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Abstract

In reinforcement learning, reward-driven feature learning directly from high-dimensional

images faces two challenges: sample-efficiency for solving control tasks and generalization

to unseen observations. In prior works, these issues have been addressed through learning

representation from pixel inputs. However, their representation faced the limitations of being

vulnerable to the high diversity inherent in environments or not taking the characteristics for

solving control tasks. To attenuate these phenomena, we propose the novel contrastive

representation method, Action-Driven Auxiliary Task (ADAT), which forces a representation

to concentrate on essential features for deciding actions and ignore control-irrelevant

details. In the augmented state-action dictionary of ADAT, the agent learns representation

to maximize agreement between observations sharing the same actions. The proposed

method significantly outperforms model-free and model-based algorithms in the Atari and

OpenAI ProcGen, widely used benchmarks for sample-efficiency and generalization.

Introduction

Reinforcement learning (RL) has achieved state-of-the-art performance on a variety of sequen-

tial decision tasks [1]. With a lot of trials-and-errors, agents obtain competent policies achiev-

ing human-level control in complex tasks. Despite the successes in simulation games,

however, RL has faced the limitation that numerous trials-and-errors are essential for learning.

In real world, collecting such an enormous amount of trials is time-consuming and requires

large amounts of resources. Furthermore, the unexpected factors in new environments can

yield test-performance decay. Therefore, sample-efficiency and generalization capability in RL

are emerged as challenging tasks.

In general, state representation from raw pixel inputs contributes to efficient exploration

and robustness to zero-shot observations. This intuition has been proven experimentally in

various environments through comparisons between state-based exploration and learning in

high dimensional observations [2, 3]. Therefore, learning representation is considered as cru-

cial apparatus for sample-efficiency and generalization. To address learning representation in

RL, various approaches have been proposed in the literature. Broadly, there are three
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mainstreams on Auxiliary tasks: (1) reconstructing pixel-inputs, (2) World Model building

predictive models of environments, and (3) contrastive representation learning.

Methodologies with reconstruction errors [4, 5] and World Model [6] yielded break-

throughs in representation mechanism, gaining various advantages such as sample-efficiency,

the efficacy of exploration, and domain transfer [7–9]. Yet, they might suffer from difficulties

when facing complex environments or environments with a lot of control-irrelevant visual

information, as shown in Fig 1. To overcome the limitation of these methods, Contrastive

Unsupervised Representations for Reinforcement Learning (CURL) proposed an auxiliary

task maximizing accordance between different augmented versions of the same images [10].

CURL gains significant sample-efficiency, outperforming existing model-free and model-

based methodologies. However, only with the auxiliary task of CURL, the agent considers only

image augmentation-invariant features. It does not suffice to distinguish whether visual infor-

mation is control-relevant or not. Under those circumstances, [11, 12] extend auxiliary tasks

of CURL to consider accordance between temporally consecutive observations or similar

returns. [13] points out the same problem as our research and represents control-relevant

objects through a learned world model. However, looking at previous researches, their auxil-

iary tasks too focus on environment-specific accordance. For various downstream tasks, agents

should extract intrinsic representation relevant to overall control problems. To learn intrinsic

representation, the auxiliary task needs to rethink ‘actions decided by the observations’. The

rich history of ‘state-action pairs’ contains the intuitions obtained by the agent from numerous

interactions with the environment. Therefore, auxiliary task should be reformed to leverage

state-action pairs as self-made labels.

Reinforcement
Learning

Auxiliary Loss of Reconstruction

: Control-relevant pixels : Reconstruction of crucial pixels

Encode Decode

Fig 1. Reconstruction of auto-encoder based representation. This is the Bigfish of ProcGen environment, which has

various wallpaper patterns in the background. Under the auxiliary task of reconstructing original inputs, left images

are pixel-inputs and right are reconstructions of their representations. It shows a problem that if there are various

control-irrelevant details in wallpaper pixels, the encoder first learns abstraction about irrelevant details for gameplay

instead of the essential pixels (i.e., fish in this example). Our proposal was motivated by this issue.

https://doi.org/10.1371/journal.pone.0265456.g001
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This paper proposes a novel auxiliary task Action-Driven Auxiliary Task (ADAT). The pro-

posed method adopts pseudo-supervised contrastive learning through instance discrimination

about the states sharing the same actions. Our hypothesis is straightforward: representation

can capture the motivational key-features for deciding an action and ignore the control-irrele-

vant information through contrastively aggregated states labeled by actions. This intuition is

understood visually with our experiment of saliency map [14]. Also, we suggest Unbiased Sam-

pling module for attaching ADAT to existing RL algorithms. Consequently, Action-Driven
Contrastive Representation for Reinforcement Learning is designed based on the proposed

methodologies. The effect of improving performance in sample-efficiency and robustness

compared to existing baselines is verified by conducting experiments. In Atari Games, widely

used benchmarks for measuring sample-efficiency, our method achieves state-of-the-art in 15

out of 26 games and outperforms human performance on five games. Moreover, the agents in

ProcGen Games show dramatically improved generalization ability to unseen observations.

