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Abstract

Background: Circulating cell-free DNA (cfDNA) is emerging as a surrogate sample type for mutation analyses. To
improve the clinical utility of cfDNA, we developed a sensitive peptide nucleic acid (PNA)-based method for analyzing
EGFR and KRAS mutations in the plasma cfDNA of patients with advanced non-small cell lung cancer (NSCLC).

Methods: Baseline tissue and plasma samples were collected from treatment-naïve advanced NSCLC patients
participated in a randomized phase II study, which was registered with ClinicalTrials.gov at Feb. 2009 (NCT01003964).
EGFR and KRAS mutations in the plasma cfDNA were analyzed retrospectively using a PNA clamping-assisted
fluorescence melting curve analysis. The results were compared with those obtained from tissue analysis performed
using the direct sequencing. Exploratory analyses were performed to determine survival predicted by the plasma and
tissue mutation status.

Results: Mutation analyses in matched tissue and plasma samples were available for 194 patients for EGFR and 135
patients for KRAS. The mutation concordance rates were 82.0 % (95 % confidence interval [CI], 76.5–87.4) for EGFR and
85.9 % (95 % CI, 80.1–91.8) for KRAS. The plasma EGFR mutation test sensitivity and specificity were 66.7 % (95 % CI, 60.
0–73.3) and 87.4 % (95 % CI, 82.7–92.1), respectively, and the plasma KRAS mutation test sensitivity and specificity were
50.0 % (95 % CI, 41.6–58.4) and 89.4 % (95 % CI, 84.2–94.6), respectively. The predictive value of the plasma EGFR and
KRAS mutation status with respect to survival was comparable with that of the tissue mutation status.

Conclusions: These data suggest that plasma EGFR and KRAS mutations can be analyzed using PNA-based real-time
PCR methods and used as an alternative to tumor genotyping for NSCLC patients when tumor tissue is not available.
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Background
The paradigm of diagnosis and treatment for advanced
non-small cell lung cancer (NSCLC) has changed since
epidermal growth factor receptor (EGFR) mutations were
identified as the best predictive biomarkers for EGFR-
tyrosine kinase inhibitor (TKI) efficacy [1, 2]. Decisions on
first-line treatments are based on the target oncogenes
identified in tumor tissues; thus, the tumors of patients
with NSCLC should be tested for EGFR mutations to de-
termine whether an EGFR-TKI is the appropriate first-line
therapy [3]. However, obtaining adequate tissue samples
for molecular testing can be difficult. Consequently, efforts
have been made to evaluate surrogate sample types for
molecular testing [4].
Circulation cell-free (cf) DNA in the plasma of cancer

patients offers an easily obtainable and repeatedly avail-
able source of biological material for mutation analyses
[5, 6]. Several methods have been reported for the detec-
tion of EGFR mutations in cfDNA isolated from plasma,
including high performance liquid chromatography, allele-
specific polymerase chain reaction (PCR) with Scorpion
amplification, peptide nucleic acid (PNA)-mediated PCR
clamping, BEAMing, droplet digital PCR (ddPCR), and
next-generation sequencing (NGS) [7–9]. The pooled
sensitivity and specificity of EGFR mutations in cfDNA
has been reported at 67.4 and 93.5 %, respectively [10].
Compared with EGFR mutations, KRAS mutations are
predictive for a lack of benefit from EGFR-TKI therapy.
Although erlotinib has been approved for second or
third–line therapy for advanced NSCLC irrespective of
EGFR mutation status, many studies have demonstrated
that patients with KRAS mutations show inferior outcomes
compared with those with wild-type KRAS [11–13]. Thus,
KRAS genotyping can be considered for patients scheduled
to receive EGFR-TKI therapy. Recent data indicate that the
cfDNA in plasma could represent a new sample type for
the analysis of KRAS mutations in tumors and act as a
potential biomarker for anti-EGFR therapy efficacy in
colorectal cancer [14–17].
PANAMutyper™ R EGFR and KRAS kits are newly de-

veloped sensitive kits that apply a PNA clamping-
assisted fluorescence melting curve analysis to perform
mutation detection and genotyping. The PNA clamp-
assisted melting curve method can discriminate mutant
from wild-type alleles through a relatively large melting
temperature difference and has a sensitivity of 0.1–0.01 %
[18, 19]. Additionally, this method can easily detect the
presence of a mutant sequence without an additional
data analysis process. The objective of this study was
to compare the plasma analysis performed using
PANAMutyper™ R EGFR and KRAS kits with tumor
tissue analysis performed using routine EGFR and
KRAS mutation tests. The aim of this analysis was to
validate the use of cfDNA as a surrogate sample type

for the detection of EGFR and KRAS mutations in
advanced NSCLC.

