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Heterogeneity in the structural brain abnormalities associated with schizophrenia has made identification of re-
liable neuroanatomical markers of the disease difficult. The use of more homogenous clinical phenotypes may
improve the accuracy of predicting psychotic disorder/s on the basis of observable brain disturbances. Here we
investigate the utility of cognitive subtypes of schizophrenia – ‘cognitive deficit’ and ‘cognitively spared’ – in de-
termining whether multivariate patterns of volumetric brain differences can accurately discriminate these clini-
cal subtypes from healthy controls, and from each other. We applied support vector machine classification to
grey- and white-matter volume data from 126 schizophrenia patients previously allocated to the cognitive
spared subtype, 74 cognitive deficit schizophrenia patients, and 134 healthy controls. Using this method, cogni-
tive subtypes were distinguished from healthy controls with up to 72% accuracy. Cross-validation analyses be-
tween subtypes achieved an accuracy of 71%, suggesting that some common neuroanatomical patterns
distinguish both subtypes from healthy controls. Notably, cognitive subtypes were best distinguished from one
anotherwhen the samplewas stratified by sex prior to classification analysis: cognitive subtype classification ac-
curacy was relatively low (b60%) without stratification, and increased to 83% for females with sex stratification.
Distinct neuroanatomical patterns predicted cognitive subtype status in each sex: sex-specific multivariate pat-
terns did not predict cognitive subtype status in the other sex above chance, and weight map analyses demon-
strated negative correlations between the spatial patterns of weights underlying classification for each sex.
These results suggest that in typical mixed-sex samples of schizophrenia patients, the volumetric brain differ-
ences between cognitive subtypes are relatively minor in contrast to the large common disease-associated
changes. Volumetric differences that distinguish between cognitive subtypes on a case-by-case basis appear to
occur in a sex-specific manner that is consistent with previous evidence of disrupted relationships between
brain structure and cognition inmale, but not female, schizophrenia patients. Consideration of sex-specific differ-
ences in brain organization is thus likely to assist future attempts to distinguish subgroups of schizophrenia pa-
tients on the basis of neuroanatomical features.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-SA license
(http://creativecommons.org/licenses/by-nc-sa/3.0/).
1. Introduction

Cognitive deficits are a core feature of schizophrenia and are closely
linked with disability and treatment outcomes (Brekke et al., 2007;
Green, 2006; Heinrichs, 2005; Jablensky, 2006; Keefe and Harvey,
2012; Ammari et al., 2010).While severe cognitive deficits are observed
in many patients, the magnitude of cognitive dysfunction may vary
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between individuals. Attempts to reduce such phenotypic heterogene-
ity have seen the delineation of two subtypes of schizophrenia in large
cohort studies – ‘cognitive deficit’ (CD) and ‘cognitively spared’ (CS) –
based on cognitive performance across multiple domains (Green et al.,
2013; Hallmayer et al., 2005; Jablensky, 2006). These subtypes of
schizophrenia thus show distinct cognitive profiles, in the context of
other differential illness characteristics: CD patients tend to be impaired
across all cognitive domains, are more likely to be male, have earlier ill-
ness onset, and a greater severity of functional disability (Green et al.,
2013); in contrast, CS cases show a cognitive profile that remains some-
what impaired relative to healthy controls (HCs), but is significantly
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better than CD cases, and is associated with greater complexity of delu-
sional systems (Morar et al., 2011). Preliminary genetic investigation of
these subtypes has revealed an association of CD case status with the
MIR137 microRNA locus and negative symptoms (Green et al., 2013),
and genetic linkage to chromosome 6p24 (Hallmayer et al., 2005). In
contrast, CS cases show relatively stronger genetic association with
Neuregulin 3 (Morar et al., 2011). These cognitive subtypes may thus
represent more phenotypically homogenous patient groups with at
least partially distinct neuropathological processes, about which clues
may be evident in differential brain structure.

Considerable neuroanatomical evidence shows that schizophrenia is
associated with substantial, diffuse brain volume loss, though the exact
location of changes is not well-replicated across studies, likely reflecting
the phenotypic heterogeneity among cases and samples (Shepherd
et al., 2012). Recent attempts to delineate a neuroanatomical signature
of schizophrenia have employed multivariate classification techniques
to distinguish patients from controls on the basis of neuroanatomical
feature sets (Nieuwenhuis et al., 2012; Davatzikos et al., 2005; Fan
et al., 2007; Klöppel et al., 2012; Koutsouleris et al., 2009). While these
studies demonstrate the capacity to successfully predict schizophrenia
‘case-ness’ on the basis ofmultivariate neuroanatomical patterns, classi-
fication accuracy in large cohort studies is typically around 70% — less
than 50% above chance — leaving considerable room for improvement
(Nieuwenhuis et al., 2012). Investigation of putative subtypes of schizo-
phrenia that appear to represent more homogenous phenotypes, such
as those delineated via cognitive profiling (Koutsouleris et al., 2012;
Ammari et al., 2010; Green et al., 2013; Jablensky, 2006), may improve
the accuracy with which schizophrenia case-ness can be predicted on
the basis of brain structure.