Finally, the saliency map experiment is conducted to visually understand what ADAT agents

concentrate on.

The contributions of this paper are summarized as: (1) ADAT, the novel auxiliary task, ded-

icated to solving control tasks; (2) Unbiased Sampling for ADAT to be compatible with off-

policy algorithms; (3) empirical demonstration of superior sample-efficiency and generaliza-

tion in Atari Games and OpenAI ProcGen, and visual understanding of action-supervision’s

efficacy with saliency map.

Background

Simply supervision-driven or reward-driven features have struggled with real-world problems

for downstream tasks [15]. For enriching features without external supervision, contrastive

learning defines an instance discrimination task [16], where the positive key should be distin-

guished from the negatives according to the given query. CURL [10] learns representation in

this manner. An input image goes through ‘the augmentation of random crop’ and results in a

query q and the positive key k+. Denote K = {k+}[{k1, k2, . . ., kN−1}, the negative keys sampled

from the CURL’s replay buffer. The dictionary is looked-up as D ¼ ffkðT ðkÞÞjk 2 Kg, where

T is the augmentation and fk is the key encoder. Through the query encoder fq, the representa-

tion of the query and keys are measured as a pairwise similarity. The encoded query is used for

policy optimization, such as DQN Rainbow [17] and Soft Actor-Critic [18]. In the process of

maximizing an agreement between the query and the positive key, fq is updated by contrastive

loss and policy loss of interactions with environments. On the other hand, fk is only trained by

momentum contrast update [19] as below:

yfk
¼ m� yfk

þ ð1 � mÞ � yfq
: ð1Þ

To respect the relative similarity of embeddings, CURL measures pairwise similarity as con-

trastive predictive coding [20]. This method was proposed for an encoder to measure the

underlying shared structure contrastively rather than trivial information by inserting a bilinear

product into measuring the pairwise similarity of a query and keys:

f ðq; kÞ ¼ expðqTWkÞ; ð2Þ

Representation features predict far in the contrastive measuring, extracting meaningful

agreement. W can be the linear transformation or non-linear neural networks for the bilinear

product of query q and key k. For calculating gradients of dictionary {k1, k2, k3, . . ., kn} for

each query q, InfoNCE loss was proposed for segregating one positive keys k+ and N − 1
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negative keys as:

Lq ¼ log
expðqTWkþÞ

expðqTWkþÞ þ
PN� 1

i¼1
expðqTWkiÞ

: ð3Þ

Therefore, Contrastive Unsupervised Representations for Reinforcement Learning adopted

InfoNCE loss, discriminating one positive key for each query, a different image-augmented

observation of query image. Through an end-to-end contrastive representation learning mech-

anism, CURL has shown state-of-the-art performance in representation learning across con-

tinuous and discrete control benchmark tasks. Recently, InfoNCE loss has been reformed to

reinterpret self-supervised learning for a variety of purposes [21].

Method

Action-driven auxiliary task

We propose the novel auxiliary task for learning intrinsic representation about solving control

tasks. To represent the intrinsic features that determine the action, an auxiliary task needs to

utilize the knowledge of the agent who has accumulated intuition about the environment

through a number of interactions. The rich history of interactions will be of great help in iden-

tifying only crucial relevance between visual information and actions. Our auxiliary task,

Action-Driven Auxiliary Task (ADAT), forces learned representation to become invariant

about control-irrelevant pixels and sensitive to essential pixels for control tasks. From the his-

tory of interactions such as the replay buffer or a minibatch rolled out by runners, ADAT sam-

ples state-action pairs {x, a} to build a dictionary consisting of the query {xq, aq} and keys

ffxk1
; ak1
g; fxk2

; ak2
g; fxk3

; ak3
g; . . . ; fxkn

; akn
gg as shown in Fig 2. Randomly augmented states

T ðxkÞ (e.g., T : translate [22]) are encoded into representation fkðT ðxkÞÞ and become positive

keys of the dictionary if sharing the same actions with the query. The projected pairwise simi-

larity is measured as a bilinear product with contrastive predictive coding [20] which can help

capture meaningful structures other than irrelevant minors. In each minibatch, this dictionary

is looked up as pseudo-supervised contrastive learning to maximize agreement between the

