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Abstract

In recent years, optogenetics has become a central tool in neuroscience research. Estimating the transmission of
visible light through brain tissue is of crucial importance for controlling the activation levels of neurons in different
depths, designing optical systems, and avoiding lesions from excessive power density. The Kubelka-Munk model
and Monte Carlo simulations have previously been used to model light propagation through rodents’ brain tissue,
however, these prior attempts suffer from fundamental shortcomings. Here, we introduce and study two modified
approaches for modeling the distributions of light emanating from a multimode fiber and scattering through tissue,
using both realistic numerical Monte Carlo simulations and an analytical approach based on the beam-spread
function approach. We demonstrate a good agreement of the new methods’ predictions both with recently
published data, and with new measurements in mouse brain cortical slices, where our results yield a new cortical
scattering length estimate of ~47 um at A = 473 nm, significantly shorter than ordinarily assumed in optogenetic
applications.

Key words: beam-spread function; light scattering; Monte Carlo optogenetics

(s )

For optogenetic stimulation to become highly controlled, reproducible, and safe, a thorough understanding
of the deep-tissue scattered-light distributions that mediate the excitation is required. However, effective
computation tools validated by actual measurements in brain tissue are currently still lacking. In this paper,
we introduce, study, and validate new numerical and analytical approaches for modeling the distributions
of light propagating through brain tissue. We show that both methods lead to consistent results and use the
much faster analytical method to iteratively extract the optical parameters from new measurements,
suggesting that light penetration into cortical tissue is significantly less than usually assumed. The new level
of faithfulness could assist in designing experimental setups and optical interfaces, and help interpret
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Introduction
Optogenetic neuromodulation is playing an increasingly
central role in neuroscience research and emerging ap-
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plications (Deisseroth, 2011), with major efforts being
directed toward the discovery and development of ad-
vanced optogenetic probes (Yizhar et al., 2011; Zhang et al.,
2011) and related miniature devices (Deisseroth and
Schnitzer, 2013). However, relatively little attention has been
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given to elucidating and characterizing the passage of light
in brain tissue at the relevant visible wavelengths and illumi-
nation geometries: because light-tissue interactions at these
wavelengths is strongly scattering-dominated, light transfer
is heavily affected by multiple scattering events resulting in
complex light distributions where the photons deviate con-
siderably from their original directions. Estimating the result-
ing light distribution is of crucial importance for multiple
aspects of optogenetic research including the control and
analysis of neuronal excitation levels, comparison of the
relative merits for different applications of probes with dif-
ferent excitation spectra, the design of effective optical sys-
tems for delivering sufficient light power density to target
regions (Pashaie et al., 2014), and for avoiding lesions and
light toxicity (Frigault et al., 2009) that may result from ex-
cessive light absorption.

Despite this central importance in interpreting and de-
signing optogenetic experiments, methodical treatment of
tissue light transport in this context has been sparse. To
date, the central approaches used for studying relevant
scattered light distributions in rodent brains were based
on a Kubelka—Munk (KM) model fit to empirical results
(Aravanis et al., 2007; Adamantidis et al., 2007; Yizhar
et al., 2011; Foutz et al., 2012), and on Monte Carlo (MC)
simulations of light transport (Bernstein et al., 2008; Chow
et al., 2010; Kahn et al., 2011). Unfortunately, the gener-
ality and applicability of each of these approaches suffers
from major limitations. The KM model (Kubelka, 1948) is a
one-dimensional model describing the propagation of
light through a diffuse scattering medium (with no absorp-
tion), based on two coupled differential equations that
describe the change in the intensity at each point in the
slab based on the change of two fluxes: the transmitted
light flux and the backscattered flux. However, the KM
model is based on fundamental assumptions that are
inconsistent with light scattering in tissue geometries and
length scales relevant to optogenetics: (1) it assumes
isotropic scattering, which becomes true only at the dif-
fusive regime, depths of multiple millimeters, whereas at
the distance scales and wavelengths relevant to optoge-
netics, scattering is highly anisotropic; and (2) it assumes
isotropic illumination (i.e., illumination from an infinite uni-
form plane), thus neglecting the finite geometry and size
of the illumination, which is typically of comparable size to
the tissue of interest. The various limitations of the KM
model, as suitable for capturing light scattering, are ex-
tensively discussed by Neuman and Edstrém (2010). Like-
wise, the published MC calculations (Bernstein et al.,
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2008; Chow et al., 2010; Kahn et al., 2011) were based on
scattering parameters for human brains (Yaroslavsky
et al., 2002), and are unvalidated by empirical data (see
Discussion). More recently, more extensive sets of mea-
surements for estimating the optical parameters using
different experimental strategies were performed in sev-
eral subcortical adult mouse brain areas (Al-Juboori et al.,
2013) and in adult rat brains (Azimipour et al., 2014).
Although important, broad empirical measurement data-
sets do not provide the type of generality required for
tackling a diversity of practical cases and designs, and
leaves open the need for a complementary quantitative,
practical, and empirically validated modeling framework for
optogenetic light propagation.