Neuroanatomical features associated with cognitive deficits in
schizophrenia include reduced whole-brain grey matter volume and
cortical thickness, localized reductions in prefrontal, temporal and pari-
etal grey matter volume, basal ganglia and thalamic volume reductions
(Cobia et al., 2011; Rais et al., 2012; Rüsch et al., 2007; Crespo-Facorro
et al., 2007), and alterations in the integrity of white matter pathways
(Nazeri et al., 2013;Wexler et al., 2009). Disruptions of the normal asso-
ciations between cognitive performance measures and global and re-
gional brain volumes have also been reported (Antonova et al., 2004;
Ehrlich et al., 2012; Hartberg et al., 2010; Wexler et al., 2009; Nazeri
et al., 2013; Cocchi et al., 2009; Killgore et al., 2009; Antonova et al.,
2005; Salgado-Pineda et al., 2003; Sanfilipo et al., 2002). However, the
utility of multivariate neuroanatomical profiles in discriminating be-
tween cognitive subtypes on a case-by-case basis remains unclear.

Several studies have additionally demonstrated that schizophrenia-
associated disruptions to the normal relationships between cognition
and brain volumes occur in a sex-related manner. For example, normal
structure–cognition relationships in the cerebellum may be attenuated
or absent for male patients as compared with female patients and HCs
(Antonova et al., 2004; Flaum et al., 1994; Picard et al., 2008). Disruption
of normal neuroanatomical sexual dimorphisms in schizophrenia
patients3 brains has also been reported (Abbs et al., 2011; Crow, 2013;
Goldstein et al., 2002; Narr et al., 2004; Gur et al., 2004). As sexually di-
morphic neuroanatomical differences arise during brain development
through interaction of hormonal, genetic and epigenetic factors, their
characterization in sexually asymmetric psychiatric conditions may
provide insights into neurodevelopmental processes relevant to disease
aetiology, and stratifying samples by sexmay further assist efforts to re-
duce within-sample heterogeneity (Goldstein et al., 2013; Lombardo
et al., 2012; Ruigrok et al., 2014; Paus et al., 2008). However, the rele-
vance of sex-specific neuroanatomical patterns to the classification of
schizophrenia and its subtypes has not yet been determined.

Here, we set out to characterize multivariate patterns of grey-
and white-matter volumes that discriminate between CD patients, CS
patients and HCs. We hypothesized that the cognitive and genetic dif-
ferences associatedwith cognitive subtypeswouldmanifest in neuroan-
atomical changes distinguishing each group from HCs, and from each
other. We specifically predicted that CS and CD subtypes would be dis-
tinguished by changes in brain regions associated with cognition in
schizophrenia, such as frontal and temporal cortices (Shepherd et al.,
2012) and distributed white matter networks (Wexler et al., 2009). As
schizophrenia patients show sexual asymmetries in phenotypic features
including cognitive deficits, age of onset and symptom severity (Green
et al., 2013; Hallmayer et al., 2005; Jablensky, 2006; Han et al., 2012),
and schizophrenia is associated with disruption of sexual dimorphisms
in brain structure and structure–function relationships (Antonova et al.,
2004; Goldstein et al., 2002; Picard et al., 2008), we further hypothe-
sized that neuroanatomical features distinguishing cognitive subtypes
(from healthy controls, and from each other) would differ between
males and females. Specifically, we predicted that classification accura-
cywould be higher when performed on a sex-stratified sample, as com-
pared to when performed on a mixed-sex sample.

2. Methods

2.1. Participants

Structural MRI scans were available for 427 participants (249 cases,
179 male; 163 controls, 76 male). These comprise a subset of 629 scans
obtained from the Australian Schizophrenia Research Bank (ASRB); we
excluded 25 participants who met ICD-10 criteria for bipolar disorder,
major depression with psychotic features, or psychosis not otherwise
specified, and an additional 177 scans failing stringent exclusion criteria
for excess motion or other T1 image artefacts. Scan quality control was
performed by a trained investigator whowas blind to participants3 clin-
ical and cognitive status. All included cases met ICD-10 criteria for
schizophrenia (N = 208) or schizoaffective disorder (N = 41) with di-
agnoses confirmed using the OPCRIT algorithm (McGuffin and Farmer,
1991) applied to interviewer ratings on the diagnostic interview for
psychosis (DIP) (Castle et al., 2006).

Detailed information regarding sampling, recruitment strategies,
and consent procedures are published elsewhere (Loughland et al.,
2010). Participantswere aged 18–65 years and spokefluent English. Ex-
clusion criteria included the presence of an organic brain disorder, brain
injurywith post-traumatic amnesia,mental retardation,movement dis-
orders, and recent (within 6months) substance dependence or electro-
convulsive therapy. HCs were screened for the absence of personal or
family history of psychosis or bipolar-I disorder.