Self-made labels ‘actions’ by the agent

ADAT Dictionary

Query left Query Encoder

Key Encoder

Reinforcement
Learning

Contrastive
Learning

Augmentation
Random Translate 8

up

left

down

jump

neg

pos

key

neg

neg

EMA

Sampling

jump

down

left

up

state, action

Fig 2. The overall framework of ADAT. State-action pairs are sampled from a history of interactions. The dictionary is built with states by action types, labeling keys

based on the query’s action. Through augmentation ‘Random-Translate’ [22], query is encoded for reinforcement learning and query-key pairs are encoded for

contrastive learning [20]. Only the query encoder learns from contrastive loss, and the key encoder is trained as Momentum Update [19].

https://doi.org/10.1371/journal.pone.0265456.g002
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query and its positive keys. Unlike CURL, there are multiple positive keys per query because

there is not only one state that the agent made the same choice in history. Therefore, multi-

positive keys should be matched with each query in the dictionary. We employ the log-sum-

mation loss with binary cross-entropy of sigmoid classifier other than InfoNCE, interpreted as

cross-entropy of softmax classifier.

LADAT
¼
X

i2I

X

j2J

Li;j ¼
X

i2I

X

j2J

‘ðzT
i zj; labeli;jÞ;

‘ðzT
i zj; labeli;jÞ ¼

� log
expðzT

i zjÞ

expðzT
i zjÞ þ 1

labeli;j ¼ 1;

� log
1

expðzT
i zjÞ þ 1

labeli;j ¼ 0;

8
>>>>><

>>>>>:

ð4Þ

where zi ¼ Projðf ðT ðxiÞÞÞ is the linear projection of the augmented pixel-input’s representa-

tions. I and J are the sets of indices for all the elements augmented differently in the dictionary.

ℓ is log-loss, which measures agreement between two representations. labeli,j is a pseudo-label

that means if the agent chose the same action in both states, it becomes a positive label. Prod-

uct of linear projections zT
i zj can be reformed as a bilinear product of query and key qTWk,

contrastive predictive coding for capturing meaningful shared structures. The sigmoid func-

tion activates pairwise similarity zT
i zj and LADAT

aggregates ℓ, binary cross-entropy loss of all

sigmoid pairwise similarities in a dictionary.

Algorithm 1 ADAT’s main learning algorithm
Input: batch size N, momentum m,
θquery of query encoder fq, θkey of key encoder fk,
linear projection g, set of random augmentations T
for sampled batch fxk; akg

N
k¼1

for all k 2 {1, . . ., N} do
draw random augmentation t � T , t0 � T
# query inference
~x2k� 1 ¼ tðxkÞ

h2k� 1 ¼ fqð~x2k� 1Þ ⊳ representation of query

z2k� 1 ¼ gð~h2k� 1Þ ⊳ projection
a2k−1 = ak
# key inference
~x2k� 1 ¼ t0ðxkÞ

h2k ¼ fkð~x2k� 1Þ ⊳ representation of key
z2k ¼ gð~h2kÞ ⊳ projection
a2k = ak

end for
for all i 2 {1, 3, 5, . . ., 2N − 1} and j 2 {2, 4, 6, . . ., 2N} do

si;j ¼ 1=ð1þ e� zT
i zjÞ ⊳ sigmoid pairwise similarity

mi;j ¼
0 ai 6¼ aj;

1 ai ¼ aj;

(

⊳ pseudo labeling

Li;j ¼ � mi;j � log si;j � ð1 � mi;jÞ � logð1 � si;j) ⊳ binary cross entropy loss
end for
update fq and g to minimize

P
Li;j

θkey = m × θkey + (1 − m) × θquery ⊳ MoCo update
end for
return θquery ⊳ for policy training phase
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With this novel auxiliary task, the contrastive learner gives more attention to crucial fea-

tures to decide the action. ADAT is the attachable learning representation module which can

be plugged into both off-policy and on-policy algorithm. In our experiments, we attach ADAT

to Rainbow DQN [17] and Proximal Policy Optimization(PPO) [23] for proving each perfor-

mance improvement on off-policy and on-policy version.