Methods
Patients
Patients with advanced NSCLC who participated in a
randomized phase II study that compared gemcitabine
and cisplatin (GP) with irinotecan and cisplatin (IP) as
first-line therapies were tested in this study. The trial is
registered with ClinicalTrials.gov (NCT01003964). The
main eligibility criteria included histologic confirmation
of advanced NSCLC, no prior chemotherapy, age ≥
18 years, an Eastern Cooperative Oncology Group
(ECOG) performance status (PS) less than 2, and measur-
able disease according to the Response Evaluation Criteria
in Solid Tumors (RECIST). Adequate organ function was
required. All of the patients who received at least one
cycle of chemotherapy were considered assessable for the
progression-free survival (PFS), overall survival (OS), and
safety. Archival plasma and tissue samples obtained prior
to treatment were used for the EGFR and KRAS mutation
tests. All patients provided written informed consent for
the provision of tumor and plasma samples for the bio-
marker analysis. The protocol was approved by the
National Cancer Center Institutional Review Board (study
ID number: NCCCTS08371) and conducted in accord-
ance with the Declaration of Helsinki, Good Clinical
Practice.

Clinical assessment
The tumors were assessed by computed tomography of
the targeted lesions every two cycles of therapy, every
6 weeks during chemotherapy and every 8 weeks during
EGFR-TKI therapy. The objective tumor response was
determined using RECIST software, version 1.0 [20]. The
PFS was calculated from the start date of each therapy
to the date of tumor progression or death. The OS was
calculated from the start date of first-line therapy to the
date of death or last follow-up.

EGFR and KRAS mutation analysis using tumor tissues
Genomic DNA was extracted from 10 % neutral buffered
formalin-fixed, paraffin-embedded (FFPE) tumor tissue
blocks using the QIAamp DNA Mini Kit (QIAGEN,
Hilden, Germany). We analyzed EGFR and KRAS muta-
tions using the polymerase chain reaction (PCR)-based
direct DNA sequencing method [21].

Plasma DNA extraction and mutation analysis
Circulating cell-free DNA (cfDNA) was extracted from
the plasma using the QIAamp Circulating Nucleic Acid
Kit (Qiagen, Hilden, Germany). The assays used to de-
tect 47 different EGFR variants and 29 KRAS variants
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were obtained using the PANAMutyper™ R EGFR and
KRAS kit (Panagene, Daejeon, Korea).
The PNA clamp-assisted melting curve method, the

real-time genotyping of somatic mutations, can detect
multiple mutations and analyze both curves in a single
PCR experiment by using a PNA clamp and PNA detec-
tion probe [18, 19, 22]. A detection probe was designed
for competitive hybridization with clamping PNA on the
same strand (either sense or antisense DNA strand). In
our system, two complementary PNA oligomers were
designed to hybridize with either a sense or antisense
strand (Fig. 1a, b). The PNA detection probes produce
an amplification curve and are used to analyze the

melting curve. When we take a look closely, all reactions
were performed in total volumes of 25 μ l containing
10–25 ng template DNA, primers, PNA probe set, and
PCR master mix. The PCR assay was performed under
the following conditions: two holding periods of 50 °C
for 2 min and 95 °C for 15 min; (i) 15 cycles of 95 °C for
30 s, 70 °C for 20 s, and 63 °C for 60 s; and (ii) 35 cycles
of 95 °C for 10 s, 53 °C for 20 s, and 73 °C for 20 s. A
melting curve step was performed (from 35 °C to 75 °C
with temperature increments of 0.5 °C for 3 s) to acquire
fluorescence values on all four channels (FAM, ROX,
CY5 and HEX). The melting peaks were derived from the
melting curve data. In summary, two specific designed