2.2. Cognitive and clinical characterization

Cognitive subtypes of patients were previously determined (Green
et al., 2013) by applying multi-dimensional Grade of Membership
(GoM) analysis to cognitive performance data from a broader sample
of ASRB schizophrenia patients (N = 617). In brief, nine cognitive per-
formance measures contributed to the GoM: the Wechler Abbreviated
Scale of Intelligence (WASI) (Wechsler, 1999), Wechsler Test of
Adult Reading (WTAR) (Wechsler, 2001), Letter Number Sequencing
(Wechsler, 1997), Controlled Oral Word Association Test (Spreen and
Strauss, 1998), and five subscales from the Repeatable Battery for As-
sessment of Neuropsychological Status (Randolph, 1998). The GoM
analysis identified two latent subtypes (CD and CS) within the sample
of schizophrenia cases (Green et al., 2013).Within the subset of patients
for whom MRI scans were available, 74 patients (57 male) were classi-
fied into the CD subtype and 126 patients (74male) were classified into
the CS subtype.

The DIP (Castle et al., 2006) was used to establish a lifetime diagnosis
of a psychotic disorder, according to ICD-10 criteria (McGuffin and
Farmer, 1991). In addition, the DIP provides data on socio-demographic
data, family and medical history, and drug and alcohol assessment. As
per methods outlined by Green et al. (2013), lifetime data for 11 DIP
items assessing hallucinations and delusions were summed to provide
an index of positive symptom severity; a negative symptom severity
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score was derived by summing the ratings on affective restriction or
blunting and negative formal thought disorder, as well as responses to
the ASRB Sociodemographic and Clinical History Schedule items on social
withdrawal and social interests. A modified version of the Neurological
Evaluation Scale (NES) (Buchanan and Heinrichs, 1989) was used to as-
sess neurological soft signs, and general level of functioningwas assessed
using the Global Assessment of Functioning (GAF) scale (A.P.A., 1994).

2.3. Image processing

High-resolution T1-weighted structural MRI scans (MPRAGE) were
collected on Siemens Avanto 1.5 T scanners across five Australian re-
search sites (Loughland et al., 2010). 176 contiguous 1mmsagittal slices
were collected (field-of-view 250 × 250 mm2, time-to-repetition
1980 ms, time-to-echo 4.3 ms, data acquisition matrix 256 × 256,
voxel size 0.98× 0.98×1.0mm3,flip angle 15°). Scanswere individually
reviewed for motion and other artefacts. The VBM8 toolbox for
SPM8 (http://dbm.neuro.uni-jena.de/vbm/) was used for image pre-
processing. Images were segmented into grey matter, white matter
and cerebrospinal fluid using a unified segmentation approach com-
bined with Hidden Markov Random Fields to improve signal-to-noise
ratio. Images were subsequently normalized and modulated with the
Jacobian determinants of the deformation parameters in order to pre-
serve the absolute tissue volumes. Modulation of non-linear effects
without affine normalization allows interpretation of relative volumes,
negating the need to further account for total individual brain volume.
No spatial smoothingwas applied (Klöppel et al., 2008; Chu et al., 2012).

2.4. Whole-brain multivariate pattern analysis

Linear kernel support vector machine (SVM) classifierswere used to
perform binary classification between three participant sets. Set 1 in-
cluded CD cases andHCs. Set 2 included CS cases andHCs. Set 3 included
CS cases and CD cases. To control for effects of covariates on classifica-
tion, participants in each set were matched on sex, age (±5 years),
andMRI scanning site using an automated procedure. To avoid order ef-
fects, participants were matched in a random order, and a random
match was chosen when multiple potential matches were available.

To ensure classification was stable and representative of the sample
set, wemaximized the number of participants classified andminimized
classification variability (Nieuwenhuis et al., 2012) by applying an en-
semble learning approach with 200 resample iterations. In each itera-
tion a distinct matched sample was created using the automated
procedure described above, and leave-two-out cross-validationwas ap-
plied. On each cross-validation fold, one matched pair of participants
was set aside as testing data, and data from the remaining participants
was used to train the classifier. This cross-validation procedure was re-
peated until all matched pairs had been used as test data once. A final
class prediction was assigned to each scan based on the average predic-
tion made for it across all 200 classifier iterations.

To investigate the specificity (vs. generalizability) of themultivariate
neuroanatomical patterns that distinguished each cognitive subtype
from controls, we also (1) trained classifiers on all Set 1 participants
and tested on all Set 2 participants, and (2) trained classifiers on all
Set 2 participants and tested on all Set 1 participants. Importantly, for
these analyses we used matched samples in which unique HCs were
matched with each CD and CS patient; the classifiers trained on Sets 1
and 2 were therefore independent. Final class predictions were made
using the ensemble procedure described above, except that training
and testing were performed once only on each iteration.

