degraded as

expected, producing shifted or missed spike times (Fig 4E). Still, the optimal prediction and

estimated parameters are highly accurate among these 25 initializations (Fig 4E).

To get a sense of how OC-DSPE compares to related estimation methods, we repeated the

estimations using the original DSPE method and constrained least squares (as in Fig 3). For

small measurement noise (σ = 2 mV), the optimal predictions among Q = 25 runs were equally

as accurate as OC-DSPE (Fig 4G), although the likelihood of finding the optimal fit was far less

than the near 100% likelihood of OC-DSPE (Fig 4F). The accuracy degraded precipitously

with measurement noise, and even the best parameter estimates for these two methods were

poor (Fig 4F), producing considerably misshappen spike waveforms (using DSPE) or wildly

inaccurate estimations altogether (using least squares) (Fig 4G). This indicated that even in

this relatively tractable problem of estimating linear parameters from noisy data, OC-DSPE

exhibits a robustness and accuracy not evident in related estimation methods.

As a more realistic numerical experiment, we next estimated all 11 model parameters gov-

erning ion channel kinetics (we omit the capacitance C, which is typically ascertained from

neuron size). All parameters are again bounded liberally, over 2 orders of magnitude. For low

measurement noise, the model parameters, including those entering the model equations non-

linearly, are estimated to high precision—this is borne out in the accuracy of the forward pre-

dictions (Fig 5A and 5B). Still, as before, spikes can be missed and/or slightly shifted (Fig 5C)).

As noted in a number of prior studies [18, 19, 31], the accuracy of the estimation is inher-

ently limited by the richness of the driving current. If, for example, the stimulating current

were 0 pA—below the spiking threshold—the estimated conductances would be degenerate:

the fixed point of _V would be unchanged by appropriate rescalings of gi. Difficulties in estimat-

ing the kinetic parameters such as βi, γi would also arise since there are no observations when

the neuron is spiking. In the case of a single step, as in Figs 4A and 5A, the volume of phase

space in V(t), w(t) occupied by the system is vanishingly small, covering only the closed curve
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Fig 4. Estimation of states and linear conductances in Morris-Lecar model. A: Stimulating current used to estimate parameters and

compare forward predictions. B: Most accurate (top) and least accurate (bottom) of 25 estimations using OC-DSPE, σ = 2 mV. Black:

true voltage; blue: noisy observations; red: forward prediction using estimated parameters. C: Heatmap of voltage over time for all 25

runs, with the run giving lowest (highest) prediction error on top (bottom). D: Estimated conductances corresponding to state

estimations in C. E: Analogue of B-D, for higher measurement noise σ = 10 mV. F: Estimations of the linear conductances among the

Q = 25 runs using OC-DSPE (black), DSPE (red) and constrained least squares (blue), for 2 different levels of measurement noise (σ = 2,

10 mV, respectively). G: Top trace: Stimulus used for prediction (note timescale is from 100 to 200 ms) for the 3 methods in F. Bottom
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along the spiking limit cycle. Instead, valuable information toward the parameter estimates

could be gained by pushing the system to less-visited regions of phase space. One option is to

use a staircase signal consisting of many step currents [31]. Alternatively, by using a dynamic
current, we could persistently modulate the system between different limit cycle manifolds.

left 3 traces: predictions using optimally estimated parameters among the Q = 25 runs in F, using the 3 different estimation methods, for

σ = 2 mV measurement noise. Black, red, blue: OC-DSPE, DSPE, and least squares predictions, respectively. Grey: Predicted trajectory

using the true parameters (note this is visually indistinguishable from the accurate predictions). Bottom right 3 traces: Same, for σ = 10

mV measurement noise.

https://doi.org/10.1371/journal.pcbi.1010479.g004

Fig 5. Estimation of linear and nonlinear parameters in Morris-Lecar model. A: (top) Stimulating current used for estimation and

prediction. (bottom) Black: true voltage trace; blue: noisy observations; red: predicted voltage trace with highest accuracy. B: Estimated

parameters for all 25 runs. Black: individual 25 estimates of each parameter; pink: true value of parameter; red: parameter estimate

corresponding to lowest prediction error. C: Predicted voltage traces from parameters, from highest accuracy (top) to lowest accuracy

(bottom), for all 25 runs. D-F; same as A-C but now using a complex stimulating current. Prediction accuracy is markedly more reliable.

