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Abstract
Background: Hedgehog signaling proteins play important roles in development by controlling
growth and patterning in various animals including Drosophila and mammals. Hedgehog signaling
triggers changes in responsive cells through a novel transduction mechanism that ultimately
controls the transcription of specific target genes via the activity of zinc finger transcription factors
of the Cubitus interruptus /GLI family. In flies, key Hedgehog signal transduction components have
been identified including the kinesin-related protein Costal2, the serinethreonine kinase Fused, and
the PEST-containing protein Suppressor of Fused. These proteins control Cubitus interruptus
cleavage, nucleo-cytoplasmic localization and activation. In fly embryos, Costal2, Fused, Suppressor
of Fused and Cubitus interruptus are associated in at least one cytoplasmic complex, which
interacts with the microtubules in a Hedgehog-dependent manner.

Results: Here we identified and mapped direct interactions between Cos2, Fu, and Ci using an in
vitro affinity assay and the yeast two-hybrid system.

Conclusions: Our results provide new insights into the possible mechanism of the cytosolic steps
of Hedgehog transduction.

Background
The Hedgehog (Hh) proteins are evolutionarily conserved
signaling molecules that control the normal growth and
patterning of diverse animals including Drosophila and
humans. In flies Hh is required for multiple developmen-
tal processes such as embryonic segment patterning, eye
and appendage development (for reviews see [1,2]) In ver-
tebrates, three Hh homologues are expressed in a tissue
specific manner and are responsible for the morphogene-
sis of various organs such as the neural tube and the limbs,

and for cartilage and male germinal cell differentiation
[3,4]. In mammals, deregulation of the Hh pathway is re-
sponsible for cancers, especially basal cell carcinoma and
medulloblastoma [5–7]. In all cases described so far, Hh
initiates and/or maintains the transcription of target genes
in responsive cells. Among the targets are patched (ptc),
which encodes a Hh receptor protein, and genes encoding
signaling molecules. In Drosophila, decapentaplegic (dpp),
a signal of the TGFβ class, and wingless (wg), a member of
the Wnt family, are transcribed in response to Hh. Genes

Published: 19 March 2002

BMC Developmental Biology 2002, 2:4

Received: 13 November 2001
Accepted: 19 March 2002

This article is available from: http://www.biomedcentral.com/1471-213X/2/4

© 2002 Monnier et al; licensee BioMed Central Ltd. Verbatim copying and redistribution of this article are permitted in any medium for any purpose, pro-
vided this notice is preserved along with the article's original URL.
Page 1 of 9
(page number not for citation purposes)

http://www.biomedcentral.com/1471-213X/2/4
http://www.biomedcentral.com/


BMC Developmental Biology 2002, 2 http://www.biomedcentral.com/1471-213X/2/4
encoding related signaling molecules such as TGFβ, FGF,
and Wnt are transcriptionally induced by Hh signals in
vertebrates, as are genes for a variety of transcription fac-
tors.