Initial analyses were performed on the overall sample, which
included males and females. To investigate sex-specific differences in
classification accuracy, a second set of analyses were performed after
stratifying the sample by sex. Furthermore, we investigated the predic-
tive value of three feature sets: grey matter only (GM), white matter
only (WM), and concatenated grey and white matter (GM + WM). As
the same matched sample sets were used for each analysis, we
employed McNemar tests to assess whether classification accuracies
for each participant differed depending on the feature set classified,
and whether the sample was stratified by sex. Chi-square tests were
used to compare classification accuracies of independent groups
(e.g., males vs. females).

Classifier performance was assessed by calculating the accuracy,
sensitivity and specificity with which test observations were classified.
Sensitivity was defined as TP / (TP + FN), where TP is the number of
true positives and FN is the number of false negatives. Specificity was
defined as TN / (TN + FP), where TN is the number of true negatives
and FP is the number of false positives. For Sets 1 and 2 (HC vs. CD,
and HC vs. CS), sensitivity and specificity were defined as the ability to
identify patients. For Set 3 (CD vs. CS), sensitivity and specificity were
defined as the ability to identify CD cases. Classification accuracy was
calculated as the average of the sensitivity and specificity. We also per-
formed receiver operating characteristic (ROC) curve analysis for each
classifier, from which area under the curve (AUC) was calculated.

The statistical significance of classifier results was assessed using
permutation testing (2000 permutations). For each permutation, the
classmembership of participantswas randomized, and ensemble learn-
ing classifier accuracy was assessed as described above. The same
matched sampleswere used for the original and the permuted analyses.
Permutation testing was applied to accuracy data as this reflects the
overall predictive power of the classifier. Classification accuracies ob-
tainedwith permuted data were used to form a null distribution against
which we assessed the significance of classification accuracy obtained
using the original dataset.

Classification was performed using custom scripts in Matlab v8.1
(Mathworks, Sherborn, Massachusetts), and the PRoNTo (Schrouff
et al., 2013) and LIBSVM (Chang and Lin, 2011) toolboxes with the de-
fault cost parameter of C = 1.

2.5. Weight map and region of interest (ROI) analyses

SVM classifier training involves identification of a multidimensional
hyperplane that maximally discriminates groups of interest. For linear
SVMs, the hyperplane orientation is described by a unit weight vector
that is orthogonal to the hyperplane. The weight vector may therefore
be interpreted as a spatial representation of the decision boundary,
with the absolute value of individual indicating each voxel3s relative im-
portance to classification decisions (Mourao-Miranda et al., 2005;
Mourão-Miranda et al., 2012). Here, large negative weights at voxels
may reflect that tissue volumewas lower at that location in schizophre-
nia cases comparedwith HCs for Sets 1 and 2, and in CD cases compared
with CS cases for Set 3; large positive weights may indicate the con-
verse. Importantly, however, to minimize model over-fitting, each
SVM hyperplane is defined relative to the subset of training set exam-
ples that are most difficult to classify, and classification weights may
be affected by factors such as correlations between feature variables.
While classificationweightsmay be indicative of the direction andmag-
nitude of volume differences between groups, individual weights can
therefore be interpreted only in the context of the whole-brain weight
maps they are derived from (Ecker et al., 2010; Pereira et al., 2009;
Schrouff et al., 2013; Hastie et al., 2009).

Here, we investigated the spatial structure underlying classification
by averaging the weight maps from the classifiers trained on each of
our 200 matched samples, and then computing the average weight
across voxels within ROIs covering the entire brain. For GM weight
maps, average weights were calculated for ROIs from the Harvard–
Oxford cortical and subcortical atlases (Desikan et al., 2006), and the
probabilistic cerebellar atlas (Diedrichsen et al., 2009). For WMweight
maps, average weights were calculated for ROIs from the JHU white-
matter tractography atlas (Hua et al., 2008), the thalamus, putamen
and pallidum ROIs from the Harvard–Oxford subcortical atlas – which
overlapped with our WM mask − and left and right cerebellar ROIs

http://dbm.neuro.uni-jena.de/vbm/


Table 2
SVM classification accuracy (and sensitivity/specificity) for male participants.

Males only Tissue type

GM + WM GM-only WM-only

HC versus CD .70 (.63/.77)** .67 (.63/.71)*** .60 (.63/.58)p b .06

HC versus CS .71 (.69/.74)*** .66 (.67/.65)** .65 (.64/.66)**

CD versus CS .60 (.65/.54)** .58 (.61/.54)* .52 (.51/.53)

Significant (p b 0.05) accuracies are highlighted in bold.
* p b 0.05.
** p b 0.01.
*** p b 0.001.
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from the Talairach atlas (Lancaster et al., 2000). The relative strength
with which regions made a positive or negative contribution to classifi-
cation was compared across classifiers using two-tailed Pearson
correlations.