In this work, we apply two independent methods for
detailed modeling of the transmission of light launched
from a monochromatic optical fiber light source across
various thicknesses of brain tissue: the MC method (Fang,
2010) and the beam spread function (BSF) method
(McLean et al., 1998), which is applied in this context for
the first time. MC simulation uses repeated numerical
random sampling, whereas BSF is based on convolutions
of analytical beam propagation Green’s function (an im-
pulse response, which is used via the superposition prin-
ciple to obtain a solution to more complex initial or
boundary conditions). Despite the very different method-
ologies behind these two methods, we show that their
results are both mutually consistent and in agreement
with both published and new empirical brain-scattering
results. Finally, we discuss the new approaches’ relative
merits and limitations, as well as directions for future
study.

Methods

General considerations

In our models and in previous experiments (Aravanis
et al., 2007; Yizhar et al.,, 2011), an optical fiber was
located adjacent and perpendicular to an ex-vivo slice of
mouse brain tissue. The fiber was emitting light in wave-
length A= 473 nm, its core radius was 100 um and
numerical aperture (NA) of 0.37. These parameters were
also used by Aravanis et al. (2007). We assume that the
spatial and angular intensity distributions of the emitted
light at the fiber surface are uniform and constant. This
assumption holds because the electric field distribution at
the fiber tip is composed of superposition of all the linearly
polarized modes (amplitude distributions that remain un-
changed during propagation in a fiber) supported by the
fiber, which are very numerous. The number of modes (M)
is typically estimated from the fiber’s normalized fre-
quency V = 2m(r,./A)NA = 491.5; (Okamoto, 2006),
which indeed implies a very large number of modes
M = 42 [ =2 =~ 105

Another important parameter is the beam divergence at
the fiber tip, because it determines the angular distribu-
tion of the light emanating from each point at the fiber tip.
If we assume that the fiber is touching the tissue (i.e., no
other interface between them), the half-angle of diver-
gence 0, is
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0, = sin! ( ) — 15.8°,

where n,... = 1.36 is the refractive index of the brain
tissue (Vo-Dinh, 2003). We assume a homogenous and
isotropic (i.e., there is no preferable direction in the tissue)
scattering tissue, characterized by a scattering coefficient
ws (cm™"), a weak absorption coefficient u, (cm™ ', u, <<
K1), and a high anisotropy coefficient g (dimensionless)
which represents a tendency for strongly forward scatter-
ing at each scattering event. Using the two methods
described below, we calculate local intensity (the radiant
power passing through a unit surface) in different points
across the tissue.

Monte Carlo simulation
The MC simulation is based on the Mesh-based Monte

Carlo (MMC) code developed by Fang (2010), version

0.9.5. Because the MMC software is based on an infi-

nitely narrow beam (pencil beam) light source, we

adapted it to a more complex light source using a

three-step process:

(@ The 3D pencil-beam response was produced by sim-
ulations performed at a logarithmic lateral resolution
spanning from 1.2 um near the central beam to 47 um
at the edge of the simulated volume, and an axial
resolution of 5 um, with 108 simulated photons. The
response was then resampled by a uniform isotropic
grid of 5 um.

(b) The 3D pencil-beam response was rotated in 64 inter-
vals over the inclination angle 6,, along the rotation
axis, which is the entrance point of the pencil beam into
the tissue. Sequentially, the result was rotated over a
full circle in 64 intervals along the azimuthal direction.
The results of all the rotations were summed up to form
the angular light pattern that was emitted from each
point of the fiber tip (Fig. 2a). In effect, the rotations can
be formulated in terms of angular convolution with unit
vectors that span the inclination angles [0, 6,,] and the
azimuth angles [0,27].