EGFR wild type
a

b

EGFR mutant type

KRAS wild type KRAS mutant type

Perfect matched sequence

Perfect matched sequence

Mis-matched sequence

Mis- matched sequence

Forward primer

Reverse primer

PNA clamping probe

PNA detection probe

Forward primer

Reverse primer

PNA clamping probe

PNA detection probe

Fig. 1 Schematic representation of EGFR and KRAS mutation detection using PANAMutyperTM: EGFR (a) and KRAS (b). Sensitivity of the EGFR
L858R and E19del (c) and KRAS G12V and G12R (d) mutants according to their cellularity by diluting to 100, 10, 1, 0.1, 0.01, 0 % with respect to
the wild cell line DNA and mutant cell line DNA. The data presented here are representative obtained from sensitivity test conducted more than
50 times. MT, mutant type
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PNA oligomers were used in qPCR: one was a clamping
PNA, which suppresses the amplification of an undesired
or wild-type allele, and the other is a PNA detection
probe, which has a fluorophore and a quencher group at
each terminus of the Probe. The mutations detected by
the melting temperature of each tube of fluorescent dye
are summarized in Additional file 1: Table S1. The plasma
test was performed by Choi J-J, who was blind to the
results obtained from the tissue samples.

Statistical analysis
The PFS and OS were evaluated using the Kaplan-Meier
method. The log-rank test was used to compare the PFS
with the OS according to the EGFR or KRAS mutation
status. The 95 % confidence intervals for concordance,
sensitivity and specificity were calculated by the Wilson
Score method. All tests were two-sided, and P-values
less than 0.05 were considered statistically significant.
All statistical analyses were conducted using SPSS 21
software (IBM SPSS Chicago, IL, USA).

Results
Determination of mutation status in the plasma samples
The mutation status was determined with PCR clamp-
ing, which can specifically block the chain elongation
step on a perfectly matched template (wild type [WT])
without interfering with the templates containing
mismatched bases (mutant EGFR or KRAS). PNA detec-
tion probes with fluorescent dyes and quencher labels
were also used in this technique. This hybridization
probe system consists of a pair of probes (Fig. 1a, b). To
determine the PANAMutyper™ R EGFR and KRAS sensi-
tivity for each tested mutation, genomic DNA (gDNA)
from the mutant cell line containing the tested mutation
was serially diluted 5 times into highly concentrated WT
gDNA from the human lung cancer cell line A549. The
0.005 and 0.001 % sensitivity values of EGFR and KRAS,
respectively, corresponded to a specific detection of 2 and
1 mutated copies in 40,000 copies of WT DNA, respect-
ively (Fig. 1c, d). All experimental points were obtained in
triplicate, and all plasma samples that met the inclusion
criteria were analyzed correctly (success rate of 100 %).

Patient characteristics
Of the 289 patients who participated in the randomized
phase II study, 208 cases with a known EGFR or KRAS
mutation status in their tumor tissues were examined.
The median age was 58 years (range: 29 to 82). Most of
the patients were male (65.4 %) and had a history of
smoking (63 %) and presented an adenocarcinoma
histology (78.8 %), stage IV disease (72.6 %), and a good
performance status (PS) of 0 or 1 (72.6 %). All patients
received GP or IP as the first-line therapy. Among the

208 patients, 37 had EGFR exon 19 deletions (19DEL) or
L858R mutations and 12 patients had KRAS codon 12
mutations. A total of 98 patients received EGFR-TKI as
a second- or third-line therapy upon disease progression.
The characteristics of the study population are shown in
Table 1.

Tumor tissue and plasma EGFR and KRAS mutation analyses
Matched tumor tissue and plasma mutation statuses
were available for 194 patients for EGFR and 135 pa-
tients for KRAS. A comparison of the EGFR and KRAS
mutation status between the tumor biopsies and plasma
samples is summarized in Table 2. The concordance of
EGFR mutation status between the tumor tissue and
plasma was 82 % (95 % confidence interval [CI], 76.5–
87.4), and it presented a sensitivity of 66.7 % (95 % CI,
60.0–73.3) and a specificity of 87.4 % (95 % CI, 82.7–
92.1). The positive and negative predictive values were
65.4 % (95 % CI, 58.7–72.1) and 88.0 % (83.5–92.6), re-
spectively.

