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Thousands of different nanoparticles (NPs) involve in our daily life with various origins
from food, cosmetics, drugs, etc. It is believed that decreasing the size of materials
up to nanometer levels can facilitate their unfavorable absorption since they can pass
the natural barriers of live tissues and organs even, they can go across the relatively
impermeable membranes. The interaction of these NPs with the biological environment
disturbs the natural functions of cells and its components and cause health issues. In
the lack of the detailed and comprehensive standard protocols about the toxicity of NPs
materials, their control, and effects, this review study focuses on the current research
literature about the related factors in toxicity of NPs such as size, concentration, etc. with
an emphasis on metal and metal oxide nanoparticles. The goal of the study is to highlight
their potential hazard and the advancement of green non-cytotoxic nanomaterials with
safe threshold dose levels to resolve the toxicity issues. This study supports the NPs
design along with minimizing the adverse effects of nanoparticles especially those used
in biological treatments.

Keywords: non-cytotoxic materials, nanomaterials, cytotoxicity, nanomedicine, metal oxide nanoparticles,
nanotoxicology

INTRODUCTION

Nanoparticles (NPs) are defined as materials with two dimensions in the range of 1–100 nm (10−9

m), while nanomaterials are determined as materials possessing just one dimension in that range
according to ASTM E2456 standard (ASTM, 2012). These NPs can have a variety of shapes with
different aspect ratios including nanorods with <10 aspect ratio, spherical, cubical, and other
possible shapes. Owing to this nanometric size level, NPs can have versatile size-dependent and
special properties such as catalytic, electrochemical, optical, magnetic features as well as increased
surface to volume ratios which in turn make them the unique materials for modern applications.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 1 July 2020 | Volume 8 | Article 822

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2020.00822
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fbioe.2020.00822
http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2020.00822&domain=pdf&date_stamp=2020-07-17
https://www.frontiersin.org/articles/10.3389/fbioe.2020.00822/full
http://loop.frontiersin.org/people/1011149/overview
http://loop.frontiersin.org/people/857904/overview
http://loop.frontiersin.org/people/296242/overview
http://loop.frontiersin.org/people/884128/overview
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00822 July 16, 2020 Time: 19:31 # 2

Attarilar et al. Toxicity Occurrence in Metal Nanoparticles

Metal oxide nanoparticles are amidst the most widely used NPs
in a variety of applications including cosmetics (Waghmode
et al., 2019), drug and medicine industry (Klȩbowski et al., 2018),
detergents, agricultural systems (Chen, 2018), environment
(Kanchi and Ahmed, 2018), antibacterial agents (Mordorski and
Friedman, 2017), paints and textiles (Vigneshwaran et al., 2010).
Nowadays, some metallic NPs including gold NPs (Au NPs),
silver NPs (Ag NPs), and metallic magnetic NPs such as iron-
oxide NPs (IONPs) are frequently utilized and improved in order
to intensify their functions as diagnostic and remedial agents.
Table 1 lists some applications of the common metallic NPs.

Metallic NPs’ design and their modification can be done
through versatile surface functionalities so they can be
conjoined with antibodies, ligands, and drugs, consequently
raise their potential applications in biotechnology, drug and
gene delivery, magnetic separation and imaging, besides the
favorable characteristics they have a potential to cause harmful
effects if they enter to live biological systems and tissues (Yang
et al., 2018; Gu et al., 2019; Liu et al., 2019; Wang L. et al.,
2019). Unfortunately, there are many ways for unwanted and
spontaneous entry of NPs to the body system, whether through
the air we breathe or the water we drink, also foods, medicines,
clothes, and cosmetics are no exception. The main entry routes
can be considered as inhalation through the respiratory tract,
by transudation through the skin and by ingestion through the
digestive tract (Zoroddu et al., 2014). Therefore, nanomaterials
released into the body environment seem to be inevitable and
may have some unforeseen harmful effects hence it is of crucial
importance to study their toxicity-related issues. This subject
becomes of more paramount importance if we know that their
nanoscale size facilitates their penetration to different live tissues
and enables possible interaction with the same sized organs like
cells, proteins, and antibodies also they can accumulate in organs
and tissues as a foreign body (Nemmar et al., 2002; Nel et al.,
2006). This arises from the high surface area for example in the
case of two NPs with the same mass, smaller NPs have a larger
specific surface area and thus provide a more available area to
cellular interactions with nucleic acids, proteins, fatty acids, and
carbohydrates (Huang et al., 2017). Considering the so-called
issues, a new branch of research was introduced and entitled
“Nanotoxicology” which deals with the nanomaterials toxicity
(Pacheco et al., 2007). Unfortunately, there have not been yet any
comprehensive and precise standard protocols for cytotoxicity
of various materials, however, about the NPs, the concentration,
composition, size, charge, and other physicochemical factors are
considered for material selection and their possible utilization.
Various methods are used in order to estimate the cytotoxicity
levels of NPs which is categorized into two main groups of in vitro
and in vivo methods. In this regard, the in vitro group includes
dye exclusion assays (trypan blue exclusion and erythrosin B
dye exclusion assays), colorimetric assays (MTT, WST-1, neutral
red uptake and lactate dehydrogenase assays), fluorescence-
based assays (Alamar blue and protease-based viability assays),
luminometric methods (Adenosine triphosphate based method),
cell viability test in real-time (estimation of oxidative stress, ROS
level measurement, lipid peroxidation, glutathione estimation),
apoptosis based assays (Annexin-V FITC/propidium Iodide

and TUNEL assays. For determining the level of genotoxicity
of nanoparticles in vitro, micronucleus formation, cytokinesis
block micronucleus, flow micronucleus, and comet assays can
be utilized. In vivo characterization of toxicity can be done
through quantitation and bio-distribution of NPs from tissues,
electron microscopy and detection of NPs accumulation, liquid
scintillation counting, and NPs’ quantification by drug loading
and release. Also, the whole body imaging-based methods are
utilized for estimation of NPs’ toxicity and bio-distribution such
as in vivo optical imaging, computed tomography, magnetic
resonance, and nuclear medicine imaging, for more information
about cytotoxicity assessment, the readers can refer to (Shah et al.,
2020). The main objective of these nanotoxicology experiments
and studies is the comprehensive understanding in relation to
the toxicity of quantum size effects, shape, and high surface area
to volume ratio of nanomaterials in biological environments. In
this regard and considering the generally used metal and metal
oxide NPs, this review paper focuses on the nanotoxicology of
these materials with special attention to the physical properties of
NPs and their effects on toxicity. Also, the involved mechanisms
in relation to nanotoxicology will be addressed.

MECHANISMS OF NANOTOXICOLOGY

A lot of toxicity mechanism is involved with NPs and the most
common types can be listed as below and are shown in Figure 1.
As shown in Figure 1, NPs have the ability to interact with
most of the cell components from DNA and various proteins
to mitochondria, they can lead to reactive oxide species (ROS)
formation and affect the different functions of cell. In this
regard, DNA damage, lysosomal hydrolases, ROS generation,
mitochondrial dysfunction, apoptosis, cell membrane damage,
cytoplasm impairment, alterations in ATP, and permeability of
cell membrane, accumulation of NPs in Golgi and variations in
proteins all can be attributed to NPs interaction.

Reactive Oxygen Species Formation
The imbalance between production and accumulation of oxygen
reactive species (ROS) leads to the occurrence of oxidative stress
in cells and live tissues. ROS generates by mitochondria during
both physiological and pathological conditions and they are
considered as the metabolic by-products of biological systems
(Pizzino et al., 2017). They can also be referred to as free radicals
and have favorable functions at low or moderate concentrations,
they fight with pathogens and are necessary to cell signaling and
synthesize various cellular structures and proteins (Dröge, 2002).
However, in high concentrations, oxidative stress (OS) condition
takes place in which ROS suppress the live cells and organs’ ability
to detoxify and unfortunately, it can damage proteins, lipids,
and nucleic acids, and severely leads to cell death and disease
development including cancer (Katerji et al., 2019).