In Drosophila, Cubitus interruptus (Ci), a zinc finger tran-
scription factor of the vertebrate Gli family, plays a central
and complex role in the transcriptional regulation of Hh
target genes. Ci acts as either transcriptional activator or
repressor in a Hh-dependent manner (for reviews see
[1,8,9]). In the absence of Hh signal, most of Ci is cleaved
to generate a 75 kD nuclear protein (Ci75-R) consisting of
the N-terminus and the zinc finger DNA binding domain
of the protein. Ci75-R acts as a repressor on hh and dpp
transcription [10–12]. Ci cleavage is proteasome depend-
ent and requires Ci phosphorylation by the protein kinase
A (PKA), the activity of the kinesin-related protein Costal2
(Cos2) and of Slimb (Slb), a F-box WD-40 protein (other
members of this family are known to direct ubiquitin-me-
diated proteolysis of specific phospho-proteins) [13–21].
In the absence of Hh, Ci75-R is mainly localized into the
nucleus while the uncleaved fraction of Ci (155kD, Ci-
155) is retained in the cytoplasm by Cos2 and Suppressor
of Fused (Su(fu)), a putative PEST motif-containing pro-
tein [14,19,22–25]. The exclusion of full-length Ci155
from the nucleus is also ensured by its constitutive export
[14,24]. Hh signaling inhibits Ci proteolysis, probably by
reducing Ci phosphorylation level via the action of a
phosphatase [10,14,18]. This results in the accumulation
of full-length Ci-155. Hedgehog reception also relieves Ci-
155 cytoplasmic retention and allows Ci-155 to be trans-
located into the nucleus via a basic nuclear localization se-
quence [14,18,19,25]. Nevertheless, the persistence of its
export leads to the accumulation of the vast majority of
Ci-155 in the cytoplasm. Last, proper induction of Hh tar-
get genes also requires Hedgehog signaling to produce, by
an unknown mechanism, an activated form of Ci called
Ci-A [11,23–26]. In the absence of Hh, Su (fu) appears to
prevent Ci activation. Upon Hh reception, both the ser-thr
protein kinase Fused (Fu) and Cos2 counteract Su(fu) to
produce Ci-A [19,23–27].

The molecular mechanism by which Hh signaling con-
trols Ci remains poorly understood. Both full-length and
truncated forms of Ci are detected in the cytoplasm as part
of one or more large molecular weight protein complexes
[10,28–30]. The cytoplasmic complex that has been stud-
ied also includes Fu and Cos2 and Su(fu) [28–31]. In the
absence of Hh signal, Fu-Cos2-Ci ternary complex binds
microtubules, probably through Cos2 [28–30]. Cultured
cell experiments showed that Hh signal triggers the release
of the Fu-Cos2-Ci complex from the microtubules
[28,29]. Concomitantly Hh signal increases the level of
phosphorylation of both Fu and Cos2 [28,32].

Our working hypothesis is that Hh signal could control Ci
fate (i.e. cleavage, subcellular localization, and/or activa-
tion) by inducing changes in the activity, composition,
and/or subcellular localization of the transducing cyto-
plasmic complex. Since Cos2 is a putative motor protein
with microtubule-binding activity, it could play a central
role in this process by regulating the association of the
complex with the microtubules and perhaps by directing
its movement to specific locations within the cell.

In order to better understand how Hh transducing com-
plex may function, we focused on the precise relation-
ships among its different members. The physical
association of Cos2 with Fu and Ci has been previously
demonstrated using gel filtration chromatography and co-
immunoprecipitation from embryo and cultured cell ex-
tracts [28–30]. Here we have undertaken the identifica-
tion and the mapping of the molecular interactions taking
place between Cos2, Fu, Su(fu), and Ci using the yeast
two-hybrid method and an in vitro biochemical assay. Our
results show that (i) Cos2, as Su(fu), interacts with both
the catalytic and regulatory domains of Fu and with the N-
terminal part of Ci; (ii) Ci and Fu associate with Cos2 in
the neck domain, located C-terminally to the motor do-
main. The precise identification of the interaction region
of each protein in vitro provide new insights into the struc-
ture and possible mechanism of action of the complex
during Hh signal transduction.

Results
Cos2 – Fu interaction
In vitro interaction assays were done between a GST-Cos2
fusion protein expressed in bacteria and S-methionine-ra-
diolabeled Su(fu) or Fu produced by in vitro translation.
The Glutathion-S-tranferase was fused to the N-terminus
of the full-length Cos2 protein.

No interaction was detected between GST-Cos2 and
Su(fu) (Figure 1A). The same negative result was obtained
using GST-Su(fu) and radiolabelled Cos2 (data not
shown).