The concordance of KRAS mutation status between
the tumor tissue and plasma was 85.9 % (95 % CI,
80.1–91.8), and it presented a sensitivity of 50.0 %
(95 % CI, 41.6–58.4) and a specificity of 89.4 % (95 %
CI, 84.2–94.6). The positive and negative predictive
values were 31.6 % (95 % CI, 58.7–72.1) and 94.8 %
(83.5–92.6), respectively.
To validate the additional mutations that were identi-

fied in only the plasma samples, we tested the plasma
samples using a digital PCR assay. Six of 7 T790M and 2
of 3 L858R EGFR mutations that were detected in only
the plasma samples were confirmed by the digital PCR
assay. We were unable to confirm the results in the
remaining two samples because the total droplet number
in the digital PCR was too low.

EGFR and KRAS mutation status and clinical outcome
The cut-off for the OS update was June 29, 2015, and
the median duration of follow-up investigations was
16.7 months (range: 0.5 to 70.9 months). The median
OS was 24.6 months (95 % CI, 20.7–28.5) in patients
with plasma EGFR 19DEL or L859R mutations and
27.0 months (95 % CI, 25.0–29.0)) in patients with these
mutations in their tumor tissue. The median OS was
10.2 months (95 % CI, 4.9–15.5) in patients with plasma
KRAS mutations and 8.4 months (95 % CI, 0.0–22.5) in
patients with these mutations in their tumor tissue. The
Kaplan-Meier curves for the OS according to the tissue
and plasma mutation status are shown in Fig. 2.
Because EGFR and KRAS mutations are predictive for

the efficacy of EGFR-TKI therapy, we analyzed the asso-
ciation between the mutation status and the therapeutic
benefits of this treatment. Of the 208 patients enrolled in
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this study, 98 received EGFR-TKI therapy as a second- or
third-line therapy. We compared the efficacy of EGFR-
TKI therapy in the patients carrying common sensitive

EGFR mutations, including 19DEL and L858R with the
patients carrying wild type EGFR. The median PFS for
EGFR-TKI therapy was 8.4 (95 % CI, 5.8–11.0) months for
the patients with plasma EGFR 19DEL or L858R muta-
tions and 9.2 (95 % CI, 6.3–12.1) months for the patients
with tissue EGFR 19DEL or L858R mutations. The median
PFS of the patients with plasma KRAS mutations was
1.6 months (95 % CI, 0.1–3.1), a result that was compar-
able with the PFS of patients with tumor-tissue KRAS mu-
tations (median PFS, 1.8 months [95 % CI, 0.0–3.6]). The
Kaplan-Meier curves for the PFS according to the tissue
and plasma mutation status are shown in Fig. 3. However,
the correlation of mutations with outcome is of limited
interest due to the concordance between mutational status
in tissue and plasma.
Patients with additional EGFR mutations found in

plasma, such as exon20ins and S768I, and multiple mu-
tations (19DEL, L858R, and exon 20ins) showed primary
resistance to EGFR-TKI therapy and presented a median
PFS of 1.7 months (95 % CI, 0.6–2.8). We also found 8
de novo T790M mutations in plasma samples and three
received EGFR-TKI therapy. One patient showed primary
resistance and two showed partial responses with PFS
values of 9.8 and 15 months.

Discussion
This report describes the first demonstration of a PNA
clamping-assisted fluorescence melting curve analysis
for the detection of EGFR and KRAS mutations in the
plasma cfDNA of NSCLC patients. Our data revealed a
relatively high concordance (82.0 % for EGFR and 85.9 %
for KRAS) and specificity (87.4 % for EGFR and 89.4 % for
KRAS) compared with other reported techniques such as
the amplification refractory mutation systems, denaturing
high-performance liquid chromatography, and PNA-PCR
[23]. The EGFR mutation status has clinical significance
as a biomarker and can be used to determine the best
treatment for advanced NSCLC; thus, most studies that
have evaluated novel analysis techniques have focused on
detecting EGFR mutations in blood samples from NSCLC
patients. The best reported data for patients with NSCLC
were obtained with an EGFR mutation test that uses
digital PCR, which resulted in a 92 % sensitivity and 100 %
specificity [10]; however, the authors used only 35 samples
from NSCLC patients to evaluate the accuracy of the tech-
nique. Recently, Douillard et al. reported a high global
concordance (94.3 %), specificity (99.8 %) and sensitivity
(67.5 %) of the Scorpion ARMS-based EGFR detection kit
using 652 samples from patients with advanced NSCLC
[24], and the sensitivity was similar to our results (66.7 %).
Because of its low sensitivity, the plasma EGFR mutation
status appeared to be less predictive for EGFR-TKI therapy
benefits than the tissue EGFR mutation status (Fig. 3a, b).
The sensitivity of test can be dependent on the condition