Oxidative stress biomarkers can be categorized in two
groups of (a) ROS modified molecules generation and (b)
deterioration or derivation of enzymes or antioxidants, the
trace of these biomarkers can be detected in body fluids
(Tsukahara, 2007). Although due to its unstable condition it
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TABLE 1 | Application of some metallic and metal oxide nanoparticles.

Metals Application of metallic and metal oxide nanoparticles

Titanium dioxide (Ti) Solar cells, food wraps, medicines, pharmaceuticals, lacquers, construction, medical devices, gas sensing,
photocatalyst, agriculture, paint, food, cosmetic, sterilization, antibacterial coatings (Waghmode et al., 2019).

Zinc and Zinc oxide (Zn) Medical and healthcare goods, sunscreens, packaging, UV-protective materials such as textiles.

Aluminum (Al) Automobile industry, aircraft, heat shielding coatings, military application, corrosion, fuel additive/propellant.

Gold (Au) Sensory probes, cellular imaging, electronic conductors, drug delivery, therapeutic agents, organic photovoltaics,
catalysis, nanofibers, textiles.

Iron (Fe) Magnetic imaging, environmental remediation, glass and ceramic industry, memory tape, resonance imaging, plastics,
nanowires, coatings, textiles, alloy and catalyst applications.

Silica (Si) Drug and gene delivery, adsorbents, electronic, sensor, catalysis, remediation of the environment pollutants, additive in
rubber and plastic industry, filler, electric and thermal insulators.

Silver (Ag) Antimicrobial coatings, textiles, batteries, surgery, wound dressings, biomedical devices, photography, electrical
devices, dental work, burns treatment.

Copper (Cu) Biosensors and electrochemical sensors, plastic additives like anti-biotic, anti-microbial, and anti-fungal agent, coatings,
textiles, nanocomposite coating, catalyst, lubricants, inks, filler.

Cerium (Ce) Chemical mechanical polishing/planarization, computer chip, corrosion, solar cells, fuel oxidation catalysis, automotive
exhaust treatment (Dhall and Self, 2018).

Manganese and its oxides (Mn) Molecular meshing, solar cells, batteries, catalysts, optoelectronics, drug delivery ion-sieves, imaging agents, magnetic
storage devices, water treatment and purification (Hoseinpour and Ghaemi, 2018; Wang W. et al., 2019).

Nickel (Ni) Fuel cells, membrane fuel cells, automotive catalytic converters, plastics, nanowires, nanofibers, textiles, coatings,
conduction, magnetic properties, catalyst, batteries, printing inks.

FIGURE 1 | The toxicity mechanisms induced by nanoparticles.

is very hard to determine the exact level of ROS, its cellular
levels can be measured through various methods such as
fluorogenic and fluorescent probes, also hydrogen peroxide
(H2O2), hydroxyl radicals (OH−), and peroxyl radicals (ROO−)
can be estimated by staining methods. In addition, ROS
molecules like hydroperoxides (R-OOH) can be quantified
by performing the (D-Roms) test through reactive oxygen

metabolites derivatives. ROS with a potent chemically reactive
characteristic contain oxygen and can be found as superoxides,
peroxides, hydroxyl radical, singlet and alpha-oxygen, Figure 2
schematically shows ROS production by NPs, it was believed that
some NPs are photosensitizers and they facilitate ROS formation
with the light assistance but for the case of tissues which are
not exposed to daylight other mechanisms are involved such as
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FIGURE 2 | NPs induced ROS production in cells, transition metal ions (Men+), or organic compounds may act as initiators of metabolic reactions that generate
ROS and they can be released from particle impurities and catalyzing Fenton-type reactions. Also, in some metallic photosensitizer NPs light exposure facilitates the
ROS production. Reproduced from Kehrer and Klotz (2015) with permission.

organic material released from combustion derived NPs. Also,
transition metal ions can be released from particle impurities
and catalyzing Fenton-type reactions, for more details about ROS
production see Kehrer and Klotz (2015), Saliani et al. (2016),
and Flores-López et al. (2019). The ROS produced as one of the
natural byproducts of the normal oxygen metabolism and they
affect the cell signaling and homeostasis (Devasagayam et al.,
2004). In addition to positive functions of ROS formation in
cells, their excess generation by external inputs such as NPs can
also lead to some harmful effects like apoptosis (programmed
cell death) and may induce damages on RNA or DNA (Wan
et al., 2012), lipid peroxidation, amino acids oxidation in proteins
and deactivation of enzymes by oxidation of co-factors are other
unfavorable results of NPs induced ROS generation (Brooker,
2018). The mechanism of ROS production by metallic NPs
depends on particle size, shape, surface area, and chemistry. ROS
have a key role in multiple cell functions and its biology. ROS
generation plays a crucial role in toxicity issues aroused from
NPs application, as well as other related phenomena like cellular
signaling fluctuations involved in cell death, proliferation, and
differentiation (Dayem et al., 2017).

Cell Damages Through NPs Induced
Membrane Perforation
Some metallic NPs like Au NPs can be used in order to maintain
unspecific attachment to the cell membrane and activated the
interim and cell membrane permeabilization in a spatial manner
(Heinemann et al., 2013). Unfortunately, this characteristic can

also cause cell damages, for instance Ag NPs with lower than
10 nm diameter have a potential to bind with the cell walls
in Escherichia coli bacteria and finally leads to cell death
(Gogoi et al., 2006). It was observed (Gopinath et al., 2008)
that Ag NPs are able to cause cell apoptosis and damage
the mitochondrial membrane during cell apoptosis with cell
membrane perforation intervention.

Cytoskeleton Components Damage
Cytoskeleton acts as a footstone of the cell architecture hence
the NPs’ influence on the cytoskeleton network must be carefully
considered. Actin and intermediate filaments, microtubules,
and different types of proteins are among the most important
components of the cytoskeleton (Ispanixtlahuatl-Meráz et al.,
2018). Despite the proven non-toxicity of TiO2 in most studies
(Ding et al., 2016; Zhang et al., 2017) it was reported that TiO2
NPs led to actin and tubulin disassembly and some alterations
in the cytoskeleton and its proteins (Vuong et al., 2016). TiO2
NPs treated epithelial cell line BEAS-2B confirms the expression
alterations in mRNAs and miRNAs which is possibly in relation
to the cytoskeleton (Thai et al., 2015). The epithelial cells co-
culturing and their proteomic analysis indicated that Ag NPs
readjust different types of cytokeratins and gelsolin, in contrast to
α- and β-tubulin together with actin which were downregulated,
and strong dissolution of Ag confirmed the strong effects of
NPs rather than Ag ions (Georgantzopoulou et al., 2016). The
ZnO NPs can be internalized by endosomes and in turn move
to lysosomes, also the existence of zinc ions causes cytotoxicity
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and actin rearrangement in cell bundles. Besides, this effected
tubulin network by ZnO NPs can generate wrapped bundles in
the periphery of the nucleus and these improper chromosomes
and spindles can subsequently distribute all over the cytoplasm
region and cause harmful effects (García-Hevia et al., 2016). Xu
F. et al. (2013) reported the cytoskeleton component failure like
and filamentous actin (F-actin) and the β-tubulin Ag NPs treated
samples, it was also demonstrated that they led to the dramatic
reduction in the number of synaptic clusters of the presynaptic
vesicle protein synaptophysin, and the postsynaptic receptor
density protein PSD-95 and lastly Ag NPs cause mitochondria
dysfunction in rat cortical cells.

