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ABSTRACT
Naturally occurring oscillations in glucocorticoids induce a cyclic activation of the glucocorticoid
receptor (GR), a well-characterized ligand-activated transcription factor. These cycles of GR
activation/deactivation result in rapid GR exchange at genomic response elements and GR recycling
through the chaperone machinery, ultimately generating pulses of GR-mediated transcriptional
activity of target genes. In a recent article we have discussed the implications of circadian and high-
frequency (ultradian) glucocorticoid oscillations for the dynamic control of gene expression in
hippocampal neural stem/progenitor cells (NSPCs) (Fitzsimons et al., Front. Neuroendocrinol., 2016).
Interestingly, this oscillatory transcriptional activity is common to other transcription factors, many
of which regulate key biological functions in NSPCs, such as NF-kB, p53, Wnt and Notch. Here, we
discuss the oscillatory behavior of these transcription factors, their role in a biologically accurate
target regulation and the potential importance for a dynamic control of transcription activity and
gene expression in NSPCs.
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Introduction

The generation of oscillatory transcription factor
activity can provide an additional way to encode and
transmit information, contained in the amplitude and
period of the oscillations, to accurately regulate gene
expression. Indeed, oscillations in transcription factor
concentration, intracellular localization and activity
are considered key components of several signaling
pathways.1-6

Oscillations in transcription factors: A dynamic way
to control gene expression

Many studies aiming to understand transcription
factor action assess target gene responses by a steady
level of stimulation. However, steady inputs are infre-
quently observed under natural conditions and, at the
cellular level, many signaling pathways have been
optimized to result in a dynamic fluctuation in
transcription factor activity. This suggests that a
biologically accurate regulation of gene expression

requires, or at least benefits from, an oscillatory mode
of action in many cases.7-10 Oscillating signaling
pathways and downstream transcription factors may
present “circadian” lower-frequency oscillations over
the day/night period and/or ‘ultradian’ higher-
frequency oscillations in the order of hours. Further-
more, they frequently present a common architecture
consisting of negative feedback loops that introduce
time delays responsible for their oscillatory activity.11

Conceptually, this necessary time delay could be
obtained by several mechanisms, such as: 1) the
inclusion of a biological process that takes a minimum
amount of time (e.g. transcription, translation,
synthesis); 2) the inclusion of many such intermediate
steps, with each step adding to the overall time delay;
3) the inclusion of a threshold concentration that
must be reached before a molecule becomes
biologically active, resulting in an on/off-like response;
4) the inclusion of a degradation/sequestration step,
where the activity of a molecule is delayed by the for-
mation of a saturated complex8 (Fig. 1). Often, these
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Figure 1. (For figure legend, see page 3.)
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mechanisms are combined within signaling pathways
that induce oscillatory transcriptional activity.

A delayed negative feedback loop is defined as a
negative feedback loop with a time delay due to the
inclusion of intermediate processes between the
product and the repressor.12 Delayed negative
feedback loops are often required to induce
oscillations in transcription factor activity. For
example, in the circadian clock, longer delayed
negative feedback loops are central for the reaction to
regular external inputs such as light or feeding. The
reaction to faster, more irregular signals, such as
cellular stress, frequently requires faster (lower period)
ultradian oscillations. These oscillations in activity are
observed in well-characterized signaling pathways and
downstream transcription factors such as NF-kB, p53,
Wnt and Notch signaling and the glucocorticoid
receptor (GR).4,8,13 In the following sections we will
discuss how the oscillatory behaviors of these
transcriptions factors influence gene expression in in
neural stem/progenitor cells (NSPCs).