G-H: Same as A-F, for higher noise (σ = 10 mV), for step stimulating current (G) and complex stimulating current (H). In the presence of

higher noise, optimal state and parameter estimates are nonetheless very accurate for complex stimulating currents (H).

https://doi.org/10.1371/journal.pcbi.1010479.g005
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Since the shape of these manifolds differs by input current, and since steady state is never

achieved, the system would cover a larger swath of the phase space through transient motion

[18]. This richer sampling of the phase space would increasingly enhance our estimate of gi.
We therefore repeated the experiments using a stimulating current proportional to the x

component of the 10D Lorenz96 system (we took the absolute value so all currents were posi-

tive, and linearly scaled the time axis) (Fig 5D). In the optimally predicted V̂ ðtÞ, the shifts in

spike times are now absent, and the dropped spike near t* 200 is recovered (Fig 5D). The

estimated parameters are also more precise, producing markedly more robust predictions (Fig

5E and 5F). Finally, we repeat the experiments for the higher measurement noise σ = 10 mV.

The optimal prediction for the step current are of moderate accuracy: many spikes are recon-

structed but many are dropped (Fig 5G). For the chaotic driving current, spike times in the

optimal prediction match very well against the data (Fig 5H).

Up to this point, we have considered uncorrelated Gaussian noise added post hoc to the

true membrane voltage. This noise would reflect fluctuations in the recording electrode, but

would not reflect other sources of noise inherent to the neuron itself. Alternatively, we can add

noise directly into the model equations when generating the data. Such Langevin, or process,

noise would reflect noisy current inputs into the neuron, and could produce qualitative

changes in neuron response, such as mistimed or even missing action potentials. What is the

effect of these major changes on the estimation quality of OC-DSPE? To investigate this, we

added a Gaussian-distributed random current input Inoise into the Morris-Lecar neuron, and

generated observations by integrating this stochastic system forward, and adding measure-

ment noise as before. We chose the statistics of Inoise to have mean zero and standard deviation

SD = 10, 50, or 100 pA—note that this is up to the magnitude of the injected current (Fig 6A).

Indeed, for appreciable noise, SD > 50 pA, the neuron membrane voltage is modulated con-

siderably—spikes are mistimed or even missed (Fig 6A). We then estimated the parameters in

the deterministic Morris-Lecar model using OC-DSPE. Optimal predictions over Q = 25 runs

show that for SD up to 50 pA, the forward predictions (Fig 6B) and parameters (Fig 6C) are

highly accurate. For SD = 100 pA, spike timing is mostly preserved, but resting voltages EK and

ENa have larger errors, and some action waveforms are affected. Together, this indicates that

even with substantial corrupting model noise, OC-DSPE can accurately infer latent states and

model parameters, though there is a breakdown when the fluctuations approach the size of the

injected current.

Finally, we investigated the effect of an underdetermined model description, which

would reflect, say, incomplete knowledge of which ion channels are present in the neuron.

As a simple test, we generated data using the Morris-Lecar model from above, but with an

extra ion channel—the persistent Na channel INaP [52]—in addition to the already present K

and Na channels. The presence of this channel had measurable effects on neuron response,

including missed spikes (Fig 7A). We then estimated model parameters of the original Mor-

ris-Lecar model, which had only the Na and K channels (K+Na model), using observations

generated from the model with the extra NaP channel (K+Na+NaP model). Despite the pres-

ence of an ion channel not accounted for, optimal predictions were highly accurate (Fig 7B).