DNA and Transcription Damage by NPs
and Mutagenesis Acceleration
Application of Co NPs within the non-toxic dose range
and their exposure to human lung epithelial cell line A549
demonstrated the ROS generation which finally ended to
DNA damage. Subsequently, this DNA damage led to ataxia-
telangiectasia mutated (ATM) protein activation and increase
the phosphorylation of p53 and Rad 51 protein expression,
TiO2 NPs did not indicate any considerable cytotoxic effects.
In addition, Co NPs induced DNA damage is able to actuate
various cellular reactions such as apoptosis, cell cycle arrest,
and importantly the DNA repair (Wan et al., 2012). The effects
of Cu NPs on transcriptional responses of zebrafish embryos
confirmed the up-regulation of genes in the healing of wounds
and stimulus reactions but it was seen that the genes which
are responsible for phototransduction and metabolisms were
acted in downward fashion (Zhang et al., 2018). It seems that
Cu NPs together with Cu2+ ions induce gene transcription
damages to Zebrafish embryos (Zhang et al., 2018). The study
about the mitotic and meiotic effects of Cu and CdS NPs
indicated higher degrees of cytotoxicity in Cu NPs than CdS
ones, the mitotic aberrations can be in the result of several
phenomena such as (1) DNA depolymerization and sticking of
chromosomes bundles, (2) chromosome breakages leading to
the generation of rings, bridges, fragments, and micronuclei,
(3) prevention of the centromeric division which leads to
diplochromosomes formation, (4) spindle apparatus variations
which promotes the polyploid cells and laggards. Different
mitotic cycles have the potential to initiate the meiotic cell
division, NPs inducing aberrations seem to be significant since
their consistent changes can cause heritable alterations in the
genotype (Kumbhakar et al., 2016).

Mitochondria Damage
Mitochondria is among the most important organelles of the
cells; it chiefly engages in energy supply and differentiation
procedure and unfortunately it can be mischievously affected
by NPs related toxicity. Mitochondrial permeability transition
(PT) occurrence is one of the prime causes of cell death in
which a sudden permeability increase in the inner mitochondrial
membrane to small size solutes leads to apoptosis, for example,
Au NPs with 1.4 nm diameter showed to cause oxidative stress
leading to mitochondrial PT in which the higher permeability

of mitochondrial membrane toward 1.4 nm Au NPs triggered
the cell death by necrosis (Pan et al., 2009). Gallud et al.
(2019) also proved the mitochondrial dysfunction in ammonium-
modified Au NPs, these cationic Au NPs stimulated autophagy in
macrophage-like reporter cells, and cell death can be deteriorated
by autophagy inhibition and in general mitochondria-dependent
effects of cationic Au NPs induce the quick perish in cells. Yu
et al. (2013) reported that ZnO NPs have a capability to affect the
mitochondrial membrane potential, also mitochondrial ATP level
was significantly diminished in the presence of these ZnO NPs. In
addition, interruption of mitochondria, dysfunction, and fall of
mitochondrial membrane potential after ZnO NPs treatment to
normal skin cells was proven and these NPs adversely influence
the mitochondrial network and biogenesis (Yu et al., 2013).
Iron-based NPs like Fe3O4 NPs also can lead to dysfunctions
in the mitochondrial activity, increase the ROS production in
cells and leads to the draft decrease of ATP level even it can
induce autophagy by reduction of cytoplasmic energy (Zhang
et al., 2016). These harmful effects are also be seen in TiO2 NPs
and it was reported that TiO2 NPs can cause severe mitochondrial
dysfunction, the increment of ROS levels, reduction of ATP
generation, mitochondrial phospholipids and metabolic fluxes
(Chen et al., 2018). TiO2 NPs can also affect the dynamic
of the mitochondria and leads to its dynamic imbalances and
damages in HT22 Cells and it can also activate the mitochondrial-
related apoptosis pathways (Zhao et al., 2019). In the Ag NPs
treatment with a diameter of 10 nm it was seen that these NPs
are able to impair mitochondrial function and in turn induce cell
dysfunctions (Bressan et al., 2013).

The Effect of NPs on Lysosomes
Lysosomes are defined as membrane-bound organelles
comprising hydrolases that act in the deterioration process
of macromolecules transported by various pathways including
the endocytic, phagocytic, and autophagic ones (Luzio et al.,
2014) and they are considered as acute intracellular organelles
controlling the cytotoxicity of nanomaterials (Fröhlich, 2013).
Metallic NPs like Ag NPs can be taken up by different cell types
and they are able to deposite as agglomerates or aggregates in
endosomes or lysosomes of the cytoplasm (Guo et al., 2015;
Xu et al., 2015). It was shown (Miyayama and Matsuoka, 2016)
that Ag NPs exposure on cells can lead to a reduction of Ag
dissolution rate (pH-dependent behavior) and MT expression
which in turn induce damages on pulmonary epithelial cells.
The lysosome impairment was also seen in Fe3O4 NPs (Zhang
et al., 2016), metallic NPs can lead to ROS production and its
transportation into lysosomes which finally interfering with
the lysosomal hydrolases and induce the autophagy process
(Halamoda Kenzaoui et al., 2012). It was seen that TiO2 NPs can
be responsible for the increment of lysosomal activities mainly
caused by oncogenic transformations (Zhu et al., 2012; Lammel
et al., 2019). Also, the strength of lysosomal membrane can be
significantly decreased by TiO2 NPs since they could easily get
access into digestive cells, in the next step they can accumulate in
lysosomes and then released to the alveolar lumen by apocrine
extrusion of residual bodies or by holocrine elimination of
dead cells (Jimeno-Romero et al., 2016). The Au NPs can also
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decrease the lysosomal functions by alkalization of the lysosomal
lumen which in turn induce the autophagosomes accumulation
and leads to a reduction of cellular degradative capacity and
low efficiency in damaged mitochondria release. In fact, these
unstable cellular changes absolutely have an influence on the cell
functionality, for instance in Au NPs-marked cells, cell migration
and invasion were hindered (Manshian et al., 2018).

PHYSICOCHEMICAL PROPERTIES OF
NANOPARTICLES

The potency of NPs to enter certain organs across specific
pathways and their propensity whether to be accumulated in
cell organelles or transported to other organelles is affected
by both physical and chemical properties of related NPs. In
addition, the physicochemical properties of NPs have a great
impact on their toxicity since they can change the mechanism
of toxicological response and NPs’ accumulation, uptake, and
translocation (Zoroddu et al., 2014). For instance, the same
material with different shapes and sizes can considerably change
the response of live tissue and identify the destiny of NPs as
a safe or toxic one. The important physicochemical properties
related to the cytotoxicity of nanomaterials are morphological
features like size, shape, roughness and surface area, uniformity
of agglomerates and the aggregate formation, mass of NPs, exact
chemical composition, concentration or dose of NPs, surface
charge, hydrophilicity, solubility and geometrical properties all
can influence the behavior of material (Zoroddu et al., 2014).
Figure 3 schematically shows some major physical properties
related to the toxicity of metal-based NPs in different categories
of dimension, agglomerate condition, shape, and size of NPs and
the surface charge, also each of which consisted of various states
that finally led to toxicity or safety of NPs.

Size-Dependent Toxicity in Nanoparticles
The NPs’ Size and surface area act as a key factor in its interaction
with live tissues, the nanometric size level of NPs are almost in the
same range of protein globules ranging from 2 to 10 nm, DNA
helix about just two nanometers and cell membrane thickness
with 10 nm, so they can easily pass the barriers of cells and
enter to cell organelles (Sukhanova et al., 2018). It was shown
(De Jong et al., 2008) that the distribution of gold NPs in organs
are highly size-dependent, an obvious difference was detected
between the distribution of the 10 nm and the larger particles. Ten
nm NPs were found in most of the organs whereas the larger NPs
distribution was seen in the limited organs of rats. Actually, gold
NPs with 6 nm size can freely enter to cell nucleus while these NPs
in the size range of 10–16 nm can only be found in cytoplasm and
cell membranes which shows the higher toxicity of gold NPs with
less than 10 nm size (Huo et al., 2014). Also, it was reported (Pan
et al., 2007) that gold NPs with 15 nm size is about sixty times
less toxic than 1.4 nm NPs especially for fibroblasts, epithelial
cells, macrophages, and melanoma cells. In addition, NPs size
can effectively determine and control the interactions between
transport and cell defense systems which finally influences the
kinetics of NPs distribution and concentration. It is believed that

(Zhang S. et al., 2015). NPs with smaller than 5 nm diameter
generally can defeat cell entrance barriers and they are able to pass
through cell membranes by translocation, while the larger NPs get
into the cells by phagocytosis and other possible transportation
mechanisms. The in vivo experiments (De Jong et al., 2008)
confirmed that large NPs can be easily recognized by the immune
system and prevents their entrance to the body. The surface area
as one of the important factors in NPs cytotoxicity warrants the
effective adsorption of NPs on the surface of cell organelles.