The NF-kB pathway

The NF-kB pathway is composed of a group of
transcription factors that bind to form homo- or
hetero-dimers. Once formed, these protein complexes
control several cellular functions such as the response
to stress and the regulation of growth, cell cycle,
survival, apoptosis and differentiation in NSPCs.14-16

Oscillations in NF-kB were first observed in
embryonic fibroblasts, this observation suggested that
temporal control of NF-kB activation is coordinated

by the sequential degradation and synthesis of
inhibitor kappa B (IkB) proteins.3

More recently, oscillations in the relative nuclear/
cytosolic concentration of NF-kB transcription factors
have been observed in single cells in vivo, indicating
this may be an additional regulatory mechanism to
control NF-kB-dependent transcriptional activity.
Importantly, the frequency and amplitude of these
oscillations changed in a cell-type dependent fashion
and differentially affected the dynamics of gene
expression,5 indicating that NF-kB transcription fac-
tors may use changes in the frequency and amplitude
of their oscillatory dynamics to regulate the transcrip-
tion of target genes.1,17 Thus, the NF-kB pathway
provides a well-characterized example of how
oscillatory transcription factor activity may encode
additional, biologically relevant, information for an
accurate control of gene expression.

The p53 pathway

p53 and some of its family members, such as p73 and
p63, regulate various functions in NSPCs. In
particular, p63 and p73 cooperate to regulate p53 in
adult hippocampal NSPCs18 and p53 negatively
regulates proliferation and survival of adult NSPCs,
controlling self-renewal and long-term maintenance
of adult NSPCs.19

Similar to NF-kB, the p53 pathway presents
intrinsic oscillatory dynamics. The mechanism behind
these oscillations may involve p53 and its negative
regulator mouse double minute 2 homolog (MDM2)
also known as E3 ubiquitin-protein ligase. Due to
its ubiquitin-protein ligase activity MDM2 induces

Figure 1. (see previous page) Different molecular mechanisms that can induce time-delay necessary for the generation of oscillations in
transcription factor activity. A) Inclusion of multiple intermediate steps that take a minimum amount of time, such as transcription,
translation, transportation; B) Inclusion of a threshold concentration, in the form of a feedback loop that generates an on/off-like
response, necessary for a molecule to become biologically active; C) Inclusion of degradation/sequestration steps that prevent function-
ality. Examples are: inclusion of a saturated degradation step or inclusion of a complex sequestration step; D) The NFkB pathway is regu-
lated by the sequestration of NFkB by IkB, rendering NFkB inaccessible. Only upon phosphorylation of IkB by IKK, IkB is degraded and
NFkB becomes functionally active; E) Oscillatory behavior is generated by the P53-induced transcription of Mdm2, which in turn binds
to P53 and results in accelerated degradation of P53; F) Axin2 governs at least a part of the oscillatory behavior of the Wnt pathway.
Axin2 transcription is under control of B-catenin, and upon translation Axin2 can either bind B-catenin, inducing degradation, or bind
the LRP receptor complex inducing degradation of Axin2 itself; G) A negative feedback loop controls oscillations in the Notch signaling
pathway. Upon stimulation of the Notch receptors they are cleaved and their intracellular domain, NICD, is translocated to the nucleus
where it promotes the expression of Hes1. Hes1 in its turn inhibits its own promotor, thereby creating a negative feedback loop; H) Glu-
cocorticoid signaling is a prime example of several time-delay steps inducing oscillations. First, glucocorticoids are synthesized de novo
upon stimulation by ACTH. Upon release, glucocorticoids bind to and activate the GR, the activated glucocorticoid receptor is translo-
cated to the nucleus where it induces the transcription of several GR-responsive protein coding genes, as well as several microRNAs.
Some of these microRNAs form negative feedback loops with the GR, locally inhibiting GR expression. Furthermore, the activated GR is
engaged in a classic negative feedback loop to the brain, where it inhibits the production of ACTH and other upstream mediators of the
HPA axis.
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poly-ubiquitination and degradation of p53, bringing
p53 half-life from the order of hours in the absence of
MDM2 to the order of seconds in its presence, and
thereby generating an oscillatory, stress-specific
response.20,21 Thus, this simple negative feedback loop
provides a solid example of oscillatory transcription
factor behavior induced by the inclusion of a saturated
degradation step.8