3. Results

3.1. Classification accuracy

3.1.1. Sex non-specific effects
For the overall sample that included males and females, the

matching procedure resulted in a total of 164 participants contributing
to Set 1 (72 CD cases and 92 HCs, comprising 56 and 52 males, respec-
tively), 252 participants contributing to Set 2 (126 CS cases and 126
HCs; 87 and 65 males, respectively), and 170 contributing to Set 3
(72 CD cases and 98 CS cases; 57 and 79 males, respectively). Note
that only a subset of these participants contributed to each iteration of
the analysis. For Set 1, an average of 53 ± 1.1 participants (μ ± S.D.)
contributed to each of the 200 ensemble learner iterations. For Sets 2
and 3 respectively, 90 ± 1.2 and 66 ± 1.3 participants contributed to
each iteration of the ensemble learner. Demographic, clinical and cogni-
tive data for participants contributing to analyses are provided in
Table S1.

SVM classification results and ROC curves for the combined sample
includingmales and females are presented in Table 1 and Fig. S1. Classi-
fication of CD cases versus HCs (Set 1) achieved a significant accuracy of
72% (permutation p b 0.001) using the concatenated grey matter and
white matter (GM+WM) feature set. Significant classification accura-
cies were also obtained using the GM-only or WM-only feature sets
(70% and 64%, respectively; all permutation p b 0.001), although accura-
cy was higher for the GM + WM than WM feature set (McNemar test:
p b 0.05). All CS versus HC (Set 2) classifier accuracies were also signif-
icantly above chance (WM + GM accuracy 67%, all permutation
p b 0.001), and classification accuracy was again significantly higher
for the GM + WM than WM feature set (McNemar test: p b 0.01).
SVM classification significantly differentiated CD cases from CS cases,
though with relatively low accuracy, for the GM and GM+WM feature
sets (59% accuracy, p b 0.01; and 56% accuracy, p b 0.05, respectively).

To directly test whether common neuroanatomical patterns provid-
ed the basis for classification of both CD and CS cases versus HCs, classi-
fiers were trained on HCs versus CD cases and tested on HCs versus CS
cases, and vice versa. Significant classification accuracy was achieved
in both cases. The classifier trained on CD case versus HC status using
the GM+WM feature set distinguished CS versus HC status with an ac-
curacy of 71% (permutation p b 0.001), sensitivity of 71% and specificity
of 71%. The classifier trained on Set 2 using the GM + WM feature set
distinguished CD case versus HC statuswith an accuracy of 71% (permu-
tation test, p b 0.001), sensitivity of 68% and specificity of 74%.

3.1.2. Sex-specific effects
To investigate whether sex-specific neuroanatomical patterns dis-

tinguished participant sets, classification analyses were repeated after
Table 1
SVM classification accuracy (and sensitivity/specificity) for the overall sample (males and
females).

Tissue type

GM + WM GM-only WM-only

HC versus CD .72 (.64/.79)*** .70 (.65/.74)*** .64 (.61/.66)***

HC versus CS .67 (.64/.70)*** .63 (.62/.64)** .59 (.61/.56)*

CD versus CS .56 (.57/.55)* .59 (.61/.57)** .54 (.57/.51)

Significant (p b 0.05) accuracies are highlighted in bold.
* p b 0.05.
** p b 0.01.
*** p b 0.001.
stratifying the sample by sex (see Tables 2 and 3; ROC curves are pre-
sented in Fig. S1). Sex-specific sample details and demographic, clinical
and cognitive data are provided in Table S2.

When stratified by sex, CD versus HC and CS versus HC classification
accuracies were significantly above chance (for all permutation tests
p b 0.01) except for when theWM feature set was used formale CD ver-
sus HC (marginal p b 0.06) or female CS versus HC classification
(p N 0.1). CD versus HC and CS versus HC classification accuracies
were not significantly different compared to when participants were
not stratified by sex, with the exception of male CS versus HC classifica-
tion using GM data, which was higher after stratification (66% vs. 61%;
McNemar test: p b 0.05).

When stratified by sex, CD versus CS classification accuracy was sig-
nificantly above chance for females, for all three feature sets (GM+WM
accuracy 83%, permutation test p b 0.001), and formaleswhen using the
GM+WM or GM-only feature sets (accuracy 60% and 58%, respective-
ly; permutation p b 0.01 and p b 0.05, respectively). When stratified by
sex, classification accuracy for females was significantly greater than
when participants were not stratified for the GM + WM feature set
(McNemar test: p b 0.05). Chi-square tests revealed that CD versus CS
classification accuracy was significantly higher for females than males
when using the GM + WM or WM-only feature sets (both p b 0.01).

To test whether distinct neuroanatomical patterns distinguished CD
versus CS cases for males and females, we trained classifiers on male
scans and tested them on female scans, and vice versa. Surprisingly,
this revealed that classification accuracy was significantly below chance
for the GM classifier trained on females and tested on males (accuracy
41%, two-tailed permutation test p b 0.05). All other cross-validation ac-
curacies were not significant (all accuracies between 43% and 54%).
3.1.3. Effect of cognitive subtype segregation on classifier accuracy
To determine whether classifier accuracy was improved when pa-

tients were stratified according to cognitive subtypes, classification
analyses were repeated to determine the accuracy with which HCs
could bedistinguished froma sample of SZ cases that included both cog-
nitive subtypes. The resulting classification accuracies were similar to
those obtained for each cognitive subtype (see Table 4), and McNemar
tests revealed no significant differences in HC versus CD or HC versus
Table 3
SVM classification accuracy (and sensitivity/specificity) for female participants.