Table 1 Patient demographics and disease characteristics

Variable All patients (n = 208)

No. %

Age, years

Median 58

Range 29–82

Sex

Male 136 65.4

Female 72 34.6

Smoking status

Current 73 35.1

Former 58 27.9

Never 77 37.0

Histology

Adenocarcinoma 164 78.8

Squamous cell 32 15.4

Other 12 5.8

Stage

IIIB 15 7.2

IV 193 92.8

ECOG PS

0 17 8.2

1 134 64.4

2 57 27.4

First-line therapy

GP 105 50.5

IP 103 49.5

Salvage EGFR-TKI therapy

Second-line 60 28.8

Third-line 38 18.3

No 110 52.9

EGFR mutations

19DEL 38 18.3

L858R 13 6.3

Wild type 143 68.7

Not determined 14 6.7

KRAS mutations

Codon 12 8 3.8

Codon 13 2 1.0

Codon 61 2 1.0

Wild type 123 59.1

Not determined 73 35.1

EGFR-TKI: epidermal growth factor receptor-tyrosine kinase inhibitor
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of samples. The low sensitivity in our study may be attrib-
uted from long period of sample storage and multiple
freeze and thaw cycles. The lower concordance observed
in our study resulted from the additional detection of rare

EGFR mutations in the plasma samples that were not
detected using routine methods. We were able to validate
8 of 10 additional EGFR mutations using the digital PCR
assay. Two mutations identified in the plasma samples

Table 2 Comparison of the EGFR and KRAS mutation status in the tumor tissue and plasma

Plasma EGFR mutation status

Tissue EGFR mutation status Positive Negative Total

Positive 34 17 51

Negative 18 125 143

Total 52 142 194

G719A 19DEL L858R T790M Exon20ins S768I Multiple Wild Total

G719A 0

19DEL 21 1 1 1 14 38

L858R 9 1 3 13

T790M 0

exon20ins 0

S768I 0

Multiple 0

Wild type 3 3 7 2 3 125 143

Total 0 24 13 8 2 1 4 142 194

N % (95 % CI)

Concordance 159 82.0 (76.5–87.4)

Sensitivity 34 66.7 (60.0–73.3)

Specificity 125 87.4 (82.7–92.1)

PPV 52 65.4 (58.7–72.1)

NPV 142 88.0 (83.5–92.6)

Plasma KRAS mutation status

Tissue KRAS mutation status Positive Negative Total

Positive 6 6 12

Negative 13 110 123

Total 19 116 135

Codon 12 Codon 13 Codon 59 Codon 61 Codon 12/61 Wild Total

Codon 12 3 5 8

Codon 13 1 1 2

Codon 59

Codon 61 1 1 2

Codon 12/61

Wild type 10 2 1 110 123

Total 13 1 1 3 1 116 135

N % (95 % CI)

Concordance 116 85.9 (80.1–91.8)

Sensitivity 6 50.0 (41.6–58.4)

Specificity 110 89.4 (84.2–94.6)

PPV 19 31.6 (23.7–39.4)

NPV 116 94.8 (91.1–98.6)
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could not be validated because the sample was insufficient
(total droplet number was too low for the digital PCR).
Unfortunately, additional matched tissue samples were un-
available for testing. However, patients with additional
EGFR mutations, such as exon20ins and S768I, and mul-
tiple mutations (19DEL, L858R, and exon 20ins) showed
primary resistance to EGFR-TKI therapy with a median
PFS of 1.7 months (95 % CI, 0.6–2.8). These findings indi-
cate that the additional rare EGFR mutations found in only
the plasma samples may be true positive results. In our
study, 8 de novo T790M mutations were found in the
plasma samples only. However, the clinical impact of the

de novo T790M mutation on EGFR-TKI therapy is compli-
cated. Previously, we analyzed 124 EGFR-mutant NSCLC
cases using mass spectrometry and identified 31 (25 %) pa-
tients with de novo T790M mutations. Although the
patients with the de novo T790M mutations showed a
shorter time to progression (TTP) following EGFR-TKI
therapy than those without this mutation, significant differ-
ences were not observed in the response rate (RR). The
median TTP and RR of the patients with the de novo
T790M mutations were 6.3 months and 72 %, respectively.
Furthermore, the de novo T790M mutations showed a
dose-dependent effect on the efficacy of EGFR-TKI therapy