(c) To take into account the fiber-tip area, the result of the
previous stage was convolved with a sampled disk of
the same diameter as the fiber (Fig. 2a).

Beam-spread function simulation

The BSF method (McLean et al., 1998) is a uniquely
powerful solution for approximating light distributions in
highly forward scattering media where the higher-order ef-
fects of photons coming via multiple paths of various
lengths, thus resulting in time dispersion of the light intensity,
is also incorporated. The method applies an analytical ap-
proximation for unidirectional pulsed source propagation in
a turbid medium, which serves as a Green’s function that
can be used to solve more general problems (i.e., via angular
and spatial convolution): the BSF k(z, p, 7 is the intensity
distribution of light from a pulsed source normalized to the
pulse’s energy, after propagating a distance z in the me-
dium, where p is the radial position vector, and =t — z/c is
the multipath time (c is the speed of light in the medium, t is
the time since the photons start propagating, = = 0 for
unscattered photons). McLean et al. (1998) present a useful
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decomposition of the scattered photons BSF into a product
of a normalized temporal dispersion distribution function
G(z, 7 and a normalized spatial-angular distribution function
hi, p, » (Fig. 1, top):

ke(z, p, D = e4ZPG(z, D-h(z, p, D, )

where p, is the absorption coefficient. Following McLean
et al. (1998), we use the time-dependent spatial distribu-
tion function (derived from the time-independent small-

angle approximation):
oxp (-3 ), @

471cz

hzp.m = dmrrCz

and the Gamma probability density function is used as the
temporal distribution function (equivalent to a normal dis-
tribution when the variable, 7, is positive definite):

2
£

Gz, D = ﬁ(ﬂ)uz exp (— “—T), @)

2\ (o2 o

w
02F< -
where w and o are the first and second moments of r,
respectively, and are dependent only on the first and
second moments of the cosine of the scattering angle 6
(McLean et al., 1998 provides the formulas), and I'x) is
the gamma function. The BSF of the scattered photons,
k..(z, p, 7, was calculated for the tissue optical parame-
ters (same as for the MC method) and integrated over
time. The unscattered photons were added next to obtain
the combined BSF (Fig. 1, bottom):

kz,p, D = 8(p)d(ne tatr)? + (1 — e *Hk (2, p, 1.
)

Subsequently, angular and spatial convolutions were per-
formed to obtain the propagation of light from the fiber’s
tip, as was done with the MC method (only Steps 2 and 3
are required here, because the Green’s function is calcu-
lated for the entire volume; Fig. 2).

The calculation of the BSF pencil beam is considerably
faster than MC calculation with comparable accuracy
(several seconds compared to hours). As a result, curve
fitting can be more readily used to obtain the optical
parameters of a sample. We implemented the accelerated
gradient search method (Beck and Teboulle, 2009) to find
the scattering coefficient and anisotropy factor of the
published data manually extracted from Aravanis et al.
(2007) and of our measurements (see Fig. 5).

Experimental setup

All procedures were conducted in accordance with the
national ethics committee for animal experimentation and
with the approval of the Committee on Animal Care at The
Technion-Israel Institute of Technology. Mouse brain
slices were illuminated from above with a blue laser (473
nm) emanating from a fiber of 200 um in diameter with NA
of 0.37 (Thorlabs BFL37-200). The light intensity was
measured through a small aperture (~50 um diameter)
using a power meter (Newport 818-ST), when the fiber tip
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Figure 1. Graphical depiction of the BSF calculation process: the distribution of the scattered photons k..(z,p,) is a product of
the spatial distribution h(z,p,7) and the temporal dispersion distribution G(z,7) (Eq. 1). The time-dependent distribution is
integrated over time to obtain the intensity values k.(z,p), and added to the distribution of the unscattered photons k .(z,p) for
the total distribution k(z,p) (Eqg. 4), called the BSF. Note that the equations also include absorption effects that were omitted from

the figure for simplicity.

is adjacent to the slice surface, above the point of maxi-
mal intensity (Fig. 2c). Oblique, semi-coronal brain slices
were obtained from two female mice (5 months old, C57/
BL6 strain) from the same litter. The slice thicknesses
used were 150, 200, 300, 400, 500, and 600 um. Four
measurements per slice were taken in neocortical areas,
with two to three slices of each thickness obtained per
animal (n = 16-20 for each slice thickness). Because we
found greater scattering near the white matter at the deep