Interestingly, the optimally predicted parameters using K+Na+NaP observations were only

slightly perturbed from those fit to observations of the K+Na model (i.e. fits from Fig 5D–

5F) (Fig 7C). This indicated that small perturbations in parameter space can appropriately

adjust the fit to observations from a different description. The degree to which this is possi-

ble in general, is of course, highly dependent on how misspecified the model is, but it is com-

forting that OC-DSPE is robust to a degree of incomplete knowledge in the model

description.
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Fig 6. OC-DSPE estimation in the presence of noisy current inputs. A: (top trace) Stimulating current used for estimation of parameters. (bottom 3

plots) Resulting voltage traces for the stimulating current, for injected current noise levels of σ = 10, 50, 100 pA (light red traces), overlaid with the trace

for zero injected current (light black traces). Here, injected current noise acts as a type of model/process noise, since it affects the evolution of the

dynamics directly. This contrasts with the “measurement noise” used above, which is uncorrelated, additive noise added to the hidden state space

output. B: (top trace) Injected current used for estimation (0 to 100 ms) and prediction (100 to 200 ms). (bottom 3 traces) True trajectory (black),

observed data (blue), and optimal estimate (red), for 3 noise levels, respectively, 10, 50, 100 pA. Observed data is generated by integrating the model

dynamics with process noise at the level indicated (10, 50, 100 pA), and then adding measurement noise σ = 2 mV to the output. C: Predicted

parameters for 100 estimations, for 3 model noise levels. Black dots: all estimates; red: parameter corresponding to the optimal estimate; pink: the true

parameter estimate.

https://doi.org/10.1371/journal.pcbi.1010479.g006

Fig 7. OC-DSPE performance with an under-specified neuron model. A: Injected current (top) and resulting membrane voltage (bottom), using the original

Morris-Lecar model with Na and K channels (grey), or with an extra NaP channel (red). The addition of the extra channel has appreciable effects on the response,

including missing spikes. B: Injected current (top) and optimal OC-DSPE estimated voltage trace (bottom; black) by fitting observations (bottom; blue) from a K+Na

+NaP model to an Na+K model. Red: forward predictions of the K+Na model using estimated parameters, overlaid with forward predictions of the true K+Na+NaP

model (black). C: The optimal parameters used in B are plotted against the optimal parameters produced by fitting observations without model misspecification (i.e.

parameters from Fig 5D–5F). The estimated parameters are nearly in agreement, but small deviations in the optimal fits account for the modified traces that fit the K

+Na+NaP observations.

https://doi.org/10.1371/journal.pcbi.1010479.g007
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Discussion

Mathematical models for biological neuron and circuit models are informed intimately by

neurobiology. Voltage dynamics in the Hodgkin-Huxley model, for example, obey classical

electrodynamic equations for variable capacitors, reflecting the assumption of cell mem-

branes as insulating barriers separating charged species. But while biological considerations

may strongly constrain the model description, the many parameters in these models are

unspecified. In fact, it is precisely the variability of these parameters that accounts for the vast

diversity in system response, and ultimately dictates how these neural systems process exter-

nal stimuli.

Our approach is to cast the inference problem into an optimal control framework, resulting

in a system of coupled ODEs for the dynamics describing the evolution of the optimal esti-

mate. These ODEs, Eq 10, pose two difficulties: they are persistently unstable since they com-

prise a Hamiltonian system, and they are not directly integrable anyways, since the parameters

are not specified. We address these two issues simultaneously by imposing these dynamics as

constraints on a related, tractable cost function, and enforcing them iteratively as a penalty

term. This is similar to a recent method identifying state space inference with Hamiltonian sys-

tems [49], and shares overlaps with a related homotopy approach for parameter estimation in

nonlinear systems [42]. These approaches and ours adopt the viewpoint that, rather than i)

recursively filtering with linearized dynamics or ii) attempting to represent high-dimensional

distributions with particle estimates, the burden of nonlinearity can be shifted to the cost func-

tion, provided that nonconvexity can be introduced in a systematic way. Globally optimizing

over these variables is, of course, only possible for data that is analyzed offline, as in calcium

imaging or electrophysiological measurements.

