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Abstract: On–off–on fluorescent sensors based on emerging carbon nanoparticles (CNPs) or
carbon dots (CDs) have attracted extensive attention for their convenience and efficiency. In this
study, dumped silkworm excrement was used as a novel precursor to prepare fluorescent
nitrogen-doped CNPs (N-CNPs) through hydrothermal treatment. The obtained N-CNPs showed
good photoluminescent properties and excellent water dispersibility. Thus, they were applied as
fluorescence “on–off–on” probes for the detection of Fe(III) and biothiols. The “on–off” process
was achieved by adding Fe(III) into N-CNP solution, which resulted in the selective fluorescence
quenching, with the detection limit of 0.20 µM in the linear range of 1–500 µM. Following this, the
introduction of biothiols could recover the fluorescence efficiently, in order to realize the “off–on”
process. By using glutathione (GSH) as the representative, the linear range was in the range of
1–1000 µM, and the limit of detection was 0.13 µM. Moreover, this useful strategy was successfully
applied for the determination of amounts of GSH in fetal calf serum samples.

Keywords: nitrogen-doped carbon nanoparticles; silkworm excrement; on–off–on fluorescent sensors;
Fe(III); biothiols

1. Introduction

Biothiols, such as glutathione (GSH), cysteine (Cys), and homocysteine (Hcy) are small molecular
weight biomolecules with thiol groups, which play crucial roles in numerous biological processes [1–3].
For example, GSH is abundant in cells to help maintain the cellular redox homeostasis, control signal
transduction, and take part in gene regulation [4,5]. The abnormal concentration of biothiols is
related to various ailments and disorders, including AIDS, HIV, Alzheimer’s disease, liver damage,
heart disease, and cancer [6–8]. Moreover, biothiols are also widely used in the food industry, as well as
in cosmetic and pharmaceutical areas, due to their unique physiological properties [9]. Consequently,
the analysis of biothiols in biological or environmental systems is of great importance. Although many
analytical strategies, including colorimetry [10], high performance liquid chromatography (HPLC) [11],
electrochemistry [12], and surface-enhanced Raman scattering (SERS) [13] have been developed for the
detection of biothiols, the fluorescent method is thought of as a powerful kind of technology because of
its easy operation, high sensitivity, and flexibility [14,15]. In recent years, several fluorescent systems
based on emerging carbon nanoparticles (CNPs) or carbon dots (CDs) have been developed for sensing
biothiols. Most of these strategies are based on the fluorescence “on–off–on” mechanism, which needs
an intermediate to quench the photoluminescence, and biothiols to recover the fluorescence. However,
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almost all intermediates are heavy metal ions such as Hg(II) [16–19], Ag(I) [20,21], Cu(II) [22,23],
and Au(III) [24], which are not eco-friendly, and will cause serious problems to the environment and
public health. Thus, searching for an alternative ion (e.g., Fe3+) is extremely important for this kind of
detection platform, which is application-oriented. In addition, Fe(III) detection is of vital importance,
since Fe(III) is essential for many biological systems, and a deficiency of Fe(III) could cause various
diseases, including anemia, renal failure, and liver injury [25–27].

Fluorescent CNPs and CDs are novel carbon-based nanomaterials with good biocompatibility,
eco-friendliness, excellent photoluminescence, and high photostability, and are widely applied in
chemical sensing, bio-imaging, and other fields [28–32]. The synthetic approaches of CNPs and CDs
are usually classified as top-down cutting of bulk carbon sources (graphite [33,34], graphene [35],
carbon nanotubes [36], coal [37] etc.) and bottom-up carbonization of molecules (citric acid [38,39],
glucose [40], phenylenediamine [41,42] etc.). It is believed that the raw materials are related to the
properties of prepared CNPs or CDs, including fluorescent emission and solubility [41,43]. Biomass is
abundant in nature, and supplies quantities of carbon and heteroatoms, which will participate
in the synthetic procedure, and help passivate the product itself. Therefore, the employment of
bio-resources is becoming more and more popular, and is considered to be a low-cost and renewable
route to obtaining low biotoxic CNPs and CDs [44–47]. Silkworm excrement is an agricultural waste
produced by Bombyx mori in quantities of millions of metric tons every year, and has always been
utilized as a traditional Chinese medicine and fertilizer [48,49]. In fact, silkworm excrement is mainly
composed of fibers, fats, proteins, amino acids and so on, which is suitable for the preparation of
nitrogen-doped CNPs.

