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Abstract

Objective

Hemorrhagic fever with renal syndrome (HFRS), one of the main public health concerns in

mainland China, is a group of clinically similar diseases caused by hantaviruses. Statistical

approaches have always been leveraged to forecast the future incidence rates of certain

infectious diseases to effectively control their prevalence and outbreak potential. Compared

to the use of one base model, model stacking can often produce better forecasting results.

In this study, we fitted the monthly reported cases of HFRS in mainland China with a model

stacking approach and compared its forecasting performance with those of five base

models.

Method

We fitted the monthly reported cases of HFRS ranging from January 2004 to June 2019 in

mainland China with an autoregressive integrated moving average (ARIMA) model; the

Holt-Winter (HW) method, seasonal decomposition of the time series by LOESS (STL); a

neural network autoregressive (NNAR) model; and an exponential smoothing state space

model with a Box-Cox transformation; ARMA errors; and trend and seasonal components

(TBATS), and we combined the forecasting results with the inverse rank approach. The fore-

casting performance was estimated based on several accuracy criteria for model prediction,

including the mean absolute percentage error (MAPE), root-mean-squared error (RMSE)

and mean absolute error (MAE).

Result

There was a slight downward trend and obvious seasonal periodicity inherent in the time

series data for HFRS in mainland China. The model stacking method was selected as the

best approach with the best performance in terms of both fitting (RMSE 128.19, MAE 85.63,

MAPE 8.18) and prediction (RMSE 151.86, MAE 118.28, MAPE 13.16).
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Conclusion

The results showed that model stacking by using the optimal mean forecasting weight of the

five abovementioned models achieved the best performance in terms of predicting HFRS

one year into the future. This study has corroborated the conclusion that model stacking is

an easy way to enhance prediction accuracy when modeling HFRS.

1. Introduction

Hemorrhagic fever with renal syndrome (HFRS) is an infectious rodent-borne disease caused

by hantavirus, and it is a significant public health problem in China, comprising approximately

90% of HFRS cases reported globally [1]. In China, HFRS is predominantly caused by two

strains of hantavirus, the Hantaan virus and Seoul virus, and its clinical symptoms include

fever, bleeding and acute kidney injury [2]. Humans become infected with hantavirus mainly

through exposure to aerosols with contaminated urine and feces, ingestion of contaminated

food and rodent bites [3–5]. It has been conclusively proven that the incidence of HFRS conta-

gion is contingent upon the population densities of rodents, the level of exposure, and other

ambient factors, such as temperature, humidity and the level of urbanization [6]. In a counter-

measure designed to stop the spread of HFRS in China, the Chinese Center for Disease Con-

trol and Prevention (CDC) contrived a comprehensive mandatory surveillance system to

collect data related to HFRS and publicize this data on its official website. A statistical approach

for handling data pertaining to HFRS has been routine practice to describe its epidemiological

characteristics and predict its occurrence characteristics in the future by modeling the data.

There have been many reports that are solely focused on time series analyses of the inci-

dence rate of HFRS; for example, Liu et al. predicted the incidence rate of HFRS three years

into the future through the autoregressive integrated moving average (ARIMA) method based

on yearly incidence rate data ranging from 1978 to 2008, and the model did not show signifi-

cant autocorrelation in the residual [7]. Wang et al. predicted the incidence rate of HFRS

twelve months into the future using the ARIMA method based on monthly incidence rate data

ranging from 2004 to 2013, and this approach produced reliable results [8]. Other researchers

have resorted to more complicated methods. Wu et al. used both the ARIMA method and a

NAR neural network to model monthly incidence data for HFRS ranging from 2004 to 2013,

and they determined that the NAR neural network method outperforms the ARIMA method

in fitting and predicting the incidence tendency of HFRS [9].

In our previous study [10], we compared the performances of two hybrid models in fitting

HFRS incidence data from Jiangsu Province, China. One hybrid model was composed of a

nonlinear autoregressive neural network (NARNN) and ARIMA, and the other was composed

of a generalized regression neural network (GRNN) and ARIMA. In contrasted to this study

in terms of the employed model mechanism, in the hybrid model study, we first fitted the raw

data with ARIMA, after which we tried to obtain additional potentially available information

from the residual with the help of a neural network. In this study, we fit the data with five dif-

ferent models and then combine the forecasting result by using the inverse rank approach to

obtain the best possible performance. Therefore, it can be seen that this study and our previous

study adopt two different strategies.

The aforementioned studies focused on either a single model or several models and com-

parisons between them, and few studies have examined the combination of the outcomes of

different models. Previous studies have shown that model stacking often leads to better
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accuracy than that of a single model by integrating several base models to yield a final result.

Model stacking has been used in many fields to enhance the precision of prediction [11–13].