Implementation on existing baselines

ADAT can be compatible with both on and off-policy algorithms. The Off-policy baseline with

ADAT adopts DQN Rainbow [17] as a framework for policy optimization and Momentum

Contrast Update [19] as a mechanism of learning representation with the replay buffer. ADAT

Rainbow builds upon the successful approach by CURL Rainbow. There are two major differ-

ences between ADAT Rainbow and CURL Rainbow. The first is a change in ‘action-driven’

contrastive representation, and the other one is Unbiased Sampling. For a dictionary of ADAT,

actions are self-motivated supervision that the learning agents answered. Therefore, low-qual-

ity foolish answers are in the front part of the queue in the replay buffer. When sampling

pseudo-labels from a uniform distribution in the ADAT dictionary, the earlier sample deter-

mined by the naive actor would be used more than the one labeled by the smarter actor as

shown in Fig 3, even with prioritized experience replay, hard-converged foolish answers from

less trained agents would be before consistent pairs.

Therefore, we propose Unbiased Sampling. This is a straightforward module that does not

cost computationally in the total algorithm. It only takes twice as many samples as the planned

minibatch size from a uniform distribution and just selects the most recent samples by the

batch size from the queue. As shown in Fig 3, most elements in the replay buffer have been

uniformly leveraged from unbiased sampling during the whole training time. Unbiased Sam-

pling follows very cheap time complexity (worst case quadratic of ADAT’s batch size), so there

is a little time delay in the whole training time. On our Atari Setting with ADAT Rainbow,

low-quality pseudo-labels are used up to 12 times more than without unbiased sampling. It is

expected that ADAT with unbiased sampling gains performance improvement by leveraging

high-quality self-made labels more and raising the efficacy of sampling.

Fig 3. The sampling-efficacy following by two methods. By extracting twice the amount and sorting them, all

elements are used equally for learning. Unbiased Sampling prevents unwise early records from being leveraged much

more than rich labels.

https://doi.org/10.1371/journal.pone.0265456.g003
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For the on-policy version with ADAT, we adopted PPO as a policy learning algorithm.

Unlike off-policy algorithms using a replay buffer to get the training data, on-policy RL algo-

rithms like PPO get the samples rolled out by the current policies. Therefore, ADAT is free

from sample imbalance problems. Since the training batch size of PPO is much larger than

that of ADAT in our experiments, we randomly sampled data from the training minibatches

of PPO for contrastive learning. We compared our method with only reward-driven PPO to

validate the robustness on unseen observations.

Results and discussion

Evaluation and implementation details

If the agent can discern the essentials for control between a lot of visual information, the signif-

icant improvement can be guaranteed on sample-efficiency for optimizing policy and generali-

zation about robustness for zero-shot observation with similar structures. The purpose of this

experiment is to measure them and to understand the proposed intuition visually. As a bench-

mark for sample-efficient gameplay, ADAT was employed broadly in various simulations in

Atari Games. For measuring generalization capability, ProcGen Games [24] were adopted for

estimating the contribution of ADAT. Then, we captured a saliency map of policies to under-

stand which pixel information the agent focused on throughout the whole input image. By

measuring how much the policies fluctuate depending on the perturbation for each pixel, we

validated that our auxiliary task helped agents to concentrate more on essential pixels for deci-

sions. Tables 1 and 2 and Fig 4 gives detailed hyperparameters for reproducing results.

Baselines

The existing baselines that are adopted for comparison with our methods are as follows,

• Rainbow DQN [17] is an enhanced DQN that aggregates various techniques for stabilizing

RL networks into a single learner.

• SimPLe [9] trains the world model by self-supervised representation learning with observa-

tions collected from real environments. Then, the world model learns policy in the RL phase

and gains sample-efficiency.

• OTRainbow [25] trains rainbow DQNs taking extra updates for sample-efficiency with

repetitive samples in replay buffer, which is an advantage of DQNs

• EFF.Rainbow [26] suggests novel hyperparameters tuning methods for rainbow DQN’s

data-efficient learning.

• PPO [23] is a widely used benchmark for years, suggesting novel clipped surrogate objective

loss for monotonous improvements by bounded policy updates.

• CURL [10] leverages contrastive representation learning for sample-efficiency. Its auxiliary

task learns to match different augmented versions of the same images. This self-supervision

gains improved sample-efficiency, and this paper enhances it as ‘self-supervision with

actions history’, outperforming existing representation methodology.