The Effect of Nanoparticles’ Shape on
Toxicity
Nanoparticles can have a variety of shapes and geometries
including spheres, ellipsoids, cylinders, sheets, cubes, spikes, and
rods which considerably affect the toxicity. In this relation, the
round-shaped NPs are more susceptible to endocytosis than
NPs with fiber and tube geometry (Champion and Mitragotri,
2006). Also, it was indicated that (Zhao et al., 2013) plate-like
and needle-like NPs induce larger necrosis proportions than
other spherical and rod-like NPs since these shapes have more
capacity to induce physical damages to cells and live tissues by
direct contact. In addition in gold NPs, geometry and shape of
the NPs have an impact on the accumulation kinetics and its
excretion and only star-like shapes can be stored in the lung,
also it was confirmed that shape and geometrical variations do
not considerably increase their chance to pass the blood-brain
barriers (Talamini et al., 2017).

Chemical Composition
Along with other critical factors like shape and size, the
chemical composition also must be considered with full attention.
Inorganic NPs with the same physical condition but distinct
chemical composition confirmed to have different toxicological
behaviors. One of the examples is the different toxicity of SiO2
and ZnO NPs with 20 nm size in which SiO2 induce oxidative
stress while ZnO influences the DNA structure (Yang H. et al.,
2009). The induced toxicity related to chemical composition
mainly arises from metallic ions’ leakage into cells, also some of
these metallic NPs are actually has a toxic nature such as As, Pb,
Cd, Hg, and Ag since they can damage the cells (Roane et al.,
2009). On the other hand, some metals like Fe and Zn are useful
from the biological aspect of view but they can be harmful at
high concentrations and cause toxicity reactions. Most of the
mentioned issues can be solved by coating the NPs cores with
polymeric shells, silica layers, or new NPs synthesis methods with
non-toxic compounds which can lead to enhanced safety and
chemical stability against metal ionic leakages and degradations
(Soenen et al., 2015).

The Effect of Crystal Structure on the
Toxicity of NPs
It was shown that the different crystal structures of the same
NPs can make alterations in the toxicity response. One of the
good examples is TiO2 owing to its various crystal structures
entitled rutile (TiO2 with prism shape), anatase (octahedral
crystals), and brookite (orthorhombic crystals). It was reported
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FIGURE 3 | Some physical properties affecting the nanotoxicology of metal-based nanoparticles. Reproduced from Buzea et al. (2007) with permission.

(Gurr et al., 2005) that 200 nm TiO2 NPs with rutile structure
caused hydrogen peroxide and oxidative DNA damage, lipid
peroxidation, micronuclei formation, and the signs of abnormal
chromosome segregation during mitosis process while in the
anatase form there was not any considerable toxicity.

The Effect of Surface Charge on Toxicity
Ionic charges can affect the interaction between the NPs with cells
hence having a great impact on toxicity related mechanisms. The
surface charge of NPs can be described by zeta potential which is
explained as the potential variation among the mobile dispersion
medium and the stationary layer of the dispersion medium that
is in attachment with the dispersed particle (Lu and Gao, 2010).
Figure 4 schematically shows the zeta potential.

The movement of particles in a fluid cause a net surface
charge generation which can be defined by zeta potential hence
the constancy of particles dispersion can be determined from
zeta potential, NPs with a zeta potential value higher than
130 mV or lower than 230 mV are unlikely to aggregate (Khan,
2020), while NPs with lower zeta potential values are prone
to stick to each other, entitled as aggregation in which the
particles are firmly bonded, or agglomeration if the particles
are weakly bonded due to van der Waal’s forces. It was proved
that the physical interaction between cellular membrane and
NPs is mainly governed by surface charge of NPs and it
was also indicated that other toxicity factors like shape and
size of NPs have minimal impact on the toxicity of Ag NPs
unless the electrostatic barrier between the NPs and cells are
overcome. It was shown that positively charged coated Ag NPs
are more toxic than that of the negatively charged NPs (El

Badawy et al., 2011). Thevenot et al. (2008) demonstrated that
negative charged COOH treated TiO2 NPs had not an impact
on the cell viability because they can easily be absorbed into
the cells without any membrane binding. In fact, the positively
charged particles are more toxic and the variance surface charge
determines the cellular uptake, the positively charged ZnO NPs
show increased toxicity values compared to negatively charged
NPs (Kim et al., 2014).

The Effect of NPs Solubility
The metallic NPs that have penetrated the cell is a source for
supplying the metal ions and have the potential to constantly
release these ions to cytoplasm environment. This metallic ion
release is directly dependent on the NPs’ dissolution rate (Khan,
2020). Despite the low dissolution, some metallic ions can show a
very toxic behavior in physiological mediums, for example, ZnO
NPs with just 10 mg/L dissolved zinc are highly toxic because
of its critical concentration and dose range (Khan, 2020) so they
should be used in the safe range and the minimum allowed limit
must be considered. Horie et al. (2009) reported that NiO NPs
have more activity compared to NiO fine particles because the
NPs can release higher amounts of Ni2+ in the medium while fine
particles do not have this capability. In addition, again because
of this solubility effect of metallic ions cupric oxide CuO NPs
are considerably more toxic than the same amount of CuCl2
(Karlsson et al., 2008). It was believed that NPs have higher
solubility rate than the bulk materials, this finding can only be
correct for NPs in the special size condition (less than 100 nm
size) hence particle sizes more than 100 nm fail to enhance the
saturation solubility in the low solubility compounds, even if
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FIGURE 4 | Schematic representation of the zeta potential zone and the electric double layer surrounding the charged nanoparticles. Reproduced from Khan, 2020.

TABLE 2 | Effect of particle size on the solubility behavior and dissolution rate
(He, 2009).

Size of particle Solubility ratio (S/S∞)* Variations in dissolution rate

10 µm 1 No considerable effect

1 µm 1.01 10-fold increase

100 nm 1.13 113- fold increase

10 nm 3.32 3320-fold increase

(S/S∞)*: the ratio of solid solubility to be dissolved with that of the substance having
infinitely large solubility.

the rate of dissolution is increased, Table 2 shows this situation
in more details.

TOXICITY OF COMMON METALLIC AND
METAL OXIDE NPs

The toxicity phenomenon is a very complicated issue that is
dependent on lots of physicochemical parameters, hence different
metallic NPs with their special nature would have various toxicity
mechanisms and indicate alterations in toxicity amount. It
was known that usually as the atomic number of the element
increases, cytotoxicity increases (Huang et al., 2017), possibly due
to band-gap energy. Also, it was shown that different materials
activate certain toxicity mechanisms. In this relation, the present
study discusses the involved nanotoxicology mechanisms of

common metallic and metal oxide NPs including Ti, Ag, Au, Zn,
and Cu, and their effects on biological environments.

Titanium Dioxide TiO2 NPs Toxicity;
in vitro and in vivo
Titanium oxide NPs are among the most manufactured NPs
with approximately 10,000 tons yearly production, owing to its
unique properties such as suitable strength and Young’s modulus
(Ansarian et al., 2019; Attarilar et al., 2020), biocompatibility
(Attarilar et al., 2019), corrosion resistance (Gode et al.,
2015), solubility properties, surface structure, and the related
aggregation manner so it has a lot of applications in industry as
listed in Table 1. This wide use of TiO2 NPs and its post disposal
in the environment may arise the health and ecosystem issues
hence its impact on live organisms in vitro and in vivo must be
studied and considered.