In contrast, Fu binds specifically to the GST-Cos2 fusion
protein but not to the GST protein alone (Figure 1A). We
tested separately Fu1-305, the catalytic domain of Fu
(called Fukin) and Fu306-805, the part of Fu that is not
the kinase domain, referred to as the regulatory domain
(called Fureg). Both domains have the capacity to specifi-
cally interact with the GST-Cos2 fusion protein (Figure
1A). Similar interactions were previously observed be-
tween Su(fu) and the two domains of Fu ([31] and data
not shown).
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To confirm the Cos2-Fu interaction and to further map
the interacting regions we employed the yeast two-hybrid
system (Figure 1B). Neither full-length Cos2 nor full-
length Fu and Fukin could be used in this assay due to in-
terfering activities. Indeed, as we have shown previously,
the presence (but not the activity) of the kinase domain of
Fu prevents any protein interaction ([31] and data not
shown). Using a transcription inhibition assay [33], we
found that the full-length Cos2 fusion to the GAL4 DNA

binding domain, and some partial Cos2 proteins (such as
Cos1-751) that contain the motor domain, do not trans-
locate efficiently to the nucleus (data not shown). The
motor domain of Cos2 (AA 172–347) might tether the fu-
sion protein in the cytoplasm, perhaps by binding to mi-
crotubules. We therefore analyzed partial Fu and Cos2
proteins.

Figure 1
Direct specific interaction between Cos2 and Fu. (A). GST pull down assay: In vitro translated, 35S-methionine-labeled
Fu, Fu1-305, Fu306-805 or Su(fu) before (Input, Lanes 1, 4, 7 and 10) or after incubation with equal amount of, respectively,
GST (used as a control; Lanes 2, 5, 8 and 11) or GST-Cos2 (Lanes 3, 6, 9 and 12). Input equals one third of the amount used in
the pull down assay. (B). Yeast two hybrid assay: Left: β-galactosidase assay, Right: leucine assay. Each dot corresponds to a
yeast diploid coexpressing, respectively, various regions of Cos2 (as shown below) or Rab3 fused to the DNA binding domain
of LexA (DBD LexA) (rows I to V) and respectively Fu306-805, Fu437-805, GGTIIβ fused to the transactivation domain B42
(columns 1 to 3). Both assays were performed using RFY231-pSH18-34 (Rows I to IV) or EGY189-pSH18-34 (Row V). The
negative control assays with Rab3 give the same result in both strains (Row I and data not shown). In combination with Fureg,
Cos538-751 leads to even higher reporter activation than does Cos538-1201. This could be due to numerous causes as differ-
ences in stability of the protein fusion, in their nuclear targeting, and/or affinity for Fureg. Cos2: heptad repeats domain
(AA643-990), in black Cos2 motor domain (AA172-357) in grey.
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In the yeast two-hybrid assay, Fureg (Fu306-805) interacts
specifically with the C-terminal part of Cos2 (Cos538-
1201) (Figure 1B). Part of this region, Cos538-751, is suf-
ficient to interact with Fureg. Cos538-751 encodes a re-
gion of Cos2 C-terminal to the putative motor domain
(See also Figure 3) and which overlaps 14 of the 36 heptad
repeats of a predicted coiled-coil motif of Cos2. In other
kinesins the coiled coil repeats mediate homodimeriza-
tion and belong to a flexible stalk domain involved in the
movements of the motor domain along the microtubules
[34–45].

We also mapped the region of Fu that interacts with Cos2
(Figures 1B and 3). The C-terminal-most region of Fu (AA

437 to 805) is sufficient to interact with both Cos538-
1201 and Cos538-751. This region of Fureg is adjacent
but non-overlapping to the part of Fu (AA 306 to 436)
that interacts with Su(fu) [31]. No interaction between Fu
and the different Cos2 constructs tested was detected with
smaller pieces of Fureg (Fureg306-436, Fureg437-581,
Fureg306-581, Fureg582-805; data not shown).

In summary, Cos2 interacts with both the kinase and reg-
ulatory domains of Fu, just as Su(fu) does [31]. The regu-
latory domain of Fu interacts with a central region of Cos2
located C-terminally to the motor domain.