In this paper, novel nitrogen-doped CNPs (N-CNPs) were prepared by the hydrothermal
treatment of silkworm excrement that could be employed as both a carbon and a nitrogen source.
These as-prepared N-CNPs showed bright blue emission under ultraviolet illumination, with excellent
aqueous solubility. The strong fluorescence of N-CNPs could be selectively quenched by Fe(III)
to form an N-CNPs/Fe(III) system. This quenched system could be restored by adding biothiols.
Thus, the fluorescence “on–off–on” process was achieved for the detection of Fe(III) and biothiols.
Furthermore, the GSH in the practical sample was successfully evaluated.

2. Materials and Methods

2.1. Materials and Chemicals

Silkworm excrement was obtained from sericulturists (Zhejiang, China) and washed to remove
impurities. AgNO3, AlCl3·6H2O, CaCl2, CdCl2·2.5H2O, CrCl3·6H2O, FeCl2·4H2O, FeCl3·6H2O, KCl,
LiCl, MnCl2·4H2O, NaCl, NH4Cl, NiCl2·6H2O, PbCl2, ZnCl2 were provided by Sinopharm Chemical
Reagent Co., Ltd. (Shanghai, China). Glucose, α-Lactose, sucrose, dopamine hydrochloride, β-alanine,
L-arginine, L-asparagine, L-glutamic acid, glycine, L-histidine, L-methionine, L-phenylalanine,
L-proline, DL-homocysteine, L-cysteine, reduced L-glutathione of analytical reagent grade were
purchased from Aladin Ltd. (Shanghai, China). The fetal calf serum (main compositions: globular
protein and bovine serum albumin) was obtained from Tianhang Biotechnology Co., Ltd. (Zhejiang,
China). Ultrapure water (18.2 MΩ cm−1) obtained from the Millipore system was used in this study.

2.2. Characterization

Transmission electron microscopy (TEM) images were observed by a H-7650 electron microscope
(Hitachi, Tokyo, Japan) at an accelerating voltage of 80 kV. The N-CNPs were dropped onto 400-mesh
carbon-coated Cu grids and dried at room temperature. X-ray diffraction (XRD) patterns were
obtained by using a D8 Advance X-ray diffractometer (Bruker, Billerica, MA, USA) with a filtered Cu
Ka radiation. Fourier transform infrared (FT-IR) spectroscopy was performed on a NEXUS 670 FTIR
spectrometer (Thermo Scientific, Waltham, MA, USA), ranging from 400–4000 cm−1. The N-CNPs
were dispersed in KBr pellets. X-ray photoelectron spectroscopy (XPS) results were collected using an
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ESCALab 250Xi XPS instrument (Thermo Scientific, Waltham, MA, USA). Ultraviolet-visible (UV-vis)
absorption spectrum was recorded by a Shimadzu 2450 UV-vis spectrophotometer (Shimadzu, Kyoto,
Japan). All fluorescence spectra were conducted by a RF-5301PC fluorescence spectrometer (Shimadzu,
Kyoto, Japan) with 5 nm slit width for the excitation and 10 nm slit width for the emission.

2.3. Preparation and Purification of Nitrogen-Doped CNPs (N-CNPs)

150 mg of silkworm excrement and 10 mL of ultrapure water were added into 15 mL of Teflon
equipped stainless steel autoclave. The mixture was heated at 200 ◦C for 24 h and cooled down to
room temperature naturally. The obtained yellow solution was centrifuged at 10,000 rpm for 15 min to
precipitate out insoluble precipitate, and filtered by 220 nm membrane. Following this, the solution was
dialyzed for 1 day (MWCO = 3.5 kD). Finally, the product of N-CNPs was collected by freeze-drying
for further use.