The impact of TiO2 NPs’ shape on toxicity was examined in
BEAS-2B cells, the shape of NPs was selected as bipyramids, rods,
and platelets. It was seen that the rod-shaped NPs induced the
most amount of toxicity, but in the platelets the genotoxicity
and oxidative DNA damage were seen and their accumulation
was higher than the rod and bipyramid-shaped NPs (Gea et al.,
2019). It seems that among different crystal structures of TiO2,
the anatase form has more toxicity. De Matteis et al. (2016)
indicated that titanium ions are more prone to release in anatase
rather than rutile form, also anatase form leads to more ROS
production in MCF-7 cell line. Consequently, anatase influences
the mitochondrial membrane and is more prone to activate the
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apoptosis pathway. TiO2 NPs treated Caco-2 cell indicated the
affected intestinal epithelium layer after 24 h exposure and the
cell viability shows the 13% reduction compared to the control
sample (Pedata et al., 2019). Transmission electron microscope
(TEM) observations showed that TiO2 NPs were selectively
accumulated in Caco-2 monolayers, as indicated in Figure 5.
Also, it was proved that titanium ions have the potential to trigger
the production of the pro-inflammatory cytokines and led to
some toxic effects on the intestinal epithelium layer (Pedata et al.,
2019). Experiments on the A549 cell line (human lung epithelial
cells) confirmed the significant cytotoxic effects of citrate-coated
TiO2 NPs also the DNA damage experiments by comet assay
indicated the increasing genotoxic effects in these citrate coated
NPs. In fact, variation in the physicochemical properties of NPs
by variation in the surface of coating affected the NPs’ toxicity
(Stoccoro et al., 2017).

An in vivo study about TiO2 NPs was done by Fabian
et al. (2008), TiO2 NPs (<100 nm) were injected to Wistar
rats. They did not find any sign of TiO2 NPs accumulation
in brain and lymph nodes, blood cells, and plasma, the most

bioaccumulation of NPs was seen in the liver and lower values
of NPs were detected in the kidney, lung, and spleen. TiO2
NPs injection into rats at a moderate dose of 20 mg/kg
for 20 days had some effects on liver including congestion,
prominent vasodilatation, and vacuolization that finally led to
liver dysfunction, TiO2 NPs injection at high doses (1387 mg/kg
body weight) led to mortality of rats after 2 days of injection
whereas the low dose injections (in the range of 10 mg/kg
body weight) induced toxicity related signs such as decreased
water and food consumption, increased number of white blood
cells (Ben Younes et al., 2015). Xu J. et al. (2013) showed
that TiO2 NPs treatment induced some damages in the kidney,
lung, brain, spleen, and liver of rats but no considerable
pathological effects were detected in rats’ heart. In another
study, the rutile TiO2 NPs treated rats indicated normal external
lung morphology while TiO2 NPs in crystalline form with 80%
anatase and 20% rutile content showed pulmonary toxicity
(Abdelgied et al., 2019). Briefly, it can be said that shape,
higher dose, crystalline structure, and phases have the potential
to cause toxicity in both in vitro and in vivo studies hence

FIGURE 5 | Transmission electron microscope micrographs of TiO2 NPs interaction with cultured Caco-2 cells, (A–C) Bright field optical microscopy analysis of
Caco-2 cells cultured (A) without, (B,C) with 500 µg/mL TiO2 NPs. Black arrows indicate TiO2 NPs accumulation observable on the surface of cells as well as in the
cytoplasm. (D–F) TEM analysis of Caco-2 cells cultured with (E,F) or without (D) 500 µg/mL TiO2 NPs. Black arrows in (E,F) indicate TiO2 NPs accumulation. (G,H)
The ultrastructural appearance of Caco-2 cells cultured with 500 µg/mL TiO2 NPs (G) with the respective map of Ti localization (ESI analysis) is shown in panel (H).
(I) Electron energy loss spectrum (EELS), withdrawn from the same sample regions of (G,H), is shown. A peak at 25 eV compatible with the TiM2,3 edge electron
energy loss was detected. Adapted from Pedata et al. (2019) with permission from Elsevier.
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the careful control of TiO2 NPs would be led to more safe
utilization of these NPs.

Silver Nanoparticles and Their Toxicity
Silver as a noble metal in nanoparticle condition is the most
widespread antibacterial agent, also Ag salts are utilized as agents
for the treatment of different bacterial infections. Consequently,

Ag NPs are vastly utilized as bactericides due to its attainment
in antibiotic resistance by various bacteria (Sintubin et al., 2012).
Ag NPs have the potential to attach to the cell membrane
of bacteria or fungi and induce damages on cell membrane
structure, intracellular components leakage and in the end cell
death (Yamanaka et al., 2005), they can also produce free radicals
and cause oxidative stress (Park et al., 2009). Ag NPs are able to

FIGURE 6 | Ag NPs interaction with bacterial cells. Ag NPs can induce (1) Ag ions leakage and ROS generation, (2) membrane proteins dysfunction, (3)
accumulation in cell membrane influencing the membrane permeability, (4) DNA damage. Adapted from Marambio-Jones and Hoek (2010) with permission.

FIGURE 7 | Transmission electron micrographs depicting Ag NPs uptake into HEK cells. (A) 80 nm Ag NPs within cytoplasmic vacuoles of a HEK; (B) higher
magnification of the (A). Arrows point to Ag NPs. Adapted from Deyhle et al. (2012).
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construct destructive binding with genomic DNA and prevent the
direct replication (Yang W. et al., 2009), it can also decrease the
activity of enzymes and other proteins in the transcription stage
(Yamanaka et al., 2005), Figure 6 shows Ag NPs interaction with
bacterial cells (Marambio-Jones and Hoek, 2010).

The dose of Ag NPs utilization for inhibition of microbial
growth must be kept under the range of human cell cytotoxicity.
In vitro cell studies indicated the dependence of cytotoxicity
on the size of Ag NPs and related ROS generation in different
cell lines including fibrosarcoma, skin carcinoma, fibroblast,
glioblastoma, hepatoma, alveolar, and keratinocyte (Wijnhoven
et al., 2009; Samberg et al., 2010). In addition to size, the
cytotoxicity and genotoxicity of Ag NPs are associated with its
coating, concentration, exposure time, environmental factors,
particle aggregation, surface oxidation to form silver oxides, etc.
(Akter et al., 2018). Both Ag and its oxides have the potential
to release Ag+ and Ag0 into media which consequently results
in ionic Ag concentration in the environmental media and
causes some degree of dysfunctions in mitochondria (Reidy
et al., 2013). Subsequently, the interaction of Ag NPs with cell
membrane proteins can lead to activation of signaling pathways
for ROS generation and eventually cause proteins and nucleic
acids destruction because of the potent affinity of silver for sulfur,
at the end all of these events led to apoptosis and reductions in
cell proliferation (Haase et al., 2012). Figure 7 shows the TEM
images indicating AG NPs uptake in HEK cells.

There are some limited in vivo studies about the Ag
NPs toxicity, it was shown that these NPs induced some
harmful impacts on reproduction, malformations, and various
morphological destructions in different animal models (Zhang
X.F. et al., 2015). Drinking Ag NPs contained water to rats
for 1–2 weeks duration, indicated Ag NPs distribution in
musculus soleus, cerebellum, spleen, duodenum, and myocardial
muscle (Pelkonen et al., 2003), also a dose-dependent Ag NPs
accumulation in the liver of rats was reported (Kim et al.,
2008). Prolonged intake of Ag NPs in the salt form with low
concentrations led to fatty degeneration in the liver and kidneys
together with variations in blood cells (Wijnhoven et al., 2009).

Intravenous Ag NPs injection in rats showed 40 mg/kg dose
(higher than 20 mg/kg dose values considered as toxic in rat
models) can cause a considerable increase in liver enzymes
whereas ROS increasing was detected in blood serum also TEM
micrographs indicated the particle deposition in the liver and
kidney of rats (Tiwari et al., 2011).

Gold Nanoparticles and Their Toxicity
Gold (Au) NPs are also having a place between widespread
NPs since they can be used in order to evaluate the cellular
uptake and tissue distribution of particles, due to their easy
to detect nature by electron microscopy and it has other
applications as listed in Table 1. In addition, gold salts such as
sodium gold thiomalate are utilized as decisive disease-modifying
antirheumatic agents (Fadeel and Garcia-Bennett, 2010) but its
long-term accumulation in the body can cause cytotoxic effects.