Several studies in recent years have developed direct optimization-based approaches for

state and parameter estimation in neural systems [6, 32–34, 40, 49, 53, 54]. Directly optimizing

high-dimensional distributions may seem computationally prohibitive, since the search space

is large—equal to the number of dynamical states times the number of measurement times,

plus the number of constant parameters. But optimization in state-space models benefits from

the highly sparse structure of the Hessian matrix [6], making these methods amenable to fast

linear algebraic routines. While our approach does not directly optimize the usual posterior

distribution appearing in the Bayesian setting [5, 6], the Hessian matrices required by New-

ton-type minimizers have a similarly sparse structure, so the computational benefits remain.

The “constrained least squares” estimation we have used for comparison (Figs 3 and 4) is

functionally equivalent to the variational annealing method used in many recent efforts in

state and parameter estimation in chaotic and neural systems [7, 18, 20, 32–34]. Variational

annealing performs successive iterations of a cost function that sums model error and mea-

surement error; at each iteration, the weight of the model error term is increased. This method

is equivalent to a constrained least squares, since the measurement term is a least squares

error, and the model error term is a sum of many constraint equations, each enforcing the

model dynamics at each step. By increasing the model error weight iteratively, the constraints

are enforced gradually, as in a typical penalty-based constrained optimization. This work illus-

trates that while variational annealing can be effective for nonlinear parameter inference, it

still has significant limitations in the presence of appreciable measurement or model noise—a

limitation that is handled far more effectively by OC-DSPE.

An intriguing recent work [31] has explored how suboptimal parameter estimates can be

“nudged” out of local minima by adding and then removing artificial measurement noise.

That technique produced highly accurate estimations of 41 parameters in a conductance-

based neuron model, though compared to our results here, the measurement noise was 10
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times smaller. Still, one could envision incorporating such “noise-regulation” in our method

here to suppress the impact of local minima.

Our emphasis is on estimation accuracy, rather than computational cost. Indeed, both dou-

bling the state space to a Hamiltonian system and imposing constraints increases computation

time compared to, for example, the variational annealing method [32, 33], or directly optimizing

the least squares error subject to hard model constraints. Extending this framework to larger sys-

tems would require a careful consideration of the tradeoffs between accuracy and speed. A com-

parison of some recent approaches for estimation in dynamical models, with emphasis on neural

systems, is shown in Table 1. In general, parameter estimation is best done in the context of an

optimization framework, such as DSPE or variational annealing. Among these, OC-DSPE fares

well in terms of accuracy especially with high levels of noise, but with higher computational cost.

Still, the accurate estimation of a large number of nonlinear parameters suggests that our method,

combined with improved optimization routines, may be relevant for larger neural systems.

For completeness, we note that many methods similar to OC-DSPE, including most listed

in Table 1, are often referred to as data assimilation methods [55, 56]. Data assimilation is a

broad, and unfortunately somewhat nebulous, term generally referring to any technique com-

bining dynamical models with observations. Within this definition, the Kalman Filter or any

of its variants is the most well-known. If viewed in this context, OC-DSPE and variational

annealing fall into the class of variational data assimilation methods, which cast the estimation

problem as an optimization problem. Neural data inference are amenable to variational

approaches since the observation windows are relatively short and estimation is performed off-

line—in contrast to weather prediction, where observations come in continuously, the obser-

vation windows are long, and predictions must be made in real-time.

There are a number of limitations of, and potential extensions to, OC-DSPE. Throughout,

we have treated the measurement matrix as diagonal, where each observation corresponds to a

Table 1. Comparison of various filtering (sequential) and optimization-based approaches for state and parameter estimation in dynamical systems.