Fig. 2 Overall survival according to the EGFR mutation status in the tumor tissue (a) and plasma (b) and the KRAS mutation status in the tumor
tissue (c) and plasma (d)
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[25]. Thus, it is difficult to conclude whether the additional
T790M mutations found in only the plasma are true
positives. Considering the clinical relevance of T790M mu-
tations with respect to disease progression after EGFR-TKI
therapy, further confirmation of the accuracy of T790M
mutation detection using our method is required.
To date, most of the blood samples used in KRAS

mutation tests have been obtained from colorectal can-
cer (CRC) patients [14–17]. Thierry et al. reported that a
quantitative PCR-based method exhibited 92 % sensitiv-
ity and 98 % specificity for CRC [26]. Very recently,
Sacher et al. reported that plasma ddPCR exhibited high

specificity of 100 % (62 of 62) but modest specificity of
64 % (16 of 25) for the detection of KRAS G12X in lung
cancer patients [7]. In our study, the concordance, speci-
ficity and sensitivity of the KRAS mutation test were
85.9, 89.4, and 50.0 %.
Mutation analyses of circulating tumor DNA (ctDNA)

require highly sensitive techniques because of the small
fraction of tumor-specific DNA relative to background
levels of normal cfDNA. The sensitivity of conventional
analytical methods, such as Sanger sequencing, is not
sufficient to detect low-frequency variants. Recent
advances in genomics technologies have provided new

Fig. 3 Progression-free survival following EGFR-TKI therapy according to the EGFR mutation status in tissue (a) and plasma (b) and the KRAS mutation
status in tissue (c) and plasma (d)
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opportunities for analyzing ctDNA. Therefore, advanced
technologies, such as PANAMutyper, BEAMing,
castPCR, NGS and digital PCR, can be of clinical utility
because they can identify multiple mutations with high
sensitivity. These advanced technologies are extremely
sensitive (0.01–5 % limit of detection) and suitable for
analyzing circulating ctDNA in cancer patients; however,
each technology has advantages and disadvantages. The
advanced technologies that are currently deployed for
analyzing circulating ctDNA in cancer patients are sum-
marized in Table 3. The technologies using digital PCR,
such as droplet-based systems and Beads, Emulsions,
Amplification and Magnetics (BEAMing), provide
quantitative analyses and single-molecule amplification.
However, these methods are expensive, have longer assay
times and can detect only a limited set of mutations
[6, 17, 26–29]. Next-generation sequencing (NGS)
technologies have the potential to provide cost-effective
alternatives for high-throughput analyses of multiple
mutations over wider genomic regions. However, NGS is
less sensitive and more complex than other technologies
and requires an expensive system and longer assay
times [30]. PANAMutyper™ and castPCR are capable
of effectively removing background wild-type DNA
[18, 22, 26]; therefore, these techniques can detect a
single copy of mutant DNA. Moreover, these approaches
can be completed within 3 h, and the analysis can be per-
formed with only a real-time PCR instrument; thus, add-
itional specialized or expensive equipment is not required.
Although the castPCR system cannot simultaneously
genotype multiple mutations [22, 26], the PANAMutyper™
can simultaneously perform multiple mutation detections

and genotype determinations, and these outstanding
abilities are realized through the use of a PNA clamping-
assisted fluorescence melting curve analysis [18].

Conclusions
We demonstrated that plasma EGFR and KRAS muta-
tion testing using PNA-based real-time PCR methods is
feasible and can be applied as an alternative to tumor
genotyping when deciding upon the optimal treatment
of NSCLC patients. Further studies are required to
increase the testing accuracy and determine the clinical
applications of this technique.

Additional file

Additional file 1: Table S1. The criteria of the mutation detection
according to the fluorescent dye and melting temperature. (DOCX 25 kb)
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