In many cases, this would lead to significant improvements in accuracy either by using the

averaging approach or weighted averaging approach. In this study, we not only construct and

compare five base models to fit the monthly reported incidence of HFRS, but also combine the

forecast outcomes of those models to achieve improved prediction results.

2. Materials and method

2.1 Data collection and preprocessing

The monthly reported cases of HFRS ranging from January 2004 to June 2019 was obtained

from the official website of National Health Commission of the People’s Republic of China

(http://www.nhc.gov.cn/). The dataset analyzed during the study is included in S1 Dataset. In

China, HFRS is a statutorily notifiable disease, and hospitals must report every case to their

local health authority within 24 hours. Each HFRS case was diagnosed and confirmed by clini-

cal symptoms and serological identification, respectively. The incidence data collected from

the HFRS surveillance system contain no personal information; therefore, this study does not

require an ethics examination. The data from January 2004 to June 2018 are used as a training

dataset and the remaining data (from July 2018 to June 2019) are employed as a testing dataset

to check the forecasting performance of the developed model. All statistical analyses are per-

formed with the R 3.6.1 software. To preliminarily acknowledge the basic characteristics of the

data, we performed seasonal decomposition to determine the existence of seasonal compo-

nents. A Box-Cox transformation is required in cases where normalization is necessary.

2.2 Base models and model stacking

2.2.1 ARIMA. The ARIMA method has often been used for the prediction of infectious

diseases [14–16], such as the HFRS. Here, we construct a seasonal ARIMA (p, d, q) (P, D, Q)

[S] model, because of the seasonality of the monthly incidence data, in which the p parameter

is the order of autoregression, d is the order of differencing, q is the order of the moving aver-

age, and S is the period of seasonality. (P, D, Q) denotes the seasonal component of the model.

The original data must be converted to stationary time series by differencing or other

approaches. The six parameters are chosen by the criteria of the partial autocorrelation func-

tion (PACF) and autocorrelation function (ACF). S is decided by the periodic length of the

seasonality, and finally, the optimal model is selected based on the Akaike information crite-

rion (AIC). Additionally, the Ljung-Box test is used to examine the homogeneity of the residu-

als produced by the ARIMA models to assess their fitness values [17].

2.2.2 Holt-Winters seasonal method (Holt-Winters additive model with additive error

and no trend). The Holt-Winters(HW) method is a member of the exponential smoothing

model family that was proposed by Holt [18] and Winters [19]. The HW seasonal method is

tailored to directly capture the seasonality of time series data by assuming that the predicted

data and historical data share some common iterative data-generation patterns, namely, the

estimation of future values is based on past data. The model contains a forecasting equation

and three smoothing equation, each of which is used for different components; one for level,

one for trend and one for seasonality. In contrast with ARIMA, the optimal HW model is pro-

duced by iterative calculation instead of approximation to the statistical model. There are two

types of HW methods that differ in terms of the characteristics of their seasonal components;

one is multiplicative, and the other is additive. The multiplicative method is favored when the

seasonal component changes proportionally with the level of the time series. The additive
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method is favored when the seasonal component is relatively constant throughout the entire

time series. The two different methods are described mathematically as follows:

Multiplicative HW model:

Level: Lt ¼ α
Yt

St�m

� �

þ ½1 � a� � ðLt� 1 � bt� 1Þ ð1Þ

Trend: bt ¼ b� ðLtLt� 1Þ þ ð1 � bÞ � bt� 1 ð2Þ

Seasonality : St ¼ g�
Yt

Lt

� �

þ ð1 � gÞ � bt� 1 ð3Þ

Forecast equation : Ftþk ¼ ðLt þ k� btÞ � Stþk� m ð4Þ

Additive HW model:

Level: Lt ¼ αðYt � St�mÞ þ ½1 � a� � ðLt� 1 � bt� 1Þ ð5Þ

Trend: bt ¼ b� ðLtLt� 1Þ þ ð1 � bÞ � bt� 1 ð6Þ

Seasonality : St ¼ g� ðYt � LtÞ þ ð1 � gÞ � bt� 1 ð7Þ

Forecast equation : Ftþk ¼ ðLt þ k� btÞ � Stþk� m ð8Þ

M is used to denote the periodicity of the seasonality, t refers to the time stamp of certain

recording, k is the index, and α, β and γ are smoothing factors that are theoretically limited

between 0 and 1. The final optimal model is obtained by minimizing the squared one-step pre-

diction error [20].