Method Type States Params Notes

Kalman filter [5] sequential linear N/A standard method for linear-Gaussian models

Extended/Unscented Kalman

filter [5]

sequential nonlinear N/A Allows non-Gaussian noise or nonlinear models

Sequential Monte Carlo (SMC)

[24]

sequential nonlinear N/A Scales poorly with model dimension

Nudging [45] sequential nonlinear N/A Computationally trivial—only integrate forward model dynamics

SMC + Expectation

maximization [26]

sequential + linear

optimization

nonlinear linear Effective for linear parameters and high noise

Quasi-static variational

assimilation [51]

nonlinear optimization nonlinear N/A Reduces effect of local minima for long time traces

DSPE [40] nonlinear optimization nonlinear nonlinear Estimate many nonlinear parameters, given low measurement noise [19, 31]

Variational annealing [33] nonlinear optimization nonlinear nonlinear Estimate many nonlinear parameters, given appreciable measurement noise [18,

20]

OC-DSPE nonlinear optimization nonlinear nonlinear Effective for many nonlinear parameters with high model or measurement noise;

computationally expensive

Comparison of various methods for state and parameter estimation in dynamical systems, including neural models. The 3rd and 4th column refer to whether the

method is applicable to estimated nonlinear states and parameters, respectively. Sequential methods refer to those that iteratively update an estimate, while optimization

methods rely on minimizing a cost function. Sequential methods in general tend to be computationally faster, since they require just one or a few iterative passes

through the data, scaling linearly with the length of the data. However, they are not directly applicable to estimating parameters. Optimization-based techniques are

directly applicable to parameter estimation, and can be aided computationally by sparse Hessians and automatic differentiation. DSPE, variational annealing (akin to

constrained least squares), and OC-DSPE can simultaneously estimate nonlinear parameters and dynamical states. OC-DSPE is more accurate, but also more

computationally expensive due to the presence of multiple nonlinear constraints.

https://doi.org/10.1371/journal.pcbi.1010479.t001
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unique latent state, and noise variances are treated as a fixed and known quantity. This is in

line with experimental conditions of intracellular recordings in vitro, where the measurement

uncertainty can be quantified by fluctuations in the voltage signal when the injected current is

zero. Still, this may not be the case for in vivo data, where measurements reflect superpositions

of multiple neurons in each recording channel, and H is unknown and not diagonal. In princi-

ple, OC-DSPE could be extended to include the observation matrix H as a set of additional

inferred parameters, a potential direction for future study.

We have focused here on estimation of parameters in single neuron models, the obvious

extension being to the inference of biophysical neuron parameters and connection weights in

neural networks. Inference in neural networks will demand a different modeling approach,

since highly-resolved voltage waveforms from multiple neurons in vivo are inaccessible, given

current technologies. It is unlikely that detailed conductance-based models would be resolv-

able, and one might opt instead for reduced phenomenological models [1, 26] sharing the

desired dynamical features, but containing richer dynamics than simple perceptrons. Our

methodology is most relevant to data taken in vitro, where currents can be externally con-

trolled. Fruitful directions for future research would carefully consider these limitations, decid-

ing how best to adapt this and other model-based procedures for brain-wide calcium imaging

data, as has been explored in recent studies [28].

Materials and methods

DSPE cost function generation

To generate the data used in Fig 2A, we numerically integrated the Lorenz96 system in 10

dimensions using the scipy.odeint routine in Python, which runs the FORTRAN solver

LSODE. The integration was performed over 501 timepoints from t0 = 0 to tN = 8 at a step of

dt = 0.016. Observations yi were generated by adding uncorrelated Gaussian noise� N ð0; 1Þ
to the 4 observed states x1, x4, x7, x10. The states used in Fig 2B were generated similarly, but

using the controlled dynamics Eq 3 with U11 = U44 = U77 = U10,10 = u.

For the cost surface representation in Fig 2C, we used measurement noise� N ð0; 0:1Þ; the

observed states were as above. The full cost surface is technically 5-dimensional—the 4 Ull plus

the forcing F. To plot a visualizable cross section of this surface, we set all Ull to be the same—

this is equivalent to projecting the surface along that line.