Figure 2
Direct specific interaction between Cos2 and Ci. (A). GST pull-down assay: In vitro translated, 35S-methionine-labeled Ci
or a truncated form of Ci (Ci1-430) before (Input, Lanes 1 and 4) or after incubation with equal amount of, respectively, GST
(Lanes 2 and 5) or GST-Cos2 fusion (Lanes 3 and 6). Ci: zinc finger domain in grey, activation domain in black, the approximate
cleavage position is around AA703. (B). Yeast two hybrid β-galactosidase assay between various regions of Cos-2 or Rab3 in
fusion with the DBD lex-A (Rows I to V) and respectively GGTIIβ, Ci, Ci1-346 or Ci340-445 in fusion with B42 (Columns 1 to
4). See also legends to Figure 1B and 2A.
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Cos2 – Ci interaction

In vitro assays between the GST-Cos2 fusion protein and
radiolabeled Ci revealed a direct specific interaction be-
tween these proteins (Figure 2A). Again, as with Fu, the
yeast two-hybrid assay did not allow the detection of an
interaction between full-length Cos2 or Cos1-751 and Ci.
Nevertheless, interactions consistent with this GST "pull
down" result were detected in yeast two-hybrid assays us-
ing full-length Ci and the region of Cos2 spanning resi-
dues 348 to 546 (Cos348-546) (Figure 2B). This part of
Cos2 is adjacent to the Fureg binding site, in a region lo-
cated immediately C-terminal to the motor domain at the
base of the neck region. This region has been shown to

regulate the directionality of the movement of kinesins
along microtubules [34–45].

To identify the region of Ci that interacts with Cos2, par-
tial deletions of Ci were generated and tested for interac-
tion with Cos2 using a combination of in vitro and two-
hybrid assays. The first 430 amino acids of Ci are suffi-
cient to interact in vitro with GST-Cos2 (Figure 2A). In
contrast the first 346 residues of Ci, which have been pre-
viously shown to bind Su (fu) [31], do not interact in
yeast with Cos538-1201 nor with Cos348-546 constructs
(data not shown). These results suggest that Cos2 interacts
with a part of Ci between amino acids 346 and 430 (Fig-
ure 2B). Indeed, Ci340-445 is sufficient to interact in yeast
with Cos348-546 (Figure 2B).

Thus, like Su(fu), Cos2 interacts within the N-terminal re-
gion of Ci, which is present in both Ci155 and Ci75-R.
The region of Cos2 involved in this interaction is located
at the base of its neck, which plays an important role in
the activity of conventional kinesin.

Discussion
Cos2, Fu and Su(fu) play multiple and complex roles in Ci
control. Cos2 is central to this control both as a negative
regulator in the absence of Hh and a positive regulator in
the presence of Hh. In the absence of Hh signal, Cos2 ac-
tion prevents Ci target activation by favoring Ci cleavage
and by cytoplasmic retention of full-length Ci
[14,18,23,46]. In response to Hh, Cos2 is also required for
complete Ci activation in the wing imaginal disc [19,24].
Fu is also involved in positive and negative aspects of Ci
regulation. Its kinase activity is required for Ci cytoplas-
mic release and activation in response to Hh signal. Its C-
terminal regulatory domain, although also required for Fu
kinase activity, cooperates with Cos2 and Su(fu) to nega-
tively regulate Ci in the absence of Hh signal (see bellow)
[19,22,25–27,47]. Although Su(fu) mutants display only
a very subtle phenotype, Su(fu) acts negatively in the Hh
pathway. A decrease in Su(fu) (or cos2) dosage suppresses
the effects of the loss of Fu kinase activity. Su(fu) loss of
function aggravates cos2 phenotypes [47], so Su(fu) activ-
ity normally assists Cos2 in its negative regulation of Ci.
Su(fu) seems to participate both in the retention of Ci in
the cytoplasm and in preventing activation of full-length
Ci [19,26,27].