2.2.3 STL. STL is a versatile and robust approach for decomposing time series; it is an

acronym that represents ‘seasonal and trend decomposition using LOESS (locally-weighted

scatterplot smoothing)’, and LOESS is a method specifically designed for fitting nonlinear rela-

tionships [21]. The STL method assumes that the time series data include three components: a

trend component, a seasonal component and the remainder of the data. The STL method has

the advantage of allowing the seasonal component to change over time, and the rate of change

and the smoothness of the trend period can be manipulated manually. The performance can

be robust without considering outliers, so an occasional rare variation does not affect the holis-

tic estimation. The algorithm first identifies the trend component and then calculates the sea-

sonal component. Decomposition with either the additive or multiplicative method can be

performed by using a Box-Cox transformation with the λ parameter. When λ = 0, the multipli-

cative decomposition is performed, while λ = 1 denotes additive decomposition.

2.2.4 NNAR. Neural network techniques have long been widely used for the forecasting

of infectious diseases [22]. NNAR is an acronym for ‘neural network auto regressive’. The

NNAR model is a three-layer feedforward neural network with only one hidden layer and

lagged input for forecasting univariate time series. The relationship between the input and out-

put can be represented by the following equation:

yt ¼ w0 þ
Xh

j¼1
wj � gðw0;j þ

Xn

i¼1
wi;j � yt� 1Þ þ εt ð9Þ

where w are the parameters, n refers to the number of input nodes and h represents the num-

ber of hidden nodes. The hidden layer transfer function is a sigmoid function, and the
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activation function for the output is a linear function. In this study, we choose the NNAR (p,

P, k)[m] model. p refers to the number of nonseasonal inputs, P refers to the number of sea-

sonal inputs, k refers to the number of hidden nodes, and m denotes the cycle length of

seasonality.

An important preliminary task is to determine the best values of p and P, and this should be

done before fitting the NNAR model. A normalization of the time series is required before

plotting the PACF, which determines the number of nonseasonal lags. The P value is decided

according to the seasonal pattern of the original monthly incidence data.

2.2.5 TBATS. TBATS is a conglomerate of the trigonometric seasonal model, a Box-Cox

transformation and the trend and seasonal decompositions with errors fitted by the ARIMA

method [23, 24]. The mathematical procedure of the TBATS method is extremely intricate and

out of the purview of this study. Generally, the training data are primarily decomposed into

trend, seasonal and residual components. Then, a Box-Cox transformation is used to address

problems related to nonlinearity. The error component is fitted with the ARIMA model, while

the trigonometric function is utilized to address the seasonal non-integer periodicity [25]. A

damping parameter is necessary to restrict the continuity of the trend component. The final

optimal model is obtained based on the minimization of the AIC via an iterative process. The

final model is descripted as follow:

TBATðω;φ; p; q; fm1; k1g; . . . . . . . . . fmTkTgÞ ð10Þ

where p, q are the parameters of ARIMA, and ω and φ are the Box-Cox transformation param-

eter and damping parameter, respectively. m and k refer to the seasonal periodicity and rele-

vant parameter applied to each seasonality, respectively.

2.2.6 Model stacking. The end result is acquired by adding different weights to each of

the means of the five base models described above. The weights are calculated according to

the inverse rank approach proposed by Aiofli and Timmermann [26]. Briefly, this combina-

tion strategy first groups models into clusters based on a distribution of past forecasting

performance, attributes forecasts to each cluster, and then estimates the optimal combina-

tion weight for each model. The mathematical procedure of this method is exorbitantly

intricate and out of the purview of this study. Additionally, the outcome of this method

shows strong robustness.

2.3 Criteria

Three measurements criteria [27], mean absolute error (MAE), mean absolute percentage

error (MAPE) and root mean square error (RMSE), are used to evaluate the goodness-of-fit of

the models and are defined as follow:

MAE ¼
1

n

Xn

i¼1
jFi � Aij ð11Þ

MAPE ¼
1

n

Xn

i¼1

Fi � Ai

Ai

�
�
�
�

�
�
�
�� 100% ð12Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
ðFi � AiÞ

2

r

ð13Þ

where n is the total number of data points, and Fi and Ai denote the predicted value and the

actual value for the ith data point, respectively.
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3. Results

Fig 1 visually demonstrates the 186 monthly cases of HFRS in mainland China ranging from

January 2004 to June 2019. The preliminary plot illustrates the obvious seasonality pattern

(s = 12) inherent in the incidence data for the HFRS disease. The incidence peaks twice every

year with almost the same period. The prevalence of HFRS has a slight trend of diminishing in

recent years. Fig 2 further vividly verifies the high significance of seasonality.