It was confirmed that the cellular response to Au NPs is size-
dependent. For instance, 1.4 nm Au NPs is among the most
toxic conditions of these NPs and results in rapid cell death by
necrosis (Pan et al., 2007) while it seems to be non-toxic in 15 nm
condition (Chen et al., 2009). In vitro studies about the Au NPs
(35 nm) indicated its low toxicity for murine RAW macrophages
with no considerable cell functionality blockage (Shukla et al.,
2005). Coradeghini et al. (2013) investigated the effect of 5–
20 nm Au NPs on human fetal lung fibroblast cells (MRC-5)
and no considerable effect on the viability of MRC-5 cells was
detected but cell proliferation was inhibited. Also, the oxidative
DNA damage was confirmed due to NPs’ destructive effects on
DNA. The smaller the Au NPs, the higher its tendency to induce
toxicity since smaller NPs can easily bind on cellular surfaces.
For example, Au NPs with 1.4 nm diameter are capable to bind
with DNA and influence genes (mutation) compared to their
larger counterparts (Yah, 2013). The dose of NPs has a crucial
role in cytotoxicity, for example, Au NPs with a size range of 2–
40 nm are biologically safe to MRC-5 cells but in exceeded dosage
range (10 ppm dosage) apoptosis and up-regulated expression
of pro-inflammatory genes and tumor necrosis was reported
(Yen et al., 2009).

FIGURE 8 | The relative distribution proportion of Au NPs in the spleen, kidneys, lungs, intestines, and heart of SD rats at 5, 15, 30 min, 1, 4, 12, and 24 h after IVI
(A), and after ISI in the tarsal tunnel (B). Adapted from Shi et al. (2016) and Jia et al. (2017) with permission.
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The Au NPs (5 nm) can preferentially bind to specified
growth factors like vascular endothelial growth factor (VEGF)
perhaps by cysteine residues of the heparin-binding domain and
cause the inhibition of angiogenesis in a mouse model (Fadeel
and Garcia-Bennett, 2010). Intravenous implementation of Au
NPs (18 nm diameter) in rats showed that NPs were selectively
accumulated within the liver and spleen, while NPs with 1 nm
size were secreted in urine and feces. In addition, 3.7% of 1 nm
sized particles remained in the blood at the first 24 h hence
Au NPs interaction is size-dependent (Semmler-Behnke et al.,
2008). Sonavane et al. (2008) studied the tissue distribution of
Au NPs in rats, NPs intravenous exposure confirmed the highest
accumulation in the liver and with lower amounts in the lung,

kidney, and spleen. The smaller NPs with 15 and 50 nm size even
can be found in the brain which indicates its ability to pass the
blood-brain barrier hence they have the potential to get into the
brain through neuronal transport. Au NPs with 20 nm size entry
via inhalation can concentrate in the olfactory bulb of rats (Yu
et al., 2007). Figure 8 shows the relative distribution proportion
of the Au NPs in the various organs of rats including spleen,
kidneys, lungs, intestines, and heart at different time durations.

Berce et al. (2016) investigated the bone marrow toxicity of
Au NPs in rats, it was shown that Au NPs accumulated in the
hematopoietic bone tissue and unfortunately resulting in severe
side effects such as leucopoiesis and megakaryopoiesis and also
increased levels of white blood cell and platelet were found in Au

FIGURE 9 | The pathology examination of the Au NPs treated rat organs, in 1,100 µg/kg dosage the pathology examination of the organs showed no degenerative,
inflammatory, vascular, necrotic, or apoptotic lesions over the spleen (A), lung (B), liver (C), kidney (D), and heart (E). Adapted from Berce et al. (2016) with
permission from Dove Medical Press.
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NPs treated rats compared to control ones, indicating its toxic
effects. Figure 9 shows the pathology examination of the Au
NPs treated rat organs as it was seen in the 1,100 µg/kg dosage
no considerable sign of degenerative, inflammatory, vascular,
necrotic, or apoptotic lesions was detected. While the pathology
experiments through bone marrow and sternum in Figure 10
showed that the mice which got the daily iv Tween R© 20-GNPs
had increased megakaryopoiesis as opposed to the control group.
Figures 10A,B shows the increased megakaryopoiesis as opposed
to the control group in Figures 10C,D, but no bone marrow
fibrosis was detected.

Zinc and Zinc Oxide Cytotoxicity
The zinc and zinc oxides were listed as safe substances in a
US Food and Drug Administration (USFDA) (U.S. Food Drug
Administration, 2019), while in the NPs condition it can induce
toxicity into the surrounding environment. In vitro toxicity
investigations of ZnO NPs in the size range of 40–48 nm
in exposure to Chlorella Vulgaris indicated the reduction in
viability, superoxide dismutase (SOD), and glutathione (GSH)
and also increment of lactate dehydrogenase (LDH) (Suman et al.,
2015). This finding indicates the considerable impact of ROS
production in the cytotoxicity of ZnO NPs. Together with shape
and concentration, the surface charge of ZnO NPs has a key

role in its toxicity. It was believed that the positively charged
NPs induce more toxicity and it can affect the cellular uptake
and intracellular location (Asati et al., 2010; De Angelis et al.,
2013). Kim et al. (2014) also proved the higher cytotoxicity of
positively charged ZnO NPs in comparison to the negatively
charged ones. In addition, genotoxicity and DNA damage was
seen in ZnO treated MRC5 lung cells along with the high
secretion of extracellular LDH and reduction in cell viability
(Ng et al., 2017). Also, the Zn2+ release in ZnO NPs could lead
to free radical emissions from the NPs surface and resulted in
metabolic disbalance and fluctuation in ionic state of cells related
to the deterrence of ion transport and defects in ionic homeostasis
(Namvar et al., 2015; Suman et al., 2015).

ZnO NPs treatment of rats with 300 mg/kg dose showed the
NPs concentration in the liver which led to cell trauma also a
considerable DNA lesion in the liver was seen which resulting
in oxidative stress caused DNA damage (Sharma et al., 2012),
Figure 11 shows the pathological alterations in the liver and
kidney of rats, treated with ZnO NPs for 14 consecutive days and
also the control samples. The intraperitoneal injection with 50–
200 mg of ZnO NPs/kg body dosage in Wistar rats indicated the
dose-dependent toxicity behavior of ZnO NPs with considerable
ROS generation also a major enhancement in liver enzymes
at the concentration of 100 mg/kg animal body weight was

FIGURE 10 | The pathology experiment of the bone marrow of the mice treated with Tween 20-GNPs (A,B) and of the control group (C,D). In (A,C) the
magnification was ×4, and in (B,D) ×20 magnification was used. The black arrows indicate the megakaryocytes. Adapted from Berce et al. (2016) with permission
from Dove Medical Press.
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reported (Abbasalipourkabir et al., 2015). ZnO NPs exposed liver
tissue of animals indicated inflammation, increased congestion,
chromatin condensation, and apoptosis, the tissue distribution
analysis of ZnO NPs confirmed the increasing zinc dosages in the
liver, large intestine, small intestine, and feces and some degree of
hyperkeratosis and papillomatosis were detected in the skin (Ryu
et al., 2014). Hence, ZnO NPs have toxic effects in both in vitro
and in vivo studies including cytotoxicity, oxidative stress, and
genotoxicity thus exposure to ZnO NPs should be considered and
controlled precisely.

Toxicity of Copper and Copper Oxide
NPs
Copper oxide (CuO) NPs have special characteristics like spin
dynamics, high-temperature superconductivity, and electron
correlation effects (El-Trass et al., 2012). Copper can be found in
two ionic conditions Cu1+ and Cu2+ hence it can be interacting
with biochemical reactions both as a reducing or oxidizing
agent, nevertheless, it is not favorable from the toxicity aspect
since copper ions are capable to induce oxidative stress (Valko

et al., 2005), genotoxicity (Adeyemi et al., 2020), and free radical
production (Fahmy et al., 2020).

In vitro examinations on the toxicity of CuO NPs on human
breast cancer MCF-7 cells had shown some morphological
changes in cells, also autophagic vacuoles were detected and the
cell cycle arrest caused apoptosis (Laha et al., 2014). The study
about lung epithelial cells treated with CuO NPs with 9.2 nm
size with at various concentrations indicated that these NPs led
to a reduction of cell cytotoxicity and increased level of dose-
dependent oxidative stress (Jing et al., 2015). The effect of size
and shapes on the toxicity of CuO NPs was investigated by Thit
et al. (2015), two sizes of CuO NPs with 6 nm and 100 nm larger
polydispersed CuO NPs, also microparticles and Cu ions were
examined in epithelial kidney cells. The most toxic state belongs
to the polydispersed CuO NPs and they induced a considerable
increment in intracellular ROS generation, DNA damage, and
cell death, Figure 12 schematically presents the in vitro toxicity
model of CuO NPs.