Sample-efficiency

Atari Games were benchmarked at 100k interactions (Atari100k), which frequently have

appeared as the benchmark for sample-efficiency. Rainbow DQN [17], SimPLe [9], OTRain-

bow [25], Efficient Rainbow [26], CURL and human scores have been baselines to show how
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sample-efficient our algorithm is compared to widely used representation methods. Perfor-

mance of each algorithm is evaluated after 100k timesteps (400K frames, frameskip of 4) of

interactions between agents and the 26 Atari Games, equivalent to two hours of gameplay. As

shown in Table 3, we can empirically define the pure contribution of our novel auxiliary task

‘ADAT’ as score improvement of ADAT Rainbow over CURL Rainbow. ADAT Rainbow has

shown 1.1x mean human-normalized score (HNS) gains in 100k interactions over CURL. Fur-

thermore, ADAT+, which means ADAT with unbiased sampling gained a 1.24x higher HNS

score than CURL. Not only compared to CURL, but it has also been state-of-the-art in 15 out

Table 1. Hyperparameters for Atari Games 100K.

Hyperparameter Value

Translate True

Data Augmentation Translate 8

Replay buffer size 100000

Training frames 400000

Training steps 100000

Stacked frames 4

Action repeat 4

Replay period every 1

Q network: channels 32, 64

Q network: filter size 5 × 5, 5 × 5

Q network: stride 5, 5

Q network: hidden units 256

EMA Momentum τ 0.001

Non-linearity ReLU

Reward Clipping [−1, 1]

Multi step return 20

Minimum replay size for sampling 1600

Max frames per episode 108K

Update Distributional Double Q

Target Network Update Period every 2000 updates

Support-of-Q-distribution 51 bins

Discount γ 0.99

Batch Size 32

Optimizer Adam

Optimizer: learning rate 0.0001

Optimizer: β1 0.9

Optimizer: β2 0.999

Optimizer � 0.000015

Max gradient norm 10

Exploration Noisy Nets

Noisy nets parameter 0.1

Priority exponent 0.5

Priority correction 0.4! 1

Across every 26 games, this setting was used the same. For Atari100K, we wanted to show that the performance is

improved only by the action-driven auxiliary task. Therefore, the same experiment was conducted by importing the

CURL Rainbow official code [10] as it is and modifying the contrastive learning phase.

https://doi.org/10.1371/journal.pone.0265456.t001
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of 26 Atari Games, surpassing human performance on five games Jamesbond (2.18HNS),

Krull (1.78HNS), Road_Runner (1.60HNS), Assualt (1.01HNS) and Freeway (1.00HNS).

ADAT+ Rainbow achieved the mean HNS of 47.2%, while 22.2%, 28.5%, 40.4%, 28.5% and

38.1% for Rainbow, OTRainbow, SimPLe, Efficient Rainbow and CURL. Therefore, the exper-

imental result proves that action-driven supervision contributes to the improvement of exist-

ing contrastive representation learning methodologies. In addition, the dramatic performance

improvement seen in ADAT+ confirms that the unbiased sampling module reliably solves the

low-quality action labels issue.

Table 2. Hyperparameters for OpenAI Procgen.

Hyperparameter Value

Translate True

Image size (64, 64)

Data Augmentation Translate 8

Training frames 80000000

Training steps 40000000

Stacked frames 2

Action repeat 2

Encoder: residual blocks 3

Encoder: channels 16, 32, 32

Encoder: filter size 3 X 3, 3 X 3, 3 X 3

Encoder: strides 2, 2, 2

Encoder: latent dimension 50

Hidden units for policy and value 256

Non-linearity ReLU

Update PPO

Reward Clipping [−1, 1]

Discount γ 0.99

Generalized Advantage Estimation λ 0.95

PPO clip range 0.2

PPO minibatches 8

PPO minibatch size 2048

Batch size for ADAT 32

ADAT updates per PPO update 1

Value loss coefficient 0.01

Optimizer Adam

Optimizer: learning rate 0.0005

Optimizer: β1 0.9

Optimizer: β2 0.999

Optimizer � 0.000015

Max gradient norm 0.5

For ProcGen experiments, we set the hyperparameters almost same with suggested in [24], except using data

augmentation(translate) and framestack. Additionally, we adopt the residual convolutional neural network

architecture used in IMPALA as the encoder with some modifications. For instance, we set the latent space

dimension as 50 and add a single MLP layer with 256 hidden units to calculate policy and value logits. Then, the

encoder is trained using the PPO and ADAT with this hyperparameter setting.

https://doi.org/10.1371/journal.pone.0265456.t002
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Generalization

Generalization is the capability of coping with unseen observation with a similar structure.