Here, we show that Cos2 interacts directly with both Fu
and Ci, as does Su(fu). This confirms and extends previ-
ous results, which showed these proteins to co-immuno-
precipitate from embryo and cultured cell extracts and to
be members of one or several large molecular weight cy-
tosolic complex (es) [10,28–30]. The mapping of the re-
gions of each protein sufficient for interaction with its
partner, in vitro and in yeast (Figure 3), sheds new light on

Figure 3
Summary of the interaction domains The interactions
between Cos2, Ci, Fu, and Fureg described above and in
former work [31] are summarized. The interaction between
the region 941–1065 of Ci and Cos2 was previously shown
by Wang et al. 2000 [23]. The domains of interactions are
indicated in lines above or under each protein structure. No
interaction could be detected between Cos2 and Sufu (data
not shown). See also legends for Figures 1 and 2. M: Cos2
motor domain, HR: Cos2 heptad repeats, DBD:Ci DNA
binding domain; NLS: Ci nuclear localisation signal, AD: Ci
activation domain.
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the respective role of Fu, Su(fu), and Cos2 and on their re-
lationships in the Hh pathway.

Our results demonstrate that Cos2 can bind to the N-ter-
minus of Ci, in a region (amino acids 340–445) located
between a region interacting with Su(fu) (amino acids
240–346) and the zinc finger domain (amino acids 453–
603). Wang et al. also used the two-hybrid method to look
for interactions between Ci and Cos2. In contrast to our
results, they found no interaction of Cos2 with the N ter-
minus of Ci [23]. This discrepancy can have multiple caus-
es as the fact that their constructs lack amino acids 441 to
445 of Ci or differences in the fusion proteins tested (i.e.
differences in protein folding, stability, nuclear targeting
etc) or in the reporter used... Nevertheless, they also iden-
tified a second region of interaction with Cos2, located in
the C-terminus of Ci (Ci 941–1065) [23]. Both the Cos2/
Ci941-1065 interaction and the previously reported
Su(fu)/Ci240-346 interaction have been shown to be re-
tain Ci in the cytoplasm in the absence of Hh signal
[19,23]. Strikingly, neither Su(fu) nor Cos2 interaction re-
gions of Ci map to the amino acids 703 to 850 (Ci-cyt) re-
gion identified by Aza-Blanc et al. as involved in Ci
cytoplasmic tethering [10]. One hypothesis is that the re-
gion 703–850 of Ci contains an export signal [14,24].

The interaction of Su(fu) and Cos2 with the N-terminal
part of Ci is in agreement with the presence of both full-
length Ci-155 and Ci75-R in the large complex(es). Since
Fu, Su(fu) and Cos2 can also be found in complex(es) of
similar size [10], Cos2 and Su(fu) may control the activity
of Ci75-R in vivo by a so far unknown mechanism. Several
roles can be proposed for the interaction between Cos2
and the Ci N-terminus. The association could reinforce
the tethering of Ci in the cytoplasm by Cos2 and Su(fu).
An attractive alternative is that the association could un-
derlie the requirement for Cos2 to activate Ci155 in re-
sponse to Hh. For example, Cos2 and Su(fu) could
compete to bind Ci N-terminus and Hh signaling could
favor the transient binding of microtubule-unbound
Cos2, leading to Su(fu) release.