Neuron model

The Morris-Lecar ODE dynamics (K+Na model) are given by:

C _V ¼ � gfastm1ðVÞðV � ENaÞ � gslowwðV � EKÞ � gleakðV � EleakÞ þ Istim

_w ¼ �w
w1ðVÞ � w
twðVÞ

ð12Þ

where

w1ðVÞ ¼ 0:5ð1þ tanhð
V � bw

gw
ÞÞ

m1ðVÞ ¼ 0:5ð1þ tanhð
V � bm

gm
ÞÞ

twðVÞ ¼ ðcosh
V � bw

2gw
Þ
� 1

ð13Þ
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The ground truth parameters were set at as C = 2.5, gfast ¼ 20, gslow ¼ 15, gleak ¼ 2,

ENa ¼ 50, EK ¼ � 100, Eleak ¼ � 70, �w ¼ 0:12, bw ¼ 0, bm ¼ � 1:2, gm ¼ 18, γw = 10. Data

used for state and parameter estimation was generated by integrating these dynamics with a

prescribed stimulating current Istim, over a window of [0, 100] ms at a timestep of 0.05 ms. For

the step stimulus (Figs 4 and 5A–5C and 5G), the current was set to 100 pA. For the chaotic

stimulating current (Fig 5D–F and 5H)), we used the absolute value of the output of 1 variable

of the 10D Lorenz96 system, scaled in time by a factor of 15 and in value by a factor of 20.

For the Morris Lecar system with persistent Na channel (NaP channel), the dynamics are

defined as:

C _V ¼ � gfastm1ðVÞðV � ENaÞ � gslowwðV � EKÞ

� gNaPm1ðVÞðV � ENaPÞ � gleakðV � EleakÞ þ Istim
ð14Þ

_w ¼ �w
w1ðVÞ � w
twðVÞ

ð15Þ

where gNaP ¼ 3 and ENaP ¼ 50.

Finally, for the neuron with input current noise, we define the model as:

C _V ¼ � gfastm1ðVÞðV � ENaÞ � gslowwðV � EKÞ

� gleakðV � EleakÞ þ Istim þ Inoice
ð16Þ

_w ¼ �w
w1ðVÞ � w
twðVÞ

ð17Þ

where Inoise at each timestep is chosen from a normal distribution with zero mean and stan-

dard deviation SD, where we investigate SD = 10, 50, or 100.

Constrained optimization

The estimated states and parameters were all found with constrained optimization using the

limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm with constraints (L-BFGS-B),

implemented in Python with the package scipy.optimize.minimize. These optimizations are

high-dimensional. The search space in DSPE is ND + NL + P-dimensional, where N is the

number of timepoints, D is the dimension of the dynamical system, L is the number of mea-

surements, and P is the number of parameters. The NL term accounts for the control variables

Ull(tn), one for each observed variable at each timepoint. For least squares, the search space is

ND+ P dimensional, and for OC-DSPE, the search space is 2ND + P-dimensional to account

for the momenta variables. Bounds must be supplied on all state and parameter variables; for

the Lorenz96 system, the states were bounded in [-15, 15], F was bounded in [1, 20], and

Ull(tn) were bounded in [0, 100]. For the Morris Lecar system, V was bounded in [-100, 100],

the gating variable w in [0, 1], and the in [0.01, 200]. For OC-DSPE, the momenta p must also

be bounded; these were set at [-100, 100].

Equality constraints were required for all 3 methods—least squares, DSPE, and OC-DSPE.

These constraints enforced either the raw, uncontrolled system dynamics (least squares; Eq 1),

the controlled system dynamics (DSPE; Eq 7), or the estimation dynamics (OC-DSPE; Eq 10).

The constraints were enforced iteratively with a penalty method. Specifically, for all 3 routines,
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the following function was minimized.