The ACF test and PACF test (Fig 3) were employed to determine the parameters of the

ARIMA model. With the assistance of the residual test, we obtained six appropriate models as

well as their AIC values. The AIC values of ARIMA(0,1,3)(1,1,1)12, ARIMA(0,1,3)(1,1,0)12,

ARIMA(0,1,3)(0,1,1)12, ARIMA(3,1,0)(1,1,1)12, ARIMA(3,1,0)(1,1,0)12 and ARIMA(3,1,0)

(0,1,1)12 were -142.51, -143,11, -141.60, -141.56, -143.56 and -142.44, respectively. The

ARIMA(3,1,0)(1,1,0)12 model had the lowest AIC value and was chosen as the best model in

the ARIMA approach. Its coefficients are shown in Table 1. The Ljung-box test showed the

absence of autocorrelations (Fig 4) within the residuals.

Table 2 shows the fit and prediction results of the six models, and the accuracy rates are cal-

culated by using the RMSE, MAE and MAPE. According to the results of the three criteria, the

model stacking method outperformed all other approaches in terms of fitting accuracy and

prediction accuracy. From the perspectives of the single model approaches, it is noteworthy

that a model that functions well in terms of fit does not necessarily produce satisfactory predic-

tion results. The ARIMA model has the worst performance in terms of both fitting and predic-

tion. From the perspective of model stacking, Fig 5 shows the respective weights of the five

models when factoring them into the model stacking procedure. The STL model has the high-

est weight, and the ARIMA model has the lowest weight. Fig 6 compares the mean forecasts of

the six approaches. The NNAR model showed the largest deviation from the test set data, and

the other five models performed relatively well with regard to prediction.

Fig 1. Monthly cases of HFRS from January 2004 to June 2019 in mainland China.

https://doi.org/10.1371/journal.pone.0248597.g001
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Fig 2. The seasonal component of the monthly incidence data for HFRS.

https://doi.org/10.1371/journal.pone.0248597.g002

Fig 3. ACF and PACF results obtained after differencing.

https://doi.org/10.1371/journal.pone.0248597.g003
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4. Discussion

Statistical approaches have been believed to be an important part of infectious disease control

and prevention in modern society for years. In this study, we constructed five models

(ARIMA, STL, HW, NNAR, TBATS) and then combined their forecast data (means) based on

their optimal weights to obtain the best predicted result; we also determined their accuracies of

fit and forecasting via several criteria. The final results showed that model stacking is the best

approach for fitting and predicting the monthly incidence of HFRS in mainland China, and

this could potentially be a better tool for helping people make public health policies than exist-

ing methods.

The ARIMA model is a common method often used in infectious disease prediction,

including the prediction of HFRS, and it has proven to be efficient in many studies. The

ARIMA model is suitable for time series data with long-term trends and significant seasonal

periodicity. As shown in Fig 1, the incidence of HFRS had a slightly downward trend, it usually

reached its peak during winter, and there was another much smaller peak during autumn [28–

30]. This phenomenon is probably related to rodent behavior, which is correlated with weather

conditions, such as temperature. In this study, the ARIMA model was deployed as a conven-

tional baseline model to evaluate the performances of the others approaches [31, 32].

Table 1. Sparse coefficients of ARIMA(3,1,0)(1,1,0)12.

Coefficient 95%CI

AR1 NA NA

AR2 NA NA

AR3 -0.29 -0.45~-0.13

SAR1 -0.45 -0.69~-0.29

https://doi.org/10.1371/journal.pone.0248597.t001

Fig 4. Ljung-Box test of ARIMA(3,1,0)(1,1,0)12.

https://doi.org/10.1371/journal.pone.0248597.g004
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The STL model can be applied to decompose time series without being limited to any cer-

tain kind of seasonality or periodicity. It allows its seasonal component to change over time

and is more immune to outliers than other decomposition approaches. The STL method is

gifted with the meritorious characteristics of versatility, robustness, and high applicability. The

HW seasonal method is utilized to capture the seasonality of time series data by assuming that

the predicted data and historical data share some common iterative data-generation patterns,

namely, the estimation of future values is based on past data. It is comprised of three compo-

nents: level, trend and seasonality. By dividing a time series into three sections and fitting

them with their respective equations, the HW seasonal method can achieve good performances

for time series with trends and seasonality. The NNAR model is a simple three-layer feedfor-

ward neural network with only one hidden layer. A neural network is gifted with a unique and

excellent ability in that it can mine and capture the dynamics within a dataset by applying

weights automatically (such as in the NNAR model), without sophisticated prerequisites and

conditions. When applying weights to each function in its algorithm, this procedure is auto-

matic and random. Therefore, we randomly applied weights 1000 times and then counted the

mean of those outcomes. Based on this protocol, we ran the adjusted NNAR model 100 times,

its outcomes maintained significant stability. The TBATS method is a conglomerate of the trig-

onometric seasonal model, a Box-Cox transformation, ARIMA and decomposition. These

components are organically and coherently combined to fit time series data. The mechanism

of TBATS is mathematically complicated, but it has been proven to be robust and applicable to

time series data.