Females only Tissue type

GM + WM GM-only WM-only

HC versus CD .68 (.56/.80)*** .70 (.63/.78)*** .68 (.63/.73)***

HC versus CS .72 (.69/.74)*** .70 (.64/.75)*** .54 (.56/.51)
CD versus CS .83 (.87/.79)*** .65 (.67/.63)* .77 (.80/.74)***

Significant (p b 0.05) accuracies are highlighted in bold.

** p b 0.01.

* p b 0.05.

*** p b 0.001.



Table 4
SVM classification accuracy (and sensitivity/specificity) for HCs vs SZ.

Tissue type

GM + WM GM-only WM-only

Males + females .68 (.67/.70)*** .65 (.66/.65)*** .59 (.62/.57)**

Males only .67 (.66/.68)*** .63 (.66/.59)*** .63 (.64/.62)***

Females only .71 (.73/.70)*** .75 (.73/.77)*** .58 (.62/.55)

Significant (p b 0.05) accuracies are highlighted in bold.

* p b 0.05.
** p b 0.01.
*** p b 0.001.
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CS classification accuracy compared to when patients were stratified by
cognitive subtype.

3.1.4. Effects of cannabis and alcohol abuse history
Although the ASRB excluded participants with current (within

6 months) substance dependence, male patients in our sample had
higher frequencies of lifetime history of cannabis and alcohol abuse
(see Table S2). If drug abuse effects modulate brain heterogeneity,
then classification accuracy may vary systematically with these vari-
ables; for example, neuroanatomical heterogeneity may be higher in
participants with a lifetime history of drug use compared to those with-
out, leading to reduced classification accuracy when this heterogeneity
is present in the sample. We therefore investigated whether the greater
(CD vs. CS) classification accuracies that were observed for females ver-
sus males could be attributed to the effects of sex-specific differences in
these variables.

We directly addressed this question by repeating our CD versus CS
classification after excluding all samples with a lifetime diagnosis of ei-
ther cannabis or alcohol abuse. Significant classification accuracies
(all N 70%) were obtained for females using all three feature sets. Classi-
fication accuracy was significant for males using the GM+WM feature
set, butwas relatively low (55%, p b 0.05). Importantly, as in our original
analysis, classification accuracy was significantly higher for females
than for males when using the GM + WM (chi-square test: p b 0.05)
and WM-only feature sets (chi-square test: p b 0.01). Classification ac-
curacies did not significantly differ compared to the original classifica-
tion analysis that included individuals with and without a history of
abuse (McNemar3s tests, all p N 0.1). Furthermore, no significant differ-
enceswere revealed by chi-square tests assessingwhether CD versus CS
classification accuracies from the original classification analysis differed
with diagnosis of a lifetime history of abuse (all p N 0.1).

3.2. Weight map analysis

To investigate the spatial structure underlying classification, we av-
eraged the weight map values from classifiers that successfully distin-
guished cognitive subtypes from healthy controls, and from each
other. Consistent with the whole-brain classification results, ROI analy-
ses identified similar patterns of GM andWMweights for the HC versus
CD and HC versus CS analyses using the combined male and female
sample (Supplementary Tables S3 and S4), with high negative weights
for subcortical regions including the hippocampus and amygdala, and
for several cerebellar ROIs (e.g., left X GM, left cerebellar WM). High
positiveweights were identified for the putamen, caudate and a distinct
set of cerebellar ROIs. Given that our cross-validation analyses had re-
vealed that HC versus CD and HC versus CS classification may be
achieved using similar classifier weight maps, we directly compared
the weight map values for each classifier. The similarity of the weight
map patterns was reflected in a strong positive correlation between
the GM and WM weights (GM: r = 0.66, p b 0.001; WM: r = 0.67,
p b 0.001) for the HC versus CD and HC versus CS classifiers.

For all CD versus CS classifiers, weight map analysis highlighted a
distributed network of cerebellar, subcortical and cortical regions
(Supplementary Tables S5 and S6). Consistentwith the fact that approx-
imately two-thirds of our patient sample were males, average GM
weights for the combined male/female classifier were highly similar to
those obtained for the male-only classifier (r = 0.92, p b 0.001) but
not to those for the female-only classifier (r = 0.04, p N 0.10), and
both sex-specific classifiers showed significant correlations with the
combined male/female WM weights (male-only: r = 0.80, p b 0.001;
female-only: r = 0.56, p b 0.01). We therefore focussed our analyses
on the male- and female-specific weight maps.