We find that Cos2, like Su(fu), is able to interact with two
different domains of Fu: the Fu kinase and regulatory do-
mains. No phosporylation of Cos2 nor Su(fu) by Fu has
been reported so far. In S2 cells, it has been reported that
Hh induces Cos2 hyperphosphorylation in a Fu inde-
pendent manner. Nevertheless, the interactions of respec-
tively Su(fu) and Cos2 with the kinase domain of Fu
suggest their direct phosphorylation by Fu. Some kinesins
are regulated by phosphorylation, and Fu kinase activity
could control Cos2 activity [48,49]. The interaction be-
tween the regulatory domain of Fu and Cos2 is in agree-
ment with the lack of Fu-Cos2 co-immunoprecipitation in
fu mutants that are missing part or all of the regulatory do-

main (fuclass II mutant, see below) [28]. Possibly, the in
vivo interaction of the kinase domain of Fu with Cos2 re-
quires the binding of Cos2 to Fureg, or the interaction
could be too transient to be detected in fuclass II mutants.

The interaction of the regulatory domain of Fu with
Su(fu) and Cos2 provides a support for the complex ge-
netic relationships previously described to occur between
Fu, Su(fu), and Cos2. Mutations in the catalytic (class I)
and the regulatory (class II) domains of Fu are genetically
distinguishable from each other in a Su(fu) or cos2 mutant
background, suggesting distinct roles for the two domains
of Fu [22,47,50]. Thus, Su(fu) ; fuclass I double mutants are
almost wild type, while fuclass II; Su(fu) double mutants
have a cos2-like phenotype associated with the activation
of Ci target genes. Similarly, fuclass II alleles strongly en-
hance the effect of a heterozygous cos2 mutation, though
alleles fuclass I do not. These observations strongly suggest
that the regulatory domain of Fu also plays a negative role
in Hh signal transduction, this effect being detected only
in association with Su(fu) or cos2 mutations. We propose
that, in the absence of Hh signal, Fureg could act as a scaf-
fold to anchor Su(fu) and Cos2 in the complex, favoring
their negative effect on Ci. In fuclass II mutants, the negative
effect of Su(fu) and Cos2 would be lessened due to their
weaker anchoring in the complex. This would only be re-
vealed in the presence of a decrease in Su(fu) or Cos2 dos-
age that would cause a further destabilization of the
complex.

In conventional kinesins, the C-terminal globular tail do-
main associates with vesicles. Our results show that the
Cos2 C-terminus is not required to bind either to the Ci
N-terminus (Ci340-445) or the Fureg domain. Instead,
both interactions involve adjacent sequences located be-
tween the motor domain and the stalk homodimerisation
domain. In kinesin itself, this region is called the "neck"
domain and is important for efficient motor function. In
at least some kinesin molecules the neck is involved in the
determination of the direction of kinesin movement
along the microtubule, in velocity, in processivity, and in
mechanochemical coupling [34–45]. Thus, although no
Cos2 motor activity has been described so far, Fu and/or
Ci binding to its central region could induce structural
changes and therefore modulate Cos2 motor activity. This
hypothesis opens the possibility of a feedback control of
Ci on Cos2 activity.

Conclusion
The present data, together with published results, suggest
that the existence of direct multiple interactions between
Cos2, Su(fu), Fu, and Ci, each protein interacting with at
least two other partners. We propose a model based upon
a complex that includes Fu, Cos2, Su(fu), and Ci (Figure
4). Changes in the composition, activity and/or subcellu-
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lar localization of this complex will control Ci fate in the
absence and in the presence of Hh. In the absence of Hh
signal, Su(fu) and Cos2 prevent Ci activation, Ci process-
ing into the repressor form is favored and full-length Ci is
exported from the nucleus. Upon Hh reception, Fu is acti-
vated, opposing Su(fu) to allow Ci to become an activator.
Simultaneously the negative effect of Cos2 is alleviated,
perhaps by release from the microtubules and/or a change
in subcellular location. This lowers the rate of proteolysis
of Ci into its repressor form and triggers nuclear import of
full-length Ci. Furthermore, Cos2 and Fu promote the
conversion of Ci 155 into an activator form, ultimately re-
sulting in the transcription of Hh target genes.