2.4. Selectivity and Quantitative Measurements for Fe(III) and Biothiols

The detection of Fe(III) and biothiols was performed at pH = 7.0, and at room temperature.
For Fe(III) detection, 400 µL of N-CNPs (0.1 mg mL−1, pH = 7.0) was dispersed into 3.2 mL of Tris-HCl
buffer (pH = 7.0), then 400 µL of Fe(III) solution (pH = 7.0) was added, and the final concentration of
Fe(III) was in the range of 0–500 µM. For comparison, the same procedure was performed for other
ions at the final concentration of 500 µM. To detect biothiols, GSH was chosen and added into an
N-CNPs/Fe(III) complex solution with different concentrations (0, 1, 2, 5, 10, 20, 50, 100, 200, 400,
600, 800, and 1000 µM). The same procedure was also performed for other biomolecules at the final
concentration of 1 mM. All the emission spectra were recorded at 340 nm excitation.

2.5. The Detection of Glutathione (GSH) in Fetal Calf Serum Samples

The fetal calf serum was used to evaluate the detection ability of N-GNPs/Fe(III) in a practical
situation. All the samples were filtered through 0.22 µm membranes to remove the large suspended
particles, and their pH levels were regulated to 7.0. Then, 2.8 mL of Tris-HCl, 400 µL of sample, 400 µL
of Fe(III) solution, and 400 µL of N-CNPs were mixed and recorded with the fluorescence spectrometer.

2.6. Quantum Yield (QY) Measurement

The QY of N-CNPs was calculated by the equation below as Equation (1):

QYs = QYr·IsArηs
2/(IrAsηr

2) (1)

where “s” and “r” refer to the sample and reference, respectively. The reference quinine sulfate is
dissolved in 0.1 M H2SO4 and its QY is 0.54 at 340 nm [50]. “I” represents the integrated emission
intensity of fluorescent spectra at the excited wavelength of 340 nm. “A” is the UV-vis absorbance at
340 nm, controlled as 0.1–0.01 to avoid re-absorption. “η” is the refractive index of the solvent.

3. Results and Discussion

The synthesis of N-CNPs from silkworm excrement and the fluorescence “on–off–on” strategy to
detect Fe(III) and biothiols were summarized in Figure 1. The silkworm excrement was a deep
gray granulum which could not be dispersed in water. However, under the high temperature
and pressure of the hydrothermal process, the silkworm excrement was likely decomposed, and
carbonized to form N-CNPs with self-passivation. The N-CNPs were stable, and demonstrated good
blue photoluminescence under UV excitation, which could be quenched in the presence of Fe(III),
and formed the N-CNPs/Fe(III) mixture. In a further step, the weak fluorescence of N-CNPs/Fe(III)
could be restored by biothiols though the interaction between Fe(III) and biothiols.
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Figure 1. A schematic illustration of the formation of nitrogen-doped CNPs (N-CNPs) from silkworm
excrement, and the fluorescence “on–off–on” detection of Fe(III) and biothiols.

TEM was employed to characterize the morphology and size distribution of N-CNPs.
As demonstrated in Figure 2a, the N-CNPs were well-separated spherical nanoparticles.
The corresponding particle size distribution histogram in Figure 2b showed that the N-CNPs ranged
from 40–85 nm in size, and the mean diameter was about 62 nm. Although N-CNPs had a larger size
than traditional CDs (usually less than 10 nm), their solution was stable for several weeks without any
aggregate and precipitate.
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Figure 2. Transmission electron microscopy (TEM) image (a); the particle size distribution histogram
(b); X-ray diffraction (XRD) pattern (c); and fourier transform infrared (FT-IR) spectrum (d) of N-CNPs.