Given that our cross-validation analysis indicated below-chance or
non-significant performance when a CD/CS classifier trained on GM
data females was applied to males, we investigated the consistency of
weight map values across male- and female-specific classifiers. This re-
vealed a significant negative correlation between the average GM
weights for males and females (r = –0.32, p b 0.01), and a non-
significant correlation for WM weights (r = 0.05, p N 0.1). Given that
a large number of cerebellar ROIs had high average weights, and previ-
ous schizophrenia results demonstrating sex-specific volumetric and
structure–cognition relationships in the cerebellum (Antonova et al.,
2004; Flaum et al., 1994; Szeszko et al., 2003a; Szeszko et al., 2003b),
we examined whether our negative GM weight correlations were con-
sistent across the brain. The GMweight correlation for male and female
CD versus CS classifiers was negative and significant when restricted to
cerebellar ROIs (r = –0.74, p b 0.001), and non-significant when per-
formed on all other ROIs (r = 0.11, p N 0.1).

We emphasize that individual weights reflect the weight applied to
volumetric data at a given voxel in the context of theweights at all other
voxels. Individual voxel weights can therefore be interpreted only in the
context of the whole-brain maps they are derived from. In the present
study, for example, the Spearman correlation coefficient between
voxel-wise mean classifier weights and t-statistics and was between
0.93 and 0.95 for CD versus CS classifiers using the GM + WM feature
set, and up to 12.2% of voxels had negative univariate difference and
positive weight map values, or positive univariate differences and neg-
ative weight map values (see Fig. S2).

4. Discussion

The present study investigated the utility of multivariate patterns of
grey- and white-matter volumes in discriminating CD and CS schizo-
phrenia subtypes from healthy controls, and from each other. Applica-
tion of support vector machine classifiers allowed mixed-sex samples
of CD and CS cases to be discriminated from HCs with an accuracy of
up to 72%. Similar classification accuracies for the prediction of schizo-
phrenia case-ness were obtained regardless of whether patients were
stratified by cognitive subtype. These findings accord with previous
schizophrenia classification studies involving large case-control cohorts,
which have typically discriminated cases from controls with an accura-
cy of ~70% (Nieuwenhuis et al., 2012). Cross-validation analyses showed
that the neuroanatomical pattern distinguishing HCs from CD cases also
discriminated HC versus CS case status, and vice versa, with an accuracy
of 71%, and strong positive correlations were found between the multi-
variate weightmap patterns underlying HC versus CD andHC versus CS
classification.

These results thus demonstrate considerable overlap in the neuroan-
atomical patterns that distinguish both cognitive subtypes from con-
trols in a mixed sex sample, and indicate that the use of putatively
homogenous cognitive subtypes does not significantly improve classifi-
cation accuracy above that demonstrated in previous studies. The ability
to successfully differentiate either the cognitive deficit, or cognitively
spared, subtype from HCs using a combined GM and WM feature set
was not dependent on stratification of the sample by sex. The core neu-
roanatomical differences between cases and controls thus appear to be
common across cognitive subtypes and sex.

The ability to distinguish CD from CS cases within the schizophrenia
sample appears to be highly dependent on sex stratification. For
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example, in the context of amixed-sex ormale-only sample, the accura-
cy with which CD cases could be distinguished from CS cases was low
(≤60%). In contrast, for female-only samples, CD cases could be distin-
guished from CS cases with an accuracy of up to 83%. Consistent with
the greater number of males than females in our sample and
recent data indicating that male dominated samples bias detection of
psychosis-associated grey matter abnormalities towards male-specific
patterns (Bora et al., 2012), classification accuracy formaleswas not sig-
nificantly improved by sex stratification. Furthermore, GM weight map
patterns from mixed-sex classification analysis showed strong positive
associations withmale-specific weight map patterns and no correlation
with the female-specific weight map pattern. These results thus high-
light the importance of sexual dimorphism in structural brain changes
in schizophrenia, consistent with previous evidence for sex-specific
disruptions to volumetric and structure–function relationships in
schizophrenia (Antonova et al., 2004; Crow, 2013; Abbs et al., 2011;
Goldstein et al., 2002; Dean and McCarthy, 2008; Szeszko et al.,
2003b; Szeszko et al., 2003a). In further support of this notion, CD/CS
classifiers trained on a female-only sample predicted cognitive status
within a male-only sample (and vice versa) at, or significantly below,
chance rates, indicating sex-specificity to the associated neuroanatomi-
cal patterns. ROI weight map analyses highlighted opposing multivari-
ate changes in the cerebellum for males versus females, consistent
with previous reports that cerebellar volume is correlated with IQ in fe-
male schizophrenia patients and HCs, and that this structure–function
relationship may be specifically disrupted in male schizophrenia
patients (Antonova et al., 2004; Flaum et al., 1994; Picard et al., 2008).
Together, these results suggest that future attempts to delimit homoge-
nous subtypes of schizophrenia patients and associated intermediate
phenotypes should consider the relevance of interactions with sex. In-
vestigation of the factors underlying sexually dimorphic relationships
in schizophrenia – such as the effects of genetic and sex hormone differ-
ences on foetal and early postnatal development –may provide insights
into the neurodevelopmental origins of disease-associated brain abnor-
malities (Abbs et al., 2011; Abel et al., 2010; Giedd et al., 2012; Goldstein
et al., 2013; Jazin and Cahill, 2010; Goldstein et al., 2002; Dean and
McCarthy, 2008).