CðbÞ ¼ Cð�Þ þ 2b
X

i;n

Rig
2

i;nð�Þ ð18Þ

where C(�) is the cost function and gi,n(�) is a discretization of the ith constraint equation at

timepoint tn, and β was iteratively stepped up from 0 to 24. Specifically, C(β = 0) was mini-

mized with a randomly chosen initialization of all states and parameters within their bounds;

the result of this was used as the initial guess for the minimization of C(β = 1), etc. The estimate

at β = 24 was used taken to be the optimal estimate. C(�) for DSPE was Eq 6, for least squares

was Eq 6 absent the U terms, and for OC-DSPE was Eq 11. The constraints were discretized

using Hermite-Simpson quadrature, which results in N constraint equations for each i. Ri is a

constant factor that allows the individual constraints to scale respectively with the dynamic

range of that particular variable; this normalizes the contributions of different variables to the

penalty term. For the Lorenz system Ri ¼ 1e � 4; 8i; for the neuron model,

RV ¼ 1e � 4;Rw ¼ 1;RpV ¼ 1;Rpw ¼ 1. Note that the least squares method with iteratively

enforced constraints is equivalent to the variational annealing algorithm proposed previously

[18, 32–34, 49, 54]. These estimations were done many times in parallel (100 for Lorenz96

system; 25 for the neuron model) with different initial guesses for the parameters and states at

β = 0.

For the Morris-Lecar neuron model, once the optimal state and parameter estimates are

determined, they were used to generate predictions in the interval [100, 200] by integrating

forward the dynamics with the final state estimate x(tN) using the estimated parameter values.

All optimization routines required first derivatives of the cost function and the constraints;

we obtained these in a few lines of code by using the automatic differentiation package

PyAdolc.

OC-DSPE estimation dynamics

The optimal control conditions were derived using the Pontryagin Minimum Principle [43].

In this formulation, one must prescribe the cost function along with the system dynamics;

each of these may depend on the states, parameters, and controls. Our cost function is the

DPE cost function Eq 6 (in continuous time)—a least squares matching of observations and

states, plus a quadratic control penalty (restatement of Eq 8 from the main text):

C ¼
Z T

0

dtLðx;UÞ ¼
R T

0
dt

1

2
jjHx � yjj2 þ jjUjj2

� �

;

where L is the system “Lagrangian.” The control optima are derived from the corresponding

“Hamiltonian” function which is defined from the Lagrangian via:

Hðx;U; pÞ ¼ Lðx;UÞ þ p � fðx;U;ΘÞ; ð19Þ

where p is conjugate momentum variable. Note that x, U, and p are all time-dependent, with

the time-dependence suppressed for readability. The Pontryagin Minimum Principle states

that then the optimal control Uopt along the integral curves of this system must satisfy:

Uopt ¼ arg min
U

Hðx;U;pÞ: ð20Þ

If the optimal control exists in the interior of the space of admissable controls, then the
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minimum of Eq 20 can be found from the stationary points of H with respect to U:

0 ¼
@H
@U

; ð21Þ

which, for the nonzero diagonal elements of U satisfy

0 ¼
@H
@Ull
¼ Ull þ pl½y � Hx�l ð22Þ

In addition to the condition on the stationarity of H, the system dynamics must satisfy Hamil-

ton’s equations, one of which reproduces the state space dynamics _x, while the second gives

the dynamics for the conjugate momenta (writing out the indices explicitly):

_xd ¼
@H
@pd
¼ fcont;dðx;U;ΘÞ

_pd ¼ �
@H
@xd
¼ �

@L
@xd
�
@fcontðx;U;ΘÞ

@xd
� p

ð23Þ

Writing out the derivatives of L, and expanding out fcont, this gives the following:

_xd ¼ fdðx;ΘÞ þ ½U � ðy � HxÞ�d

_pd ¼ � ½HTðHx � yÞ�d þ ½H
TUTp�d �

@fðx;U;ΘÞ
@xd

� p
ð24Þ

The momenta equations _p provide dynamical constraints on the control variables Uaa, absent

from nudging and DSPE. For observable states, the optimality condition Eq 22 can be inverted

for the momenta pd (Eq 9). Applying this in Eq 24 gives the complete set of optimally-con-

trolled dynamics, in Hamiltonian coordinates fx; pg, Eq 10.
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