So far, each protein of the complex can serve as a direct
link between two other proteins, and could in this way
form a scaffold for the complex. It is important to note
that the interactions observed in vitro may not define a sin-
gular protein complex in vivo. A subset of the proteins
could associate at any given time, or more than one type
of complex may exist simultaneously. Additional interac-
tions, may of course contribute to the stability, organiza-
tion, or activity of the complex(es). Structural data and
new functional tests will be required to learn more about
the multiple interactions among the components, and
their multiple roles in the control of Hh signaling.

Figure 4
Model of Hedgehog signaling In the absence of Hh signal, Cos2 and Su(fu) binding to Ci prevents Ci activation and retain it
in the cytoplasm. Most of Ci is available for cleavage in a process which is dependent upon its phosphorylation by the PKA and
which involves Cos2 and Slimb. Uncleaved, full-length Ci, is actively exported from the nucleus. Upon Hh reception, Fused is
activated and acts on Cos2 and Sufu, alleviating thus their negative effect on Ci. As a result, Ci cleavage is reduced, Ci155
nuclear import overcomes its export and Ci is activated. Ci activation requires Cos2 and Fu to antagonize Su(fu) negative
effect. Activated nuclear Ci interact with the CBP to fully activate the transcription of Hh target genes.
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Materials and Methods
Strains 
RFY231: Matα ura3-1 his3 trp1 ∆ :: hisG 3lexAop-LEU2 :
:leu2 was built by R. Finley (unpublished data). EGY189
Matα ura3-1 his3 trpl-1 1lexAop-LEU2: :leu2 has a less sen-
sitive leu2 reporter gene than RFY231 due to a lower
number of copies of lexAop[51]), RFY206: Mata his3∆200
leu2-3 lys2 ∆ 201 ura3-52 trp1∆hisG. Yeast cultures and
transformations were performed as in [31].

Plasmids
The two-hybrid pEG and pJG expression vectors were de-
rived from pEG202 (translational fusion with the DNA
binding domain of lexA) and pJG4-5 (translational fusion
with the activation domain B42) [33,52]. Two numbers
added after the protein name indicate the first and last res-
idues of truncated proteins. pJGCi (full-length), pJGCi1-
346 and pJGFu306-805 (pJGFureg), were described in
[31]. pEGCos2 (full-length), pEGCos1-751, pEGCos348-
546, pEGCos538-1201, pEGCos538-751, pJGCi340-445,
pJGFu437-805 were built by in frame cloning of restric-
tion fragments or PCR products. pSH18-34 carries the
lacZ reporter gene [52]. The GST-Cos2 translational fu-
sion was made by introducing the entire Cos2 coding se-
quence in frame with the glutathione S-transferase (GST)
gene in pGEX-4T3. All PCR products and junctions were
sequenced.

GST fusion protein binding assays
GST-Cos2 and GST protein production and purification,
in vitro coupled transcription-translation, and in vitro in-
teraction assays were performed as described in [31]. In all
the figures, the amount of radiolabelled protein used in
each "input" lane equals one-third the amount of protein
used in the assay and equivalence in the amount of GST
and GST-Cos2 was checked by Coomassie blue staining.
All assays were done at least twice.

Two hybrid assays
RFY231-pSH18-34 or EGY189-pSH18-34 were trans-
formed with pEG (lexA fusion) constructs and subse-
quently mated with RFY206 transformants containing the
pJG constructs (B42 fusion). Geranyl-geranyl transferase
II β (GGTIIβ) and Rab3 are two proteins known to interact
together [53]. They are respectively used as negative con-
trols in tests of the pEGCos2 constructs and the pJGCi or
pJGFu constructs. Diploids were selected on SCglu-UHW.
For each diploid strain, 3 µl of cell suspension were spot-
ted on SCgal-UHW (for β-galactosidase assays) or SCgal-
UHWL solid media (for leucine auxotrophy assays).
Growth on SCgal-UHWL was observed after 24 hours of
incubation at 30°C. β-galactosidase assays were per-
formed by the overlay method as described in [54]. All as-
says were done at least three times.
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