The Wnt signaling pathway

The canonical Wnt signaling, or Wnt/b-catenin,
pathway is a complex signal transduction system
composed of several proteins. It is activated by the
binding of Wnt ligands to receptors of the Frizzled
family members and leads to cytosolic accumulation
and further translocation of b-catenin to the nucleus,
where it acts as a coactivator of downstream transcrip-
tions factors of the TCF/LEF family, which in turn
regulate the expression of responsive genes, such as
Axin 2. While still in the cytosol, b-catenin is targeted
by a multiprotein complex designed to specifically
promote b-catenin degradation. This complex
includes members of the Axin family (i.e. Axin 2) and
the glycogen synthase kinase 3 b (GSK-3 b), which
constitutively phosphorylates b-catenin in the absence
of Wnt ligands, thereby targeting it for degradation.
Due to its complexity, the extensive description of the
canonical Wnt signaling pathway is beyond the scope
of this review and we refer to previous reviews.22-24

The oscillatory activity of the Wnt signaling
pathway was first identified in vertebrate somite
formation during embryonic development. There, the
Wnt signaling interacts with other oscillatory path-
ways, such as Notch, in the presomitic mesoderm to
coordinate somite formation.25,26 The presence of
Wnt-dependent oscillatory gene expression in several
other developmental processes such as limb outgrowth
and NSPCs maintenance, suggests that it plays crucial
roles at different stages during embryonic develop-
ment.27 Although Wnt oscillations have not been
studied in great detail in (adult) NSPCs, Wnt signaling
is known to regulate adult hippocampal neurogenesis,
control Prospero-related homeobox 1 gene (Prox1)
expression and mediate activation of NeuroD1 and
retro-elements in adult NSPCs.28-30

The central negative feedback loop resulting in
oscillations in Wnt activity seems to involve the Wnt
ligand-activated low density lipoprotein receptor-

related protein (LRP) receptor complex, Axin-2 and
b-catenin.25 Axin-2 is crucial in this regulatory loop
because it can bind both to b-catenin and to the Wnt
ligand-activated LRP receptor complex. Binding to
b-catenin provides a negative feedback step, as it pro-
motes b-catenin degradation, but this binding is weak.
Binding to the Wnt ligand-activated LRP receptor
complex is much stronger and results in saturated
degradation of Axin2. Thus, the Wnt/b-catenin path-
way provides an interesting example of negative feed-
back loops and saturated degradation steps that can
be incorporated as independent components into
oscillatory signaling pathways involving transcription
factors.8

The Notch signaling pathway

The Notch signaling pathway is perhaps the best
characterized oscillatory pathway in NSPCs, it
promotes cell proliferation and maintenance, favoring
a non-differentiated cellular state in the developing
and adult brain.31-33 Proteins of the Notch family
are normally activated by cell-to-cell contact and act
as transmembrane receptors for specific ligands
expressed in neighboring cells, such as Delta-like 1
(Dll1). Upon activation, Notch proteins are proteolyti-
cally cleaved and release their Notch intracellular
domain (NICD).34 NICD then translocates to the
nucleus to form the CSL (or RBP-J in mice) transcrip-
tional complex, which activates the transcription of
responsive genes of the Hes/Hey family, such as Hes1.
The extensive description of the canonical Notch
signaling pathway is beyond the scope of this review
and we refer to previous reviews.32,35

Levels of Hes1 oscillate in mouse embryonic NSPCs
and progenitors, and this oscillatory expression
promotes proliferation.7,36 On the contrary, sustained
(non-oscillatory) Hes1 expression is associated with
inhibition of NSPCs proliferation and neurogenesis in
the developing central nervous system.37 Therefore, it
has been suggested that oscillatory vs. sustained
expression of Notch target genes may distinguish
active and quiescent NSC pools.32