In vivo studies in mouse models have shown that CuO NPs
induced obviously epigenetic changes (Lu et al., 2016). Oral
exposure of CuO NPs into rats showed the NP uptake in spleen,

FIGURE 11 | Histopathology of liver and kidney tissues in mice, ZnO NPs treated for 14 consecutive days. (A,B) Control group showing normal liver and kidney,
(C,D) pathological alterations in the liver and kidney of ZnO NPs (300 mg/kg) treated group (indicated by arrow); magnification (200×). Adapted from Sharma et al.
(2012) with permission.
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FIGURE 12 | In vitro toxicity model of CuO NPs, the sequence of events in Poly toxicity. (1) CuO NPs are taken up via endocytosis, (2) Endocytotic vesicles are
converted to lysosomes via autophagy, (3) ROS generation, other molecules can be oxidized mitigated by the antioxidant GSH and its precursor NAC, (4) ROS
attacks DNA in the nucleus, (5) DNA damage activates signaling systems that induce cell cycle arrest, (6) Cell death by apoptosis. Reproduced from Thit et al.
(2015) with permission.

liver, kidney, brain, blood, lung, heart, urine, and feces (Lee et al.,
2016). The CuO NPs exposed rats for up to 26 days showed some
signs of increased Alanine Aminotransferase (ALT) levels as a
liver damage index, also in 512 mg/kg dosage, no variations of
histopathology were detected in liver, bone marrow, and stomach.
The released Cu ions interfered with the immune system by
lymphoid cell depletion in thymus and spleen organs, it should
be said that the dissolution and biodistribution of NPs have a
potential to act as a key factor in the toxic behavior of CuO treated

samples (De Jong et al., 2019). Other studies in relation to the
toxicity issues of metal and metal oxide NPs are listed in Table 3.

Toxicity Prevention in Metallic and Metal
Oxide NPs
The size, morphology, concentration, aggregation mode, charge,
surface properties all have an impact on toxicity and must be
considered in order to prevent the harmful effects of NPs. It
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TABLE 3 | In vitro and in vivo nanotoxicology studies of metal and metal oxide nanoparticles.

Material Condition Properties Cell line or animal
model

Conclusion References

Ag In vitro 20–30 nm Caco-2, SW480 No significant ROS generation, increased inflammation, increased cell death and
cell stress.

Abbott Chalew and
Schwab, 2013

Two nano-sized and two microsized Human red blood
cells

NPs were more hemolytic than micron-sized particles at equivalent mass
concentrations > 220 µg/ml and at surface area concentrations > 10 cm (2)/ml,
NPs released more Ag ions than microsized particles.

Choi et al., 2011

In vivo Silver-coated wound dressing Acticoat
(1 week)

Human burns
patient

Hepatotoxicity and argyria-like symptoms, Ag increase in plasma, urine and liver
enzymes.

Trop et al., 2006

30, 300 or 1000 mg/kg/day for 28
days (60 nm in size) per oral

Sprague-
Dawley rats

Higher than 300 mg of NPs may result in slight liver damage, do not induce genetic
toxicity, a gender-related difference in the accumulation of silver was noted in the
kidneys, with a twofold increase in the female kidneys.

Kim et al., 2008

Al In vitro <500 nm A549,
THP-1

Low toxicity in MTT assay. Lanone et al., 2009

Ni In vitro <500 nm A549, THP-1 Low to moderate toxicity in MTT assay. Lanone et al., 2009

Co In vitro <500 nm A549, THP-1 Co NPs induced toxicity only when incorporated as a Nickel–Cobalt–Manganese
mixed variant.

Lanone et al., 2009

Au In vitro Nanorods with 4:1 length-to-diameter
ratio

HT29 Cytotoxicity caused by free CTAB, overcoating with polymer is useful. Alkilany et al., 2009

In vivo 8 mg/kg/week (3–100 nm in size)
(4 weeks) intraperitoneal

BALB/C mice NPs ranging from 8 to 37 nm induced severe sickness, fatigue, loss of appetite,
change of fur color, and weight loss, from day 14 they exhibited a camel-like back
and crooked spine. Pathological studies showed an increase of Kupffer cells in the
liver, loss of structural integrity in the lungs, and diffusion of white pulp in the spleen.

Chen et al., 2009

0.17, 0.85, and 4.26 mg/kg body
weight (13 nm in size), (30 min
after injection for 7 days)
Intravenous, coated with PEG

BALB/C mice Acute inflammation and apoptosis in the liver, NPs accumulate in the liver and
spleen for up to 7 days with long blood circulation times, NPs presence in
cytoplasmic vesicles and lysosomes of liver Kupffer cells and spleen macrophages.

Cho W.S. et al., 2009

(12.5 nm in size) (40, 200, or
400 µg/kg/day for 8 days),
intraperitoneal

C57/BL6 mice NPs internalized inside the cell via a mechanism involving pinocytosis, also NPs
internalization in lysosomal bodies arranged in perinuclear fashion, Au NPs were
non-cytotoxic, non-immunogenic, and biocompatible properties.

Shukla et al., 2005

Ti and TiO2 In vitro 10-300 nm Caco-2 DNA damage dependency on sample processing conditions, cytotoxic in LDH and
WST-1 assay.

Gerloff et al., 2009

21 nm Caco-2, SW480 No significant ROS generation, increased inflammation, increased cell death and
cell stress.

Abbott Chalew and
Schwab, 2013

21 nm 16HBE, A549 No considerable effect on 16-HBE or A549 cell viability, strong aggregation in
culture media.

Guadagnini et al., 2015

<500 nm A549, THP-1 Moderate toxicity in MTT assay. Lanone et al., 2009

In vivo NPs containing sunscreen, mean
particle size of 20 nm

Human
volunteers

NPs penetrate deeper into human skin from an oily dispersion than from an
aqueous one.

Bennat and
Müller-Goymann, 2000

ZnO In vitro 20 nm Caco-2, SW480 Toxic but no significant ROS generation, increased inflammation, increased cell
death and cell stress.

Abbott Chalew and
Schwab, 2013

10–20 nm Caco-2 DNA damage, cytotoxic in LDH and WST-1 assay. Gerloff et al., 2009
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TABLE 3 | Continued

Material Condition Properties Cell line or animal
model

Conclusions References

<500 nm A549, THP-1 High toxicity in MTT assay. Lanone et al., 2009

288.2 and 265.7 Alveolar type II
epithelial cells Ñ10

Oxidative stress generation induced by Zn ions, Decrease in cell viability after 6 and
24 h of incubation.

Xie et al., 2012

In vivo Coated and uncoated NPs with
74.0 nm and 65.0 nm size

Human volunteers NPs did not enter or cause cellular toxicity in the viable epidermis, Zinc ion
concentrations slightly increased, repeated application of ZnO NPs to the skin, as
used in sunscreen products was determined as safe.

Mohammed et al., 2019

MgO In vitro 8 nm Caco-2 No cytotoxicity in LDH and WST-1 assay. Gerloff et al., 2009

SiO and SiO2 In vitro 14 nm Caco-2 Glutathione depletion, DNA damage, cytotoxic in LDH and WST-1 assay. Gerloff et al., 2009

25 and 50 nm, modified and not
modified with sodium oleate

16HBE, A549 Dose, time and size dependent effects, 25 nm NPs are more toxic than 50 nm ones
at lower concentrations, ROS generation ROS at toxic concentrations.

Guadagnini et al., 2015

100 nm HeLa, 3T3 Cell viability and survival decreased only about 20% at high concentration of
100 µg/mL, no significant toxic effects.

Xia et al., 2013

In vivo 20 mg/animal (1 or 2 months),
intratracheal instillation

Wistar rats Changes in pathology and fibrotic grade, the lung/body coefficient and
hydroxyproline content of SiO2 NPs were lower than microsized SiO2.