Table 2. Accuracies of fit and prediction for six approaches.

Model Training set Test set

RMSE MAE MAPE RMSE MAE MAPE

ARIMA 182.741 110.459 10.459 215.522 167.848 18.074

HW 151.313 104.103 9.788 152.511 125.459 14.907

STL 136.487 90.4280 8.461 154.758 131.556 15.624

NNAR 149.249 112.972 11.775 227.803 140.396 13.533

TBATS 150.894 104.325 9.829 154.082 129.137 14.883

Combination 128.190 85.631 8.118 151.864 118.273 13.156

https://doi.org/10.1371/journal.pone.0248597.t002

Fig 5. The weight of each model as a combination of means.

https://doi.org/10.1371/journal.pone.0248597.g005
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In contrast with model stacking, there is a hybrid model approach that is often used to

enhance the accuracy of disease prediction, where researchers combine several models

together to address the instability of a one-model approach. Such as, Wang YW et.al. [33] con-

structed a hybrid ARIMA-GRNN model to fit the monthly incidence of HFRS in mainland

China, and this hybrid model outperformed the single ARIMA and GRNN models. And Wu

W et al. [10] found that the hybrid ARIMA-NARNN model is an effective method to better fit

the dynamics and characteristics of HFRS than the single model approach. Ling sun et al. [34]

successfully applied a geographical information system together with the SARIMA model to

denote and forecast HFRS epidemics with the goal of surveillance and control of HFRS in

mainland China in a national level. Chang Qi et al. [35] compared the differences in fitting

and prediction accuracies of SARFIMA and SARIMA when applied to HFRS disease and

found that the SARFIMA model outperforms the SARIMA model in terms of improving the

forecast of monthly HFRS cases. Youlin Zhao et al. [36] demonstrated that the SD-STARIMA

model offers noticeably better prediction accuracy than the traditional approach, especially for

spatiotemporal series data with seasonality characteristics.

Compared with those studies, we combined the prediction results of different models instead

of using a hybrid model beforehand. Despite some essential differences between these

approaches, they have been both proven to improve forecasting accuracy to a certain extent.

These five base models can be theoretically categorized as linear models, nonlinear models and

decompositions of sequences. The components that we input into the model stack are diverse,

and the diversity of a single model is helpful in enhancing the accuracy of fitting and prediction.

5. Conclusion

In this paper, we fit monthly incidence data with five different models, and then we combined

the forecasting results of the models by their weighted means to compare the performances of

Fig 6. Visual comparison of the predictions of five approaches.

https://doi.org/10.1371/journal.pone.0248597.g006
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a single model and model stacking. In this scenario with HFRS incidence data, we can safely

conclude that combining multiple models leads to a significant improvement in accuracy. The

model stacking approach outperforms any other one-model approach. The stacking of differ-

ent models for the same time series data can be potentially utilized as a simple way to enhance

the precision of forecasting infectious diseases, and this would more or less facilitate the pre-

vention and control of certain diseases by preemptively acknowledging their characteristics.

6. Strengths and limitations of this study

Ensemble machine learning approaches are rarely used in HFRS disease prediction. Through

this study, we can safely conclude that model stacking produces better outcomes than using a

single model. There were several limitations of this study that should be pointed out. This

study was an ecological study. There are many other factors, such as weather conditions and

human activities that are related to the incidence of HFRS, but in our study, we built the

model with only incidence data, thereby excluding many other potentially important data. A

reliable and accurate forecasting model can help optimize resource allocation and mitigate the

effects of epidemic outbreaks. In addition, the models we used in this study are limited and

may not be the optimal model combination in the case of HFRS. The number and category of

models we used to fit the data need further revision to optimize the results. Due to the lack of

diversity in the HFRS data, we only developed a model for short-term forecasting to lower the

deviation and error of the results. To improve the performance of our method, we need more

data of other kinds to fit into the model, and we should revise the model as well. At the same

time, our data we collected at the national level, so the applicability and effect of the model

stacking method with regard to HRFS at the provincial or municipal level demand further

study. Furthermore, HFRS is widely endemic in China and is mainly caused by two main

genotypes of Hantaviruses, Hantaan and Seoul viruses, which have different seasonality and

usually have different geographical distributions. The infection peaks of Hantaan virus mostly

occurred in autumn-winter and spring, and the Seoul virus epidemic mainly occurred in

spring. The epidemic dynamics usually varied in different endemic areas, and this study fitted

and forecasted the monthly occurrence rate of HFRS at the national level, so it is likely possible

that this study neglected the epidemic heterogeneity in different endemic areas.

Supporting information

S1 Dataset. Monthly cases of hemorrhagic fever with renal syndrome in mainland China

from January 2004 to June 2019.