January/February 2016, 3(1) e0059-15.2015

layers of the cortex, the measurements were performed at
central locations. The slices and the fiber were sub-
merged in artificial CSF throughout the measurements,
and were oxygenated until shortly before the measure-
ment. In addition, radial intensity profile was obtained for
the 300- and 600-um-thick slices, by moving the fiber tip
laterally in 50 wm intervals to 1 mm. The measured results
were normalized to the measured light intensity without
the slice (at the same height above the aperture) divided
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Figure 2. a, Simulation procedure: the 1st stage is the calculation of a 3D pencil-beam response, the 2nd stage is the angular convolution
of the pencil beam response, and the 3rd stage is a spatial convolution with the fiber tip area. b, Simulation outcomes of the various
simulation steps. For better visualization, all of the figures are in log scale. ¢, lllustration of the experimental setup cross-section.

by the theoretical predicted attenuation due to geometric
beam spreading.

Results
We first examined the accuracy of BSF method by com-

paring it to MC simulation results using two sets of
previously published brain tissue optical parameters:
scattering coefficient p, =168.6 cm™' from Al-Juboori
et al. (2013) measured in the mouse’s pedunculopontine
nucleus using 453 nm blue light and us =120 cm™" from
Yaroslavsky et al. (2002) measured in human brain gray-
matter tissue using 480 nm blue light. Figure 3a shows
contour maps of the calculated light transmission using
the MC method, and Figure 3b shows the same using the

January/February 2016, 3(1) e0059-15.2015

BSF method. The fiber diameter used for the models in
this figure is 100 um and the NA is 0.22 (as reported by
Al-Juboori et al., 2013). Due to the lack of better data, we
used the absorption coefficient and anisotropy factor of
native human gray matter from Yaroslavsky et al. (2002):
w, = 0.6 cm~ " and g = 0.88 in both cases. These results
illustrate that the analytical BSF method generally follows
the MC predictions quite closely for a parameter regime,
which is relevant for optogenetics.

Next, we compared the models’ predictions to two
published experimental accounts on transmission along
the z-axis, that is, the fiber’s central axis (Fig. 3; Aravanis
et al., 2007; Al-Juboori et al., 2013). First, we compared

eNeuro.sfn.org
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Figure. 3. Comparisons of MC and BSF methods for two different tissue-scattering parameter settings: u, =168.6 cm™" (top; from
Al-Juboori et al. 2013) and s =120 cm ™" (bottom; from Yaroslavsky et al. 2002). a, Contour maps of the light distribution in the tissue,
created using the MC method. b, Contours created using the BSF method. The iso-intensity lines are at 50, 20, 5, and 1% of

maximum. ¢, Light transmission curves along the z-axis.

the models’ results of Figure 3c to the published decay
curves by Al-Juboori et al., (2013; Fig. 4b). As discussed
above, the results of the MC and the BSF methods are in
excellent agreement [root mean square (rms) transmission
error of 0.52% over the range 0-1 mm], and we find that
both provide a very good fit to the experimental measure-
ments (rms error of 0.97% over the range 0—0.3 mm). In
contrast, the model-based simulations are in poor agree-
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80
g A}
£ 60
g 40f
5
.0
20+
0 ; ‘ i ‘ ;
0 0.1 0.2 0.3 0.4 0.5

z (mm)

light transmission (%)

ment with the experimental measurements of Aravanis
et al. (2007). The comparison used the experimental setup
geometry of Aravanis et al. (2007), where the fiber tip
remained in a fixed height while the tissue samples were
being replaced, and no aperture was used. It can be
shown that the light attenuation curve obtained this way is
equivalent to depicting the integrated light intensities over
the entire layers. A version of the BSF model was adapted

b 100
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== =Al-Juboori

80+

60

40

20¢

0 1 1
0 0.1 0.2 0.3 0.4 0.5

z (mm)

Figure. 4. Transmission of light along the z-axis, comparing published experimental results (red dotted curves) with BSF method (blue
curves). a, Best-fit curves to measured data from Aravanis et al. (2007). b, Experimental data from Al-Juboori et al. (2013) measured
from the peduncopontine tegmental nucleus; the optical parameters used for the BSF curve are explained in the text.
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Figure. 5. Experimental results: light transmission in a mouse cortex along the z-axis (@) and the radial axis (b) at 300 um (blue) and
600 um (red). The solid lines are the best fit of the BSF model. ¢, Surface plot of the simulated light distribution in the slice, obtained
with BSF model using the experimentally estimated parameters (us, = 211 cm™", g = 0.86), with overlaid experimental measurements
(colors matched to a and b). Light transmission is in log scale. d, Contour map of the simulated light distribution.

to implement this integration, and best-fit curves to the
data from Aravanis et al. (2007) used this modification.
The obtained optical parameters were as follows: scatter-
ing coefficient 60.7 cm™', absorption coefficient 0.62
cm~ ', and anisotropy factor g = 0.89.