To confirm the crystallinity of N-CNPs, XRD was measured, and the result was shown in Figure 2c.
It was clear that a broad diffraction peak (2θ) was observed at 23.3◦, which revealed that N-CNPs
had an amorphous crystal phase [51]. FT-IR was used to identify the functional groups and chemical
structure of N-CNPs. As shown in Figure 2d, the peaks at 3391 and 3247 cm−1 were attributed to
O–H/N–H stretching vibration. The intense peak at around 1586 cm−1 was attributed to the vibration
of C=C, which was formed in the hydrothermal process. The small absorption peak at 1752 cm−1

indicated the C=O group. The other peak at 1071 cm−1 was assigned to the C–O and C–O–C bands.
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XPS analysis was used to investigate the surface composition and element states of the N-CNPs.
The three peaks centered at 285.0, 399.1, and 532.0 eV in the XPS spectra of N-CNPs (Figure 3a) were
ascribed to C 1s, N 1s, and O 1s, which had an atomic ratio of 61.51:3.99:34.5. The presence of the N 1s
peak revealed that the nitrogen was successfully doped in the resultant CNPs. Furthermore, the C 1s
spectrum in Figure 3b had three peaks at 284.7, 286.1, and 288.3 eV, which were assigned to C=C/C–C,
C–N/C–O, and C=O groups, respectively. The three peaks at 399.5, 400.0, and 401.3 eV in the N 1s
spectrum (Figure 3c) were attributed to C–N–C, N–(C)3, and N–H respectively. The O 1s spectrum in
Figure 3d was deconvoluted into two peaks at 531.5 and 532.7 eV, which were attributed to C=O and
C–OH/C–O–C, respectively. The existence of various functional groups in N-CNPs created a good
dispersibility in the aqueous solution system.
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Figure 3. X-ray photoelectron spectroscopy (XPS) full survey (a); C 1s (b); N 1s (c) and O 1s (d) spectra
of N-CNPs. Black line: raw, navy line: background, other lines: fitting.

The UV-vis absorption and photoluminescent (PL) emission spectra were explored to investigate
the optical properties of N-CNPs. As shown in Figure 4a, the UV-vis absorption spectrum of N-CNPs
had two peaks at about 274 and 318 nm, which were caused by π→ π* transition of the conjugate
structure, and n → π* transition of the C=O bond [52,53]. The inset photographs in Figure 4a
display N-CNPs dispersed in water under daylight (left), and under UV illumination (right). It was
evident that N-CNPs emitted bright blue fluorescence under 365 nm excitation. Furthermore, the PL
emission spectra were recorded under various excitation wavelengths, and exhibited in Figure 4b.
The wavelength of the emission peak shifted from 392 to 451 nm when the excitation wavelength
increased from 300 to 380 nm. The excitation-dependent redshift of the emission was consistent with
previous CNPs or CDs, which probably resulted from the difference in size of the carbon cores, and the
complex surface defects [54–56]. The emission peak reached its maximum at 424 nm under 340 nm
excitation, which was set as the detective condition. The QY of the prepared N-CNPs was calculated
as 13.1% in Table S1, with quinine sulfate as the standard reference. It was found that N-CNPs had
good PL properties, making them suitable for further analytical application.
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Figure 4. Ultraviolet-visible (UV-vis) absorption spectrum (a) and photoluminescent (PL) emission
spectra at different excitation wavelengths (b) of N-CNPs. Inset: photographs of N-CNPs in water
under daylight and UV irradiation.

The influence of pH (1–13) on the emission spectra of N-CNPs was researched, and the PL
intensity of 424 nm under 340 nm excitation was recorded in Figure S1. With the increase in pH, the PL
intensity increased at first and then decreased. The N-CNPs performed a high PL intensity in neutral
conditions, and the strong acid and alkaline environment would reduce the fluorescence intensity of
N-CNPs, possibly due to the protonation and deprotonation effect [16]. Thus the pH = 7.0 was chosen
as the optimal detection condition for the following experiment.