In particular, sustained Hes1 expression inhibits the
expression of proneural genes, Notch ligands and cell
cycle regulators, suggesting that Hes1 oscillations are
of key importance for their concerted function in
NSPCs, in which Hes1 oscillations coordinate self-
renewal and differentiation.7,38 The mechanisms
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regulating oscillations in Notch signaling are not fully
understood but evidence indicates that Hes1
oscillations are regulated by negative feedback loops
with delayed timing.39,40 Hes1 represses its own
expression by direct binding to its own promoter,
leading to a rapid downregulation of Hes1 mRNA and
protein levels and upregulation of Dll1, thereby
generating oscillations in Hes1 expression in NSPCs,
which regulate their maintenance.7,41 Further studies
have demonstrated that Hes1 is engaged in double
negative feedback loops involving specific microRNAs
as well.42,43 Interestingly, double negative feedback
loops are common between transcription factors and
microRNAs and have been frequently described in
NSPCs.44,45 Specifically, in the case of Notch signaling
in NSPCs, miR-9 inputs into the Hes1 ultradian
oscillator system to introduce a second negative
feedback loops that controls the emergence and timing
of alternative cell states in NSPCs.42 Thus, the Notch
pathway provides a relevant example demonstrating
that different delayed negative feedback loops can be
engaged in the generation of oscillatory behavior in
transcription factor activity.

Glucocorticoid receptor signaling

Glucocorticoid receptor signaling has well-
characterized effects on NSPCs. The most commonly
reported observation is a marked inhibition of
proliferation induced by activation of the GR by its
natural or synthetic agonists.46-49 Further research has
established that glucocorticoids regulate other cellular
functions in NSPCs, such as survival, senescence, cell
fate and differentiation.50-53 All in all, the available
experimental evidence indicates that glucocorticoids
regulate multiple cellular functions in NSPCs through
the activation of the GR. For a more extensive
discussion of this evidence we refer the reader to a
recent review.54 As a central component of the
hypothalamus-pituitary-adrenal hormonal axis,
signaling mediated by the ligand-activated
transcription factor GR is regulated at multiple levels,
including: 1) the hormone (ligand) synthesis level in
the adrenals; 2) the hormone access, binding and
activation of the GR; 3) the receptor translocation
from the cytosol to the nucleus; 4) the transcription
efficiency of target genes resulting from the interaction
with transcriptional coregulators and other
transcription factors and 5) the negative feedback

regulation of releasing factors at the central
hypothalamus and pituitary. A thorough description
of GR signaling and its complex regulation is beyond
the scope of this review and we refer to previous
reviews.55

Glucocorticoid signaling involves circadian and
ultradian oscillations that regulate multiple
organismal and cellular functions to coordinate energy
availability and stress responsivity.56 Ultradian and
circadian CORT rhythms are intrinsically linked, as
ultradian pulses are a necessary component of
circadian oscillations. Ultradian oscillations in
glucocorticoids have the highest amplitude around
awakening, which then declines, effectively contribut-
ing to a phase response curve, characteristic of most
circadian rhythms.57-59 Circadian and ultradian gluco-
corticoid oscillations have likely evolved to help adap-
tation to predictable changes in environmental factors
(i.e., light cycles), while the stress response may have
evolved to rapidly adapt to acute unpredictable
changes in environmental factors (i.e., stressors).54

Several mechanisms may underlie the generation of
oscillations in GR-mediated transcriptional activity.
At the organism level, the glucocorticoid lipophilicity
prevents it from being stored in membrane vesicles.
Thereby, glucocorticoids need to be synthesized de
novo in the adrenals, in response to ACTH stimula-
tion. This crucial step introduces a built-in time-delay
in the hypothalamus-pituitary-adrenal negative
feedback loop, which then presents intrinsic oscil-
latory activity.54,59 Due to the presence of ultradian
oscillation, all the tissues tested, including the hippo-
campus where adult NSPCs reside, are exposed to a
pulsatile GR activation, which has considerable conse-
quences for the activation of responsive genes.60-62