Finally, we compared model-based predictions to the
new set of measurements performed in adult mouse cor-
tical slices (Fig. 5). To estimate the tissue’s scattering
parameters, we searched for a BSF model that simulta-
neously provided the best fit to both the axial and lateral
profiles (obtained parameters: scattering coefficient 211
cm~ ' and anisotropy factor g = 0.86). The results again
demonstrate an excellent agreement between the respec-
tive simulation methods, and between them and the ex-
perimental curves. Overall, these results exhibit a strong
attenuation of the light intensity along the z-axis due to
multiple scattering: the intensity is reduced to 50% at a
depth <40 uwm, and to just a few percentages at depths
exceeding 200 um (mean free path is 47 wm). This finding
highlights how the gray matter’s high density leads to a
large number of scattering events over a relatively very
short distance.

January/February 2016, 3(1) e0059-15.2015

Discussion

In this study, we sought to develop and experimentally
validate solutions for realistic modeling of optogenetic
light delivery using an optical fiber embedded in brain
tissue. MC simulations, a generally accepted numerical
method for simulating light propagation in biological tis-
sues (Zhu and Liu, 2013), have already been extensively
applied to this problem, however, generally using inap-
propriate tissue parameters (Table 1) and without captur-
ing the input light source’s spatial and angular properties;
these issues are particularly important in light of the gen-
eral lack of experimental validation of simulation results.
Additionally, we adapted and extended a powerful ana-
lytical method for estimating scattered light distributions,
the BSF, and carefully compared it with the MC results
and to experimental measurements. Importantly, the re-
sults of the analytical solutions were found to be highly
consistent with the MC simulation results, with the pub-
lished attenuation profile measurements by Al-Juboori
et al. (2013) in mouse subcortical regions (Fig. 4b), and
with a new set of cortical attenuation measurements (Fig.

eNeuro.sfn.org



eMeuro

Table 1. Brain tissue optical parameters
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Source

Our experiment
Aravanis et al. (2007)
Al-Juboori et al. (2013) Mouse subcortical, (6-8 weeks old)
Azimipour et al. (2014)  Rat cortex

Yaroslavsky et al. (2002) Human gray matter

Brain sample
Adult mouse cortex, (5 months old)
Mouse cortex

Wavelength, nm Scattering coefficient, cm~" Anisotropy factor

473 211 0.86
473 60.7 0.885
453 168.6 —
532 ~170 ~0.9
480 120 0.88

5). The model-based iso-intensity contours in cortical
slices (Fig. 5d) are also in rough agreement with the
measured results found in Yizhar et al. (2011, their Fig.
3E), which is itself in stark disagreement with the attenu-
ation graph of Aravanis et al. (2007; reproduced by Yizhar
et al. 2011, their Fig. 3B). Our method for measuring and
estimating the parameters uses a geometry and fits to
localized measurements that are directly relevant to op-
togenetics and does not rely on the multiple assumptions
behind diffuse reflectance estimates (Azimipour et al.
2014).

The very good inter-model agreement found is probably
as good as one can obtain, given that there are several
reasons to expect small discrepancies between the two
methods. First, the BSF formulation uses several approx-
imations and assumptions. For example, the temporal
probability density is modeled as a Gamma distribution,
although more recent work (Funk and Pfeilsticker, 1999;
Theer and Denk, 2006) suggests the lognormal distribu-
tion may be a more accurate model. Moreover, the meth-
ods have some inherent numerical errors, especially as a
result of integration, interpolations, and the limited volume
(spatial, temporal, and directional) allocated for the Green
function. Likewise, differences from the empirical mea-
surements can be attributed to tissue inhomogeneity,
approximations in the experimental setup (e.g., neglecting
the polystyrene and air layers between the slice and the
detector, errors in slice thickness, etc), and errors in the
estimated optical parameters used. Finally, although
the methods were applied here to a uniform light source,
it can be easily accommodated to other beam profiles
(e.g., Gaussian beam, multiple fibers, etc). It is, however,
important to note that like almost all current methods that
describe the propagation of light in a turbid media, both