To explore the specific ability of N-CNPs towards Fe(III), the fluorescence emissions of N-CNPs
with various positive ions (500 µM) were measured at 340 nm excitation and exhibited in Figure S2.
It was clear that the emission peak of N-CNPs decreased remarkably with the addition of Fe(III).
The relationship between F/F0 (the ratio of PL intensities of N-CNPs in the presence and absence of
ions) and ion species is shown in Figure 5a. Most of the added ions including Ag(I), Al(III), Ca(II),
Cd(II), Cr(III), K(I), Li(I), Mn(II), Na(I), NH4

+, Ni(II), Pb(II), and Zn(II) did not cause an obvious
fluorescence change of the N-CNPs, while Cu(II) and Fe(II) could partially quench the fluorescence of
N-CNPs. N-CNPs with a Fe(III) system had the lowest value compared with N-CNPs with other ions.
The corresponding quenching efficiency was over 80%, which confirmed that N-CNPs had a selective
response to Fe(III).
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Figure 5. (a) Selectivity of N-CNPs with different ions at the same concentration (500 µM); (b) The
linear relationship between F0/F and Fe(III) concentration. F and F0 were the PL intensities (424 nm) of
N-CNPs at 340 nm excitation in the presence and absence of ions, respectively.
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Figure S3 exhibited the fluorescence spectra of N-CNPs with different concentrations of Fe(III).
It was clear that the PL intensity of 424 nm decreased gradually, while further increasing the Fe(III)
concentration from 0 to 500 µM. The relationship between F0/F (the ratio of PL intensities of N-CNPs
in the absence and presence of Fe(III)) and [Fe(III)] (the concentration of Fe(III)) was presented in
Figure 5b. A good fitted line (R2 = 0.9992) was observed and the equation was shown as Equation (2):

F0/F = 1 + 0.00903[Fe(III)] (2)

The LOD (limit of detection) was calculated as 0.20 µM (S/N = 3, S/N: the signal to noise ratio,
based on the standard deviation of 10 blank measurements) [57]. The performance of N-CNPs was
compared with the recently reported CNPs or CDs (Table S2) and exhibited lower LOD, wider linear
range, or better selectivity. These results indicated that the N-CNPs could be applied as a fluorescent
probe to detect Fe(III) quantitatively in the solution. It should also be noted that the limit of
quantification (LOQ) was 0.66 µM according to S/N = 10 [58].

The mechanism of the selective fluorescence quenching effect of N-CNPs with Fe(III) was possibly
related to the high affinity of Fe(III) towards O/N-containing groups on the surface of N-CNPs,
which led to the formation of the N-CNPs/Fe(III) complex [59]. The UV-vis absorption spectrum
of N-CNPs with Fe(III) was further investigated, and showed a new absorption peak at 290 nm
(Figure S4), indicating the stable metal ion/N-CNP structure was formed to realize the static quenching
effect [60,61].

Since Fe (III) also has a great chelation towards biothiols, their strong coordination could
recover the quenched PL emission of the N-CNPs/Fe(III) system. To confirm the fluorescent
restoration of biothiols, various biological molecules (1 mM) including glucose (G), sacrose (S),
lactose (L), dopamine (DA), alanine(Ala), arginine(Arg), asparagine(Asn), glutamic acid(Glu),
glycine (Gly), histidine (Hls), methionine(Met), phenylalanine (Phe), proline (Pro), homocysteine(Hcy),
cysteine (Cys), and glutathione (GSH) were added into N-CNPs/Fe(III) (N-CNPs with 500 µM Fe(III)).
The fluorescence spectra were recorded at 340 nm excitation, and shown in Figure S5. The relationship
between F’/F’0 (the ratio of PL intensities of N-CNPs/Fe(III) in the presence and absence of biological
molecules) and biomolecule species was shown in Figure 6a. Saccharides and non-thiol amino acids
did not have a significant influence on fluorescence intensities, while dopamine (DA) could partially
restore the fluorescence of N-CNPs/Fe(III). Biothiols could dramatically enhance the weak fluorescence
of N-CNPs/Fe(III), probably due to their interaction with Fe(III), and GSH performed the highest
F’/F’0 of 4.21 ± 0.05 compared with Hcy (2.86 ± 0.01) and Cys (3.45 ± 0.02). This result confirmed
the specificity of the sensing system towards biothiols. Then, we chose GSH as the typical analyte,
and the enhancement was dependent on the GSH concentration. As shown in Figure S6, the fluorescent
intensity increased with the increase in concentration of GSH, which revealed that the Fe(III) could be
separated from N-CNPs. The F’/F’0 and [GSH]1/2 had a good fitted line (R2 = 0.9997) as shown in
Figure 6b, which could be summarized as Equation (3):