(CSV)

Author Contributions

Conceptualization: Peng Guan, De-sheng Huang, Bao-sen Zhou, Wei Wu.

Data curation: Guo-hua Ye.

Formal analysis: Bao-sen Zhou, Wei Wu.

Funding acquisition: Peng Guan, De-sheng Huang, Bao-sen Zhou, Wei Wu.

Investigation: Mirxat Alim, Bao-sen Zhou, Wei Wu.

Methodology: Peng Guan, De-sheng Huang, Bao-sen Zhou, Wei Wu.

Resources: Mirxat Alim, Wei Wu.

PLOS ONE Improving the precision with an ensemble machine learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0248597 March 16, 2021 11 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0248597.s001
https://doi.org/10.1371/journal.pone.0248597


Software: Guo-hua Ye, Mirxat Alim.

Supervision: Mirxat Alim.

Validation: Guo-hua Ye, Mirxat Alim.

Visualization: Guo-hua Ye.

Writing – original draft: Guo-hua Ye.

Writing – review & editing: Guo-hua Ye.

References
1. Li S., et al., Spatiotemporal heterogeneity analysis of hemorrhagic fever with renal syndrome in China

using geographically weighted regression models. International journal of environmental research and

public health, 2014. 11(12): p. 12129–12147. https://doi.org/10.3390/ijerph111212129 PMID:

25429681

2. Zou L.-X., Chen M.-J., and Sun L., Haemorrhagic fever with renal syndrome: literature review and distri-

bution analysis in China. International journal of infectious diseases: IJID: official publication of the Inter-

national Society for Infectious Diseases, 2016. 43: p. 95–100. https://doi.org/10.1016/j.ijid.2016.01.003

PMID: 26791541

3. Clement J.P., Hantavirus. Antiviral research, 2003. 57(1–2): p. 121–127. https://doi.org/10.1016/

s0166-3542(02)00205-x PMID: 12615308

4. Song G., Epidemiological progresses of hemorrhagic fever with renal syndrome in China. Chinese med-

ical journal, 1999. 112(5): p. 472–477. PMID: 11593522

5. Yan L., et al., Landscape elements and Hantaan virus-related hemorrhagic fever with renal syndrome,

People’s Republic of China. Emerging infectious diseases, 2007. 13(9): p. 1301–1306. https://doi.org/

10.3201/eid1309.061481 PMID: 18252099

6. Xiao H., et al., Investigating the effects of food available and climatic variables on the animal host den-

sity of hemorrhagic Fever with renal syndrome in changsha, china. PloS one, 2013. 8(4): p. e61536–

e61536. https://doi.org/10.1371/journal.pone.0061536 PMID: 23637849

7. Liu Q., et al., Forecasting incidence of hemorrhagic fever with renal syndrome in China using ARIMA

model. BMC infectious diseases, 2011. 11: p. 218–218. https://doi.org/10.1186/1471-2334-11-218

PMID: 21838933

8. Wang T., et al., Prevalence of hemorrhagic fever with renal syndrome in Yiyuan County, China, 2005–

2014. BMC infectious diseases, 2016. 16: p. 69–69. https://doi.org/10.1186/s12879-016-1404-7 PMID:

26852019

9. Wu W., et al., Application of nonlinear autoregressive neural network in predicting incidence tendency

of hemorrhagic fever with renal syndrome. Zhonghua liu xing bing xue za zhi = Zhonghua liuxingbingxue

zazhi, 2015. 36(12): p. 1394–1396. PMID: 26850398

10. Wu W., et al., Comparison of Two Hybrid Models for Forecasting the Incidence of Hemorrhagic Fever

with Renal Syndrome in Jiangsu Province, China. PLoS One, 2015. 10(8): p. e0135492. https://doi.org/

10.1371/journal.pone.0135492 PMID: 26270814

11. Rice J.S. and Emanuel R.E., How are streamflow responses to the El Nino Southern Oscillation affected

by watershed characteristics? 2017. 53(5): p. 4393–4406.

12. Wang L., et al., Improving the robustness of beach water quality modeling using an ensemble machine

learning approach. Science of The Total Environment, 2020: p. 142760. https://doi.org/10.1016/j.

scitotenv.2020.142760 PMID: 33131841

13. Zhai B. and Chen J., Development of a stacked ensemble model for forecasting and analyzing daily

average PM2.5 concentrations in Beijing, China. Science of The Total Environment, 2018. 635: p. 644–

658. https://doi.org/10.1016/j.scitotenv.2018.04.040 PMID: 29679837

14. Chae S., Kwon S., and Lee D., Predicting Infectious Disease Using Deep Learning and Big Data. Inter-

national journal of environmental research and public health, 2018. 15(8): p. 1596. https://doi.org/10.