Table 2. The illuminated tissue volumes for various commer-
cial optical fibers

Volume illuminated

Fiber properties
(1072 x mmd), %

NA Diameter, um >50 >20 >5 >1
0.1 25 0.02 0.04 0.09 0.20
0.22 50 0.06 0.14 0.34 0.79
0.22 105 0.29 0.68 1.48 3.28
0.22 200 1.07 2.56 5.53 13.7
0.22 365 3.62 8.71 19.5 61.7
0.37 200 1.05 2.52 5.52 14.3
0.39 200 1.05 2.51 5.50 14.4
0.39 300 2.39 5.75 12.7 38.1
0.39 400 4.30 10.4 23.3 79.4
0.48 400 4.76 10.3 23.1 79.0

Threshold is in percentage of maximal illumination.

January/February 2016, 3(1) e0059-15.2015

methods do not take the wave properties of the light into
account; thus, when using a coherent source, the interfer-
ence of photons with different phases (due to different op-
tical path lengths) will form a speckle pattern that can also
reduce the total illumination level at each position.

Using the new BSF method, the scattering coefficient
and anisotropy factor were estimated in measurements
performed in mouse cortical slices. This estimation pro-
cedure was based on simultaneously optimizing the mean
squared error (MSE) fit to both the axial and two lateral
curves (Fig. 5) using only two scattering parameters (or
“degrees of freedom”). This iterative fit procedure was
facilitated by the tremendous speed gain of the BSF
method relative the MC numerical simulations (~10 sec
per BSF computation versus ~10 hr per MC to achieve a
comparable accuracy on a modern desktop PC).

Table 1 compares our results to estimates of these
parameters based on the published data by Aravanis et al.
(2007), as well as related parameter estimates obtained in
the adult mouse pedunculopontine tegmental nucleus (Al-
Juboori et al., 2013), in adult rat cortex (Fig. 5; Azimipour
et al., 2014) and in human gray matter (Yaroslavsky et al.,
2002). This comparison illustrates the much stronger
scattering in mouse cortex seen in our results than indi-
cated by Aravanis et al. (2007) and is generally more
consistent with the stronger scattering observed by Al-
Juboori et al. (2013) and Azimipour et al. (2014). Noting
the considerable difference in the optical parameters be-
tween human and mouse brains, and between brain
areas, we advise to refrain from using them interchange-
ably. Indeed, these findings explain the observations in
Bernstein et al. (2008), who report a ratio of ~0.73 in the
diameters of the 1% and 10% contours of light attenua-
tion between their measurements in mouse brain slices
and MC simulations, which were based on human brain
optical parameters. Note, however, that these estimates
should be used with caution if scattering is expected to
change. For example, measurements should be per-
formed on tissue samples obtained from younger animals,
as their scattering has been shown to be weaker (Oheim
et al., 2001).

These results therefore put forward the BSF as a viable
analytical approach toward a better understanding of light
propagation and interactions in optogenetics and related
fields, whereas use of the Kubelka—Munk model should be
discouraged due to its theoretical inadequacy. As we
have shown, the BSF can be used both for calculating the
light distribution in brain tissue, and for estimating the
optical parameters from measured attenuation curves.
Because the BSF is an analytical method, it is consider-
ably faster than a MC simulation, enabling its implemen-
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tation to curve fitting algorithms that obtain the optical
parameters of the tissue and require multiple calculations
of the attenuation curve with different parameters. A major
limitation of light propagation models in brain tissue (in-
cluding the ones portrayed here) is the assumption of
homogeneity, whereas the cortical layers have different
cytological properties, and necessarily also different op-
tical parameters. These can be obtained in a similar man-
ner, by performing the attenuation curve fitting in parts
using the histologic layers’ depths. A useful, immediate
application of the BSF method for experiment design is to
determine the tissue volume illuminated to various levels
by different optical fibers (Table 2). It is noted that exact
calculation of the light intensity inside the tissue is a
prerequisite for determining the excitation from optoge-
netic stimulation, but does not completely describe the
excitation from optogenetic light. To estimate the excita-
tion properly, one has to know the cell morphology, the
distribution of the light-sensitive channels and the base-
line excitability from subthreshold oscillations. Moreover,
in vivo optogenetic stimulation is also prone to absorption
by blood (Azimipour et al., 2015), which is highly non-
homogenous and remains untreated in our model.