At the cellular level, other mechanisms take place
that contribute to GR-dependent oscillatory activation
of target genes: 1) NSPCs express specialized microtu-
bule-associated proteins that tightly control GR
cytosol-to-nucleus translocation.63 This translocation
step possibly introduces another time-delay within
GR-mediated transcription of target genes, that may
favor oscillatory behavior; 2) Ultradian glucocorticoid
oscillations induce cyclic GR-mediated transcriptional
regulation, both in cultured cells and in animal
models. This “responsive gene pulsing” is driven by
rapid GR exchange at DNA response elements and by
intranuclear GR recycling through the chaperone
machinery, which promotes GR activation/
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reactivation in response to the ultradian hormone
release.13 This GR recycling introduces another built-
in time-delay, which may favor oscillatory behavior,
and serve pulsatile and constant hormone stimula-
tions to induce unique, treatment-specific patterns of
gene and regulatory element activation64; 3) The GR is
targeted by microRNAs such as miR-124 and miR-
433, with the latter dampening GR signaling and
impacting on circadian rhythms.65,66 miR-124 expres-
sion is in turn regulated by glucocorticoids through
GR-binding elements in its promoter region, thereby
generating a miR-124/GR negative feedback loop.45,67

Thus, the GR signaling pathway presents a well-char-
acterized example of oscillatory transcriptional regula-
tion in which several processes interact with each
other, i.e., the inclusion of several negative feedback
loops, many intermediate steps, a threshold concen-
tration that must be reached before the GR biologi-
cally active (ligand affinity), and saturated
sequestration/degradation steps. Together, this pro-
vides built-in time delays that characterize model
oscillatory systems.

Conclusion and future perspectives

We have discussed first some molecular mechanisms
involved in the oscillatory behavior of specific signaling
pathways that control key cellular functions in NSPCs,
and second the importance that such oscillations may
have in terms of transcriptional activity and the
dynamic control of gene expression. We have further
extended our discussion by providing 5 examples of
well-characterized transcription factors that display
oscillatory activity. In most cases the importance of this
oscillatory activity has been characterized and clear dif-
ferences between sustained and oscillatory activity have
been observed. These data suggest that oscillations in
transcription factor activity in NSPCs, and their func-
tional consequences, may be much more widespread
than hitherto demonstrated. Indicatively, a recent study
has demonstrated that 43% of all coding genes show
transcriptional oscillations in mice.68 We propose that
one of the reasons why a further characterization of
transcription factor oscillations in NSPCs has not been
fully achieved yet, may lie in the technical limitations
associated with measuring and mimicking oscillatory
activity in an appropriate manner, which require real-
time imaging of individual cells and/or complex

incubations with the adequate ligand, in the case of
ligand-induced transcription factors such as the GR.13,69

Studies of transcription factor action frequently
measure gene responses after long-term stimulation
or exogenous (over)expression. However, the mecha-
nisms and examples we discuss here suggest that such
treatments may not provide a complete and accurate
view of their physiological activity. This concern may
have relevance not only for studies assessing physio-
logical transcription factor activity but also for the
treatment of common human conditions such as
chronic inflammatory diseases and neoplasias. In
these cases, for example, patients are treated with high
doses of synthetic GR ligands, ignoring the impor-
tance of dynamic oscillatory activity.70 Furthermore,
chronic sustained treatment with the GR agonist pred-
nisolone represses the circadian oscillation of clock
gene expression in mouse71 and prenatal exposure to
excess glucocorticoids induces depression-like behav-
ior and impaired adult hippocampal neurogenesis in
old mice, which correlates with the absence of circa-
dian oscillations in hippocampal clock gene expres-
sion.72 As we discussed here, glucocorticoids regulate
multiple functions in hippocampal NSPCs and adult
neurogenesis. However, the effects of circadian and
ultradian glucocorticoid oscillations on hippocampal
NSPCs remains poorly characterized. Ongoing experi-
ments in our lab are aimed to address this question
experimentally.
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