3390/ijerph15081596 PMID: 30060525

15. Hui-Yu H., et al., Application of ARIMA model to predict number of malaria cases in China. Zhongguo

xue xi chong bing fang zhi za zhi = Chinese journal of schistosomiasis control, 2017. 29(4): p. 436–440.

https://doi.org/10.16250/j.32.1374.2017088 PMID: 29508575

16. Sato R.C., Disease management with ARIMA model in time series. Einstein (Sao Paulo, Brazil), 2013.

11(1): p. 128–131. https://doi.org/10.1590/s1679-45082013000100024 PMID: 23579758

PLOS ONE Improving the precision with an ensemble machine learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0248597 March 16, 2021 12 / 13

https://doi.org/10.3390/ijerph111212129
http://www.ncbi.nlm.nih.gov/pubmed/25429681
https://doi.org/10.1016/j.ijid.2016.01.003
http://www.ncbi.nlm.nih.gov/pubmed/26791541
https://doi.org/10.1016/s0166-3542(02)00205-x
https://doi.org/10.1016/s0166-3542(02)00205-x
http://www.ncbi.nlm.nih.gov/pubmed/12615308
http://www.ncbi.nlm.nih.gov/pubmed/11593522
https://doi.org/10.3201/eid1309.061481
https://doi.org/10.3201/eid1309.061481
http://www.ncbi.nlm.nih.gov/pubmed/18252099
https://doi.org/10.1371/journal.pone.0061536
http://www.ncbi.nlm.nih.gov/pubmed/23637849
https://doi.org/10.1186/1471-2334-11-218
http://www.ncbi.nlm.nih.gov/pubmed/21838933
https://doi.org/10.1186/s12879-016-1404-7
http://www.ncbi.nlm.nih.gov/pubmed/26852019
http://www.ncbi.nlm.nih.gov/pubmed/26850398
https://doi.org/10.1371/journal.pone.0135492
https://doi.org/10.1371/journal.pone.0135492
http://www.ncbi.nlm.nih.gov/pubmed/26270814
https://doi.org/10.1016/j.scitotenv.2020.142760
https://doi.org/10.1016/j.scitotenv.2020.142760
http://www.ncbi.nlm.nih.gov/pubmed/33131841
https://doi.org/10.1016/j.scitotenv.2018.04.040
http://www.ncbi.nlm.nih.gov/pubmed/29679837
https://doi.org/10.3390/ijerph15081596
https://doi.org/10.3390/ijerph15081596
http://www.ncbi.nlm.nih.gov/pubmed/30060525
https://doi.org/10.16250/j.32.1374.2017088
http://www.ncbi.nlm.nih.gov/pubmed/29508575
https://doi.org/10.1590/s1679-45082013000100024
http://www.ncbi.nlm.nih.gov/pubmed/23579758
https://doi.org/10.1371/journal.pone.0248597


17. Ljung G.M. and Box G.E.P., On a Measure of Lack of Fit in Time Series Models. Biometrika, 1978. 65

(2): p. 297–303.

18. Holt C.C., Forecasting seasonals and trends by exponentially weighted moving averages. International

Journal of Forecasting, 2004. 20(1): p. 5–10.

19. Winters P.R., Forecasting Sales by Exponentially Weighted Moving Averages. Management Science,

1960. 6(3): p. 324–342.

20. Gelper S., Fried R., and Croux C., Robust forecasting with exponential and Holt–Winters smoothing.

Journal of Forecasting, 2010. 29(3): p. 285–300.

21. Cleveland R.B., et al., STL: a seasonal-trend decomposition. Journal of official statistics, 1990. 6(1): p.

3–73.

22. Li J., et al., Preliminary application of Back-Propagation artificial neural network model on the prediction

of infectious diarrhea incidence in Shanghai. Zhonghua liu xing bing xue za zhi = Zhonghua liuxingbing-

xue zazhi, 2013. 34(12): p. 1198–1202. PMID: 24518019

23. Choi E., Choi K., and Yi S.-M., Non-methane hydrocarbons in the atmosphere of a Metropolitan City

and a background site in South Korea: Sources and health risk potentials. Atmospheric Environment,

2011. 45(40): p. 7563–7573.

24. Sakizadeh M., Spatiotemporal variations and characterization of the chronic cancer risk associated with

benzene exposure. Ecotoxicology and environmental safety, 2019. 182: p. 109387–109387. https://

doi.org/10.1016/j.ecoenv.2019.109387 PMID: 31302332

25. Gardner E.S. and Ed M., Forecasting Trends in Time Series. Management Science, 1985. 31(10): p.

1237–1246.

26. Aiolfi M. and Timmermann A., Persistence in forecasting performance and conditional combination

strategies. Journal of Econometrics, 2006. 135(1): p. 31–53.