A BSF solver is available at: niel.net.technion.ac.il/
software.

References

Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L
(2007) Neural substrates of awakening probed with optogenetic
control of hypocretin neurons. Nature 450:420-424. CrossRef
Medline

Al-dJuboori S, Dondzillo A, Stubblefield EA, Felsen G, Lei TC, Klug A
(2013) Light scattering properties vary across different regions of
the adult mouse brain. PLoS One 8:e67626. CrossRef Medline

Aravanis AM, Wang LP, Zhang F, Meltzer LA, Mogri MZ, Schneider
MB, Deisseroth K (2007) An optical neural interface: in vivo control
of rodent motor cortex with integrated fiberoptic and optogenetic
technology. J Neural Eng 4:5S143-S156. CrossRef Medline

Azimipour M, Baumgartner R, Liu Y, Jacques SL, Eliceiri K, Pashaie
R (2014) Extraction of optical properties and prediction of light
distribution in rat brain tissue. J Biomed Opt 19:075001. CrossRef
Medline

Azimipour M, Atry F, Pashaie R (2015) Effect of blood vessels on light
distribution in optogenetic stimulation of cortex. Opt Lett 40:2173-
2176. Medline

Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding
algorithm for linear inverse problems. SIAM J Img Sci 2:183-202.
CrossRef

Bernstein JG, Han X, Henninger MA, Ko EY, Qian X, Franzesi GT,
McConnell JP, Stern P, Desimone R, Boyden ES (2008) Prosthetic
systems for therapeutic optical activation and silencing of
genetically-targeted neurons. Proc SPIE Int Soc Opt Eng 6854:
68540H-68540H.

January/February 2016, 3(1) e0059-15.2015

Methods/New Tools 9 of 9

Chow BY, Han X, Dobry AS, Qian X, Chuong AS, Li M, Henninger
MA, Belfort GM, Lin Y, Monahan PE, Boyden ES (2010) High-
performance genetically targetable optical neural silencing by
light-driven proton pumps. Nature 463:98-102. CrossRef Medline

Deisseroth K (2011) Optogenetics. Nature Methods 8:26-29. Cross-
Ref Medline

Deisseroth K, Schnitzer M (2013) Engineering approaches to illumi-
nating brain structure and dynamics. Neuron 80:568-577. Cross-
Ref Medline

Fang Q (2010) Mesh-based Monte Carlo method using fast ray-
tracing in plucker coordinates. Biomed Opt Express 1:165-175.
CrossRef Medline

Foutz TJ, Arlow RL, Mclintyre CC (2012) Theoretical principles un-
derlying optical stimulation of a channelrhodopsin-2 positive py-
ramidal neuron. J Neurophysiol 107:3235-3245. CrossRef Medline

Frigault MM, Lacoste J, Swift JL, Brown CM (2009) Live-cell micros-
copy: tips and tools. J Cell Sci 122:753-767. CrossRef Medline

Funk O, Pfeilsticker K (1999) Photon path length distributions for
cloudy skies - oxygen A-band measurements and model calcula-
tions. Ann Geophys 21:615-626. CrossRef

Kahn |, Desai M, Knoblich U, Bernstein J, Henninger M, Graybiel AM,
Boyden ES, Buckner RL, Moore Cl (2011) Characterization of the
functional MRI response temporal linearity via optical control of
neocortical pyramidal neurons. J Neurosci 31:15086-15091.
CrossRef Medline

Kubelka P (1948) New contributions to the optics of intensely light-
scattering materials. part I. J Opt Soc Am 38:448-457. Medline

McLean JW, Freeman JD, Walker RE (1998) Beam spread function
with time dispersion. Appl Opt 37:4701-4711. Medline

Neuman M, Edstrém P (2010) Anisotropic reflectance from turbid
media: |. Theory. J Opt Soc Am A Opt Image Sci Vis 27:1032-
1039.

Oheim M, Beaurepaire E, Chaigneau E, Mertz J, Charpak S (2001)
Two-photon microscopy in brain tissue: Parameters influencing
the imaging depth. J Neurosci Methods 111:29-37. Medline

Okamoto K (2006) Fundamentals of optical waveguides. Burlington,
MA: Elsevier.