The low discrimination accuracy of CD versus CS cases in a mixed-
sex sample contrasts with several recent univariate analyses of schizo-
phrenia cohorts, in which regionally-specific associations between
brain volumetry and cognitive function have been demonstrated
(Cobia et al., 2011; Nazeri et al., 2013; Rais et al., 2012; Wexler et al.,
2009). The present results thus suggest that the small but consistent
neuroanatomical differences between cognitive subtypes do not have
substantial predictive validity at the level of individual cases. This is con-
cordant with the suggestion that cognitive deficits in schizophrenia are
associated with neuroanatomical changes that are largely qualitatively
similar, but differ in magnitude (Cobia et al., 2011). However, it is pos-
sible that greater accuracy would be obtained using other feature sets
such as cortical thickness, curvature or area (Ecker et al., 2013;
Oliveira et al., 2010; Panizzon et al., 2009; Rimol et al., 2012), or alterna-
tive classification approaches such as those that incorporate feature au-
tomatic feature selection methods and non-linear kernel methods;
notably, our initial investigation here focussed on WM/GM volumetric
differences as well established features of schizophrenia (Shepherd
et al., 2012). While a priori selection of regions of interest may also im-
prove classification, future whole-brain classification studies appear
likely to yield similar results to the present study; non-linear kernel
methods offer little advantage in the context of the large number of fea-
tures in whole-brain datasets, and automatic feature selection methods
do not appear to increase classification accuracy when applied to brain
volume data (Chu et al., 2012). Furthermore, several differences exist
between current univariate VBM and multivariate classification ap-
proaches. For example, classification studies often control for effects of
covariate variables using a matched sample design, as in the present
study. It is possible, however, that greater classification accuracy could
be obtained if the effects of covariate demographic variables such as
age are appropriately estimated (and regressed out) prior to classifica-
tion analysis (Barnes et al., 2010; Cobia et al., 2012; Dukart et al.,
2011). While possible, such approaches are not yet commonly imple-
mented (e.g., Schrouff et al., 2013), and this remains an important con-
sideration for future studies. However, our results suggest that covariate
removal should not be performedwithout careful consideration: the sex
differences in the neuroanatomical patterns that differentiate cognitive
subtypes of schizophrenia reported here suggest that interactions with
demographic variables may be of biological significance.

One potential concern for the interpretation of the current results is
that MRI data used in this study was collected from multiple scanners,
which may lead to site-specific confounds in gradient non-linearities,
physiological noise and subject positioning (Jovicich et al., 2006). How-
ever, the comparability of scans collected within the ASRB was maxi-
mized by using identical acquisition parameters on the same scanner
type at all MRI sites, and in this study the effects of this potential con-
found were controlled by ensuring that all participant sets comprised
cases matched for scanner site in each analysis. A second limitation of
thepresent study relates to the lack of availability ofmedicationdosages
for this sample, owing to constraints of the original data collection
(inwhich patient self-reports ofmedication dosagewere deemed insuf-
ficiently reliable for research purposes). We were therefore unable to
control for effects of medication dose on brain structure. However, our
patient subgroups showed no difference in the proportions of patients
receiving typical or atypical antipsychotics, antidepressants, or mood
stabilizers. Medication-independent relationships between cognition
and structural neuroanatomy are further suggested by the neuroana-
tomical changes seen in univariate studies of medication-naïve first ep-
isode psychosis cases, and HCs carrying rare schizophrenia-associated
copy number variants (Rais et al., 2012; Stefansson et al., 2014). Howev-
er, as several studies have observednegative relationships between cog-
nitive performance and medication dosage (Knowles et al., 2010; Hori
et al., 2006), it will be important for future studies to clarify the relation-
ship between cognitive performance, structural brain changes andmed-
ication effects.

In summary, our results suggest that inmixed-sex samples of schizo-
phrenia patients, cognitive deficit and cognitively spared subtypes can
be successfully distinguished from healthy controls by patterns of neu-
roanatomical features that appear to comprise common regions of grey-
and white-matter, including several subcortical, cortical and cerebellar
regions. Volumetric patterns that distinguish between the cognitive
subtypes vary in a sex-specific manner, with sex stratification improv-
ing classification accuracy for female patient groups; this is consistent
with previous reports of disrupted structure–cognition relationships in
the brains of male, but not female, schizophrenia patients. Further char-
acterization of sex-specific neuroanatomical and other pathological
differences among subgroups of schizophrenia patients may provide
important insights into the etiological processes underlying the pheno-
typic heterogeneity within schizophrenia.
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