27. Armstrong J.S. and Collopy F., Error measures for generalizing about forecasting methods: Empirical

comparisons. International Journal of Forecasting, 1992. 8(1): p. 69–80.

28. Hansen A., et al., Transmission of haemorrhagic fever with renal syndrome in china and the role of cli-

mate factors: a review. Int J Infect Dis, 2015. 33: p. 212–8. https://doi.org/10.1016/j.ijid.2015.02.010

PMID: 25704595

29. Xiang J., et al., Impact of meteorological factors on hemorrhagic fever with renal syndrome in 19 cities

in China, 2005–2014. Sci Total Environ, 2018. 636: p. 1249–1256. https://doi.org/10.1016/j.scitotenv.

2018.04.407 PMID: 29913587

30. Yu X.J. and Tesh R.B., The role of mites in the transmission and maintenance of Hantaan virus (Hanta-

virus: Bunyaviridae). J Infect Dis, 2014. 210(11): p. 1693–9. https://doi.org/10.1093/infdis/jiu336 PMID:

24958909

31. Joshi Y.P., Kim E.H., and Cheong H.K., The influence of climatic factors on the development of hemor-

rhagic fever with renal syndrome and leptospirosis during the peak season in Korea: an ecologic study.

BMC Infect Dis, 2017. 17(1): p. 406. https://doi.org/10.1186/s12879-017-2506-6 PMID: 28592316

32. Zhao Q., et al., Effects of climate factors on hemorrhagic fever with renal syndrome in Changchun,

2013 to 2017. Medicine (Baltimore), 2019. 98(9): p. e14640.

33. Wang Y.W., Shen Z.Z., and Jiang Y., Comparison of autoregressive integrated moving average model

and generalised regression neural network model for prediction of haemorrhagic fever with renal syn-

drome in China: a time-series study. BMJ Open, 2019. 9(6): p. e025773. https://doi.org/10.1136/

bmjopen-2018-025773 PMID: 31209084

34. Sun L. and Zou L.X., Spatiotemporal analysis and forecasting model of hemorrhagic fever with renal

syndrome in mainland China. Epidemiol Infect, 2018. 146(13): p. 1680–1688. https://doi.org/10.1017/

S0950268818002030 PMID: 30078384

35. Qi C., et al., SARFIMA model prediction for infectious diseases: application to hemorrhagic fever with

renal syndrome and comparing with SARIMA. BMC Med Res Methodol, 2020. 20(1): p. 243. https://doi.

org/10.1186/s12874-020-01130-8 PMID: 32993517

36. Zhao Y., et al., A new Seasonal Difference Space-Time Autoregressive Integrated Moving Average

(SD-STARIMA) model and spatiotemporal trend prediction analysis for Hemorrhagic Fever with Renal

Syndrome (HFRS). PLoS One, 2018. 13(11): p. e0207518. https://doi.org/10.1371/journal.pone.

0207518 PMID: 30475830

PLOS ONE Improving the precision with an ensemble machine learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0248597 March 16, 2021 13 / 13

http://www.ncbi.nlm.nih.gov/pubmed/24518019
https://doi.org/10.1016/j.ecoenv.2019.109387
https://doi.org/10.1016/j.ecoenv.2019.109387
http://www.ncbi.nlm.nih.gov/pubmed/31302332
https://doi.org/10.1016/j.ijid.2015.02.010
http://www.ncbi.nlm.nih.gov/pubmed/25704595
https://doi.org/10.1016/j.scitotenv.2018.04.407
https://doi.org/10.1016/j.scitotenv.2018.04.407
http://www.ncbi.nlm.nih.gov/pubmed/29913587
https://doi.org/10.1093/infdis/jiu336
http://www.ncbi.nlm.nih.gov/pubmed/24958909
https://doi.org/10.1186/s12879-017-2506-6
http://www.ncbi.nlm.nih.gov/pubmed/28592316
https://doi.org/10.1136/bmjopen-2018-025773
https://doi.org/10.1136/bmjopen-2018-025773
http://www.ncbi.nlm.nih.gov/pubmed/31209084
https://doi.org/10.1017/S0950268818002030
https://doi.org/10.1017/S0950268818002030
http://www.ncbi.nlm.nih.gov/pubmed/30078384
https://doi.org/10.1186/s12874-020-01130-8
https://doi.org/10.1186/s12874-020-01130-8
http://www.ncbi.nlm.nih.gov/pubmed/32993517
https://doi.org/10.1371/journal.pone.0207518
https://doi.org/10.1371/journal.pone.0207518
http://www.ncbi.nlm.nih.gov/pubmed/30475830
https://doi.org/10.1371/journal.pone.0248597