Pashaie R, Anikeeva P, Jin Hyung Lee, Prakash R, Yizhar O, Prigge
M, Chander D, Richner TJ, Williams J (2014) Optogenetic brain
interfaces. IEEE Rev Biomed Eng 7:3-30. CrossRef Medline

Theer P, Denk W (2006) On the fundamental imaging-depth limit in
two-photon microscopy. J Opt Soc Am A Opt Image Sci Vis
23:3139-3149. Medline

Vo-Dinh T (2003) Biomedical photonics handbook. Boca Raton, FL:
CRC.

Yaroslavsky AN, Schulze PC, Yaroslavsky IV, Schober R, Ulrich F,
Schwarzmaier HJ (2002) Optical properties of selected native and
coagulated human brain tissues in vitro in the visible and near
infrared spectral range. Phys Med Biol 47:2059-2073. Medline

Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K (2011)
Optogenetics in neural systems. Neuron 71:9-34. CrossRef Med-
line

Zhang F, Vierock J, Yizhar O, Fenno LE, Tsunoda S, Kianianmomeni
A, Prigge M, Berndt A, Cushman J, Polle J, Magnuson J, Hege-
mann P, Deisseroth K (2011) The microbial opsin family of opto-
genetic tools. Cell 147:1446-1457. CrossRef Medline

Zhu C, Liu Q (2013) Review of Monte Carlo modeling of light trans-
port in tissues. J Biomed Opt 18:50902. CrossRef Medline

eNeuro.sfn.org


http://niel.net.technion.ac.il/software
http://niel.net.technion.ac.il/software
http://dx.doi.org/10.1038/nature06310
http://www.ncbi.nlm.nih.gov/pubmed/17943086
http://dx.doi.org/10.1371/journal.pone.0067626
http://www.ncbi.nlm.nih.gov/pubmed/23874433
http://dx.doi.org/10.1088/1741-2560/4/3/S02
http://www.ncbi.nlm.nih.gov/pubmed/17873414
http://dx.doi.org/10.1117/1.JBO.19.7.075001
http://www.ncbi.nlm.nih.gov/pubmed/24996660
http://www.ncbi.nlm.nih.gov/pubmed/26393692
http://dx.doi.org/10.1137/080716542
http://dx.doi.org/10.1038/nature08652
http://www.ncbi.nlm.nih.gov/pubmed/20054397
http://dx.doi.org/10.1038/nmeth.f.324
http://dx.doi.org/10.1038/nmeth.f.324
http://www.ncbi.nlm.nih.gov/pubmed/21191368
http://dx.doi.org/10.1016/j.neuron.2013.10.032
http://dx.doi.org/10.1016/j.neuron.2013.10.032
http://www.ncbi.nlm.nih.gov/pubmed/24183010
http://dx.doi.org/10.1364/BOE.1.000165
http://www.ncbi.nlm.nih.gov/pubmed/21170299
http://dx.doi.org/10.1152/jn.00501.2011
http://www.ncbi.nlm.nih.gov/pubmed/22442566
http://dx.doi.org/10.1242/jcs.033837
http://www.ncbi.nlm.nih.gov/pubmed/19261845
http://dx.doi.org/10.5194/angeo-21-615-2003
http://dx.doi.org/10.1523/JNEUROSCI.0007-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/22016542
http://www.ncbi.nlm.nih.gov/pubmed/18916891
http://www.ncbi.nlm.nih.gov/pubmed/18285927
http://www.ncbi.nlm.nih.gov/pubmed/11574117
http://dx.doi.org/10.1109/RBME.2013.2294796
http://www.ncbi.nlm.nih.gov/pubmed/24802525
http://www.ncbi.nlm.nih.gov/pubmed/17106469
http://www.ncbi.nlm.nih.gov/pubmed/12118601
http://dx.doi.org/10.1016/j.neuron.2011.06.004
http://www.ncbi.nlm.nih.gov/pubmed/21745635
http://www.ncbi.nlm.nih.gov/pubmed/21745635
http://dx.doi.org/10.1016/j.cell.2011.12.004
http://www.ncbi.nlm.nih.gov/pubmed/22196724
http://dx.doi.org/10.1117/1.JBO.18.5.050902
http://www.ncbi.nlm.nih.gov/pubmed/23698318

	Realistic Numerical and Analytical Modeling of Light Scattering in Brain Tissue for Optogenetic  ...
	Introduction
	Methods
	General considerations
	Monte Carlo simulation
	Beam-spread function simulation
	Experimental setup

	Results
	Discussion

	References