Chen et al., 2004

50 mg/kg (50, 100 or 200 nm in size),
(12, 24, 48 and 72 h, 7 days)
intravenous

BALB/C
mice

NPs trapped by macrophages in the spleen and liver and remained there until
4 weeks after the single injection, Macrophage mediated frustrated phagocytosis of
larger NPs resulted in release of pro-inflammatory cytokines and cell infiltrates within
hepatic parenchyma.

Cho M. et al., 2009

2 mg/kg (20-25 nm in size) (24 h),
intravenous

Nude mice Higher accumulation of NPs in liver, spleen, and stomach than in kidney, heart, and
lungs, hepatobiliary excretion of NPs after 15 days.

Kumar et al., 2010

Cu, CuO and CuS In vitro 50 and 100 nm, surface charge Caco-2 Positively charged NPs have higher toxicity and cell uptake, NPs transfer is a
dynamin-dependent process.

Bannunah et al., 2014

50 nm A549,
SAEC

Cell cycle arrest by Cu ions, highly toxic, inhibition of cell proliferation genes,
apoptosis.

Hanagata et al., 2011

<500 nm A549,
THP-1

High toxicity in MTT assay. Lanone et al., 2009

Length of 59.4 nm and thickness of
23.8 nm

HUVECs, RAW
264.7, KB, HeLa

Cell viability reduction in HUVECs at higher than 100 µg/mL dosages, toxicity to
HUVEC and RAW 264.7 cells, NPs uptake in RAW 264.7 cells, no considerable
change in cytoskeleton components.

Feng et al., 2015

In vivo Micro-Cu (1 µm), and nano-Cu
(80–100 nm),

Sprague-Dawley
rats

Cu NPs changed the immune function of the spleen, Alteration in the number of
blood cells in rats and lymphocyte subpopulation in the spleen, antibody production
and obvious histopathology changes.

Zhou et al., 2019

FeO and Fe3O4 In vitro 10 nm, without and with
polyethylenoxide (PEO) coating

PC3, C4-2,
HUVECs

Viability reduction, coated NPs uptake by cells, the surface-modified NPs are more
toxic than NPs without shells.

Häfeli et al., 2009

8 nm, modified and not
modified with sodium oleate

16HBE, A549 Sodium oleate coating led to an increase in cytotoxicity, strong aggregation in
culture media, toxic and inducing cytotoxicity in a dose, time and coating
dependent manner.

Guadagnini et al., 2015

In vivo Ferrite and manganese ferrite oxide
with sizes between 3 and 20 nm

Zebrafish embryos
and mice

In manganese-based NPs concentrations above 100 µg/mL showed a low survival
rate (<50%), absence of toxicity in mice

Caro et al., 2019

CeO2 In vitro 15, 25, 30, and
45 nm

BEAS-
2B

ROS generation led to cell death, NPs absorption by cells and localized in the
perinuclear space

Park et al., 2008

Frontiers
in

B
ioengineering

and
B

iotechnology
|w

w
w

.frontiersin.org
17

July
2020

|Volum
e

8
|A

rticle
822

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00822 July 16, 2020 Time: 19:31 # 18

Attarilar et al. Toxicity Occurrence in Metal Nanoparticles

was known that toxicity of metallic and metal oxide NPs is
directly related to its surface properties hence alterations in the
surface of these NPs can be a good idea for mitigating their
possible harmful effects. In this regard, various safe surface
designs are the spotlights and can be listed as utilization of surface
coatings (Osmond-McLeod et al., 2013), core-shell structures
(Davidson et al., 2015), doping-based methods (Wang et al.,
2012), geometric control (Ji et al., 2012), and surface passivation
methods (Cai et al., 2017). Among these methods, the coating
approaches seem to be simpler and more controllable and
it is almost applicable to every metallic NPs. These methods
can affect the surface reactivity and ion outlet in order to
avoid any cytotoxic occurrence. One of the coating and surface
passivation methods is sulfidation, for example, the existence
of sulfide can avoid AgNO3 toxicity (Bowles et al., 2002).
Also, Levard et al. (2013) reported that sulfidation of silver
NPs can hinder Ag ion mobility and reduce its dissolution
rate. Considering gastrointestinal digestion impact, Martirosyan
et al. (2014) used food matrix component phenolic compounds
(PCs) to prevent from the toxicology of Ag NPs. In this
regard, two major factors involving in the toxicity of Ag NPs
(the release of Ag+ and ROS) were studied. Results showed
that two PCs, quercetin and kaempferol, relatively defended
the Caco-2 cells from Ag NPs induced toxicity and these
PCs protected the epithelial barrier integrity which disrupted
by NPs. Future investigations seem to be necessary to find
more sophisticated methods in order to precise and complete
toxicity prevention.

CONCLUSION

Nanotechnology as one of the exciting and modern branches
of science found a lot of applications in various technologies
from the food and cosmetic industry to medicine and agriculture,
hence humanity is in direct contact with these nanoparticles
(NPs). Although, the nanosized materials have many benefits
compared to coarse sizes they can also have unfavorable effects
since they have the potential to pass the natural barriers of
live cells and tissues and cause toxic and inflammatory issues.
Because of these problems, a new branch of science entitled
nanotoxicology has emerged with the aim to elucidate the
possible effects of NPs and the related parameters affecting the
cytotoxicity of nanomaterials. Metal and metal oxide materials
are among the most used NPs so this review paper dedicated to
analyze the key factors influencing the toxicity of these NPs and
review the in vitro and in vivo studies to find out the possible
hazards of NPs and found a detailed guideline to control and
decrease the adverse effects of metal and metal oxide NPs. In
order to attain this goal, firstly the toxicity mechanisms including
reactive oxygen species (ROS) generation, the effect of NPs on
cell membranes, cytoskeleton components, DNA, mitochondria,
and lysosomes was discussed. Secondly, because of the obvious
effects of physical and chemical characteristics on toxicity, they
were carefully reviewed. It was found that the size of NPs
has a significant effect since its nano-sized range by increasing
the specific surface area led to more cellular interactions and

toxicity. The other key factors affecting the cytotoxicity of
NPs are shape and dimensionality, chemical composition and
NPs concentration or dosage, crystalline structures, solubility,
hydrophilicity, surface charge, and agglomeration condition. In
this regard, it was believed that it is critical to control the
physicochemical properties of NPs in order to achieve more
safe and reliable NPs since even natural non-toxic and even
antibacterial materials such as Ag, Cu, Ti, and Zn can induce
toxicity in some ranges of size, dosage and surface charges.
Overall, it seems that violating the cell passage system for example
by decreasing the size of NPs to smaller than cellular subunits,
organelles, and cells and letting them permeate and enter into
the biological structures should be strictly prevented. Thirdly,
some highlight findings of in vitro and in vivo studies about
the toxicity of metal and metal oxide NPs were discussed to
determine key factors. In the end, it is hoped that increasing
the awareness and information about this subject opens a new
horizon to understand more about the nanotoxicology and
design the modern materials and procedures with the safe
thresholds. These modern NPs should be designed meticulously
by taking into account all the intriguing and complex aspects
that arise from nanometric size ranges and also the other
affecting factors.

The emerging trends and prospects in metallic NPs’
toxicity studies are quite broad including modern NPs designs
with optimal properties, enhancing their favorable effects
and minimizing the potential toxicity, detection of toxicity
transmitting species and targets by considering their life cycle,
incorporation of various coating and surface treatments to
decrease the harmful results while maintaining the favorable
properties. Many aspects of these issues are still unsolved and
need further studies in the future to overcome the toxicity
limitations of metallic NPs and other present to-date barriers.
In this regard, methods based on the simultaneous use of
NPs with antitoxic strategies seem to be more promising.
Also, in future studies, more attention should be paid to
possible effects of biological fluids and surrounding tissues,
biokinetics, involved mechanisms, and other chemical and
biological factors. Moreover, there is a demand for more
sophisticated and validated in vitro models that are prognostic
of in vivo experiments outcomes. Finally, the resultant guidelines
should have a potency to underlie the exact NPs’ interactions
with biological systems in order to support a complete correct
risk assessment. Hence, various scientific disciplines including
chemistry, physics, medicine, and biology should be involved
and interact together to shade light on all the complex cellular-
molecular events.
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