F’/F’0 = 1 + 0.10249[GSH]1/2 (3)

The LOD was 0.13 µM with S/N = 3, which was equal to or lower than other reported fluorescent
sensors based on CNPs or CDs (Table S3).
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Figure 6. (a) Selectivity of N-CNPs/Fe(III) to different biological molecules at the same concentration
(1 mM); (b) The linear relationship between (F’/F’0) and the square root of glutathione (GSH)
concentration. F’ and F’0 were the PL intensities (424 nm) of N-CNPs/Fe(III) at 340 nm excitation in
the absence and presence of biological molecules, respectively.

To evaluate the detection performance of N-CNPs/Fe(III) towards GSH in a complicated biological
environment, serum sample was tested, and the results are shown in Table 1. Different spiked
concentrations of GSH were added into the fetal calf serum samples with N-CNPs. The recovery
efficiencies (the ratio of found GSH and added GSH) were 108.7, 103.9, and 102.4% for 4, 50,
and 100 µM GSH, respectively. The corresponding relative standard deviations (RSD) are 1.50, 2.14,
and 2.43%, respectively. These results revealed that the N-CNPs could be used for the determination
of GSH in practical samples.

Table 1. Nitrogen-doped CNPs (N-CNPs) for the detection of glutathione (GSH) in fetal calf
serum samples.

Added GSH (µM) Found GSH (µM) Recovery (%) RSD (%)

4 4.35 108.7 1.50
50 51.96 103.9 2.14
100 102.4 102.4 2.43

4. Conclusions

In summary, a facile and one-step hydrothermal process was used to prepare N-CNPs by applying
silkworm excrement as the suitable nitrogen and carbon source. The obtained N-CNPs could be used
as efficient fluorescence “on–off–on” probes to detect Fe(III) and biothiols. Fe(III) could quench the
fluorescence of N-CNPs selectively to form N-CNPs/Fe(III), and the linear range was 1–500 µM with
the LOD of 0.20 µM. Upon the addition of biothiols, the N-CNPs/Fe(III) could be restored efficiently.
By using GSH as the example, the linear range was 1–1000 µM, with the LOD of 0.13 µM. Additionally,
the platform was successfully used to evaluate the amount of GSH in a fetal calf serum sample,
which achieved the goal for practical use. This novel detection strategy will help in the design of
biological and environmental sensors based on fluorescent carbon nanoparticles.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/8/6/443/s1,
Figure S1: pH effect on PL intensity (424 nm) of N-CNPs under 340 nm excitation, Figure S2: PL emission spectra
of N-CNPs in absence and presence of various ions under 340 nm excitation, Figure S3: PL emission spectra of
N-CNPs with different concentrations of Fe(III), Figure S4: UV-vis absorption spectra of N-CNPs/Fe(III) and
N-CNPs, Figure S5: PL emission spectra of N-CNPs/Fe(III) in absence and presence of different biomolecules
under 340 nm excitation, Figure S6: PL emission spectra of N-CNPs/Fe(III) with different concentrations of GSH,

http://www.mdpi.com/2079-4991/8/6/443/s1
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Table S1: QY calculation of N-CNPs, Table S2: The comparison between various CNPs and CDs toward Fe(III),
Table S3: The comparison between various fluorescent sensors based on CNPs or CDs toward GSH.
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