OpenAI ProcGen is a benchmark with tremendous diversities, with 100,000 levels per environ-

ment [24]. Therefore, the generalization capability of agents needs to be measured by training

on limited observations and performing gameplay in unfamiliar situations using ProcGen. To

observe the effect of robustness contributed by ADAT, the performance trends of naive PPO

and PPO supported by ADAT were compared during 40M timesteps. Bigfish and plunder

Games, which possess a lot of visual information irrelevant to gameplay, and have few objects

essential to control, were selected as the experimental environments. Both agents were trained

at 200 levels and evaluated at 100,000 levels. Fig 5 can summarize contributions of the pro-

posed auxiliary task in Bigfish and Plunder as:

• With the help of an action-driven auxiliary task, the performance of the PPO agent in the

newly encountered environment has been dramatically improved. Furthermore, in Plunder

Game, while vanilla PPO agent started to be saturated after 20M interactions, the agent with

intrinsic representation progressively explored better policies.

• In the gameplay of Bigfish, a degradation of accomplishments in unseen levels game stood

out clearly. It can be interpreted as the Bigfish Games demand hard generalization. Whereas

the PPO agent underperformed apparently in few-shot levels, the agent aided by our novel

auxiliary task coped well with unknown diversity inherent in the environment.

Atari inputs Procgen inputs

Translate 8

Fig 4. The frame-stacked inputs. For Atari agents, four sequentially frame-stacked observations are translated from 84x84 to 92x92 pixels with zero pads. Likewise, for

ProcGen agents, two frame-stacked observations are translated from 64x64 to 72x72 pixels [22].

https://doi.org/10.1371/journal.pone.0265456.g004
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Visual understanding with saliency map

In the above experiment, it was empirically shown that the agent gained sample-efficiency and

generalization through ADAT. In this subsection, the saliency map experiment with a variety

of detailed visual information was conducted to obtain insights into which pixels of image

inputs the agent is focusing on. We measured the pixel-interest of the agent as to how much

will the policy change if pixel-information is removed from the area around the location (i, j)
[14].

SVpðs; i; jÞ ¼
1

2
k VpðsÞ � VpðFðs; i; jÞÞ k 2: ð5Þ

Saliency metric is the squared difference between the value estimate of the original sequence

and the perturbed one. F(s, i, j) means the perturbation on image S at pixel coordinates (i,j). It

removes pixel information by masking out a 5x5 size black patch around the (i,j) coordinate.

To demonstrate if the agent captures essential pixels for the control by performing our aux-

iliary task, we took a saliency map of PPO and ADAT PPO agents. Similar to the method in

Table 3. Comparison of sample efficiency.

GAME Human Rainbow SimPLe OTRainbow EFF.Rainbow CURL ADAT ADAT+

ALIEN 7127.7 318.7 616.9 824.7 739.9 558.2 953.8 1029.7

AMIDAR 1719.5 32.5 88.0 82.8 188.6 142.1 146.1 147.3

ASSAULT 742.0 231 527.2 351.9 431.2 600.6 689.5 749.4

ASTERIX 8503.3 243.6 1128.3 628.5 470.8 734.5 808 864

BANK HEIST 753.1 15.55 34.2 182.1 51.0 131.6 128.5 164

BATTLE ZONE 37187.5 2360.0 5184.4 4060.6 10124.6 14870.0 17160 21240

BOXING 12.1 -24.8 9.1 2.5 0.2 1.2 0.6 0.4

BREAKOUT 30.5 1.2 16.4 9.84 1.9 4.9 5.2 4.5

CHOPPER COMMAND 7387.8 120.0 1246.9 1033.33 861.8 1058.5 1151 1106

CRAZY CLIMBER 35829.4 2254.5 62583.6 21327.8 16185.3 12146.5 18022 21240

DEMON ATTACK 1971.0 163.6 208.1 711.8 508.0 817.6 609.8 851.9

FREEWAY 29.6 0.0 20.3 25.0 27.9 26.7 29.3 29.7

FROSTBITE 4334.7 60.2 254.7 231.6 866.8 1181.3 1838.4 1943.2

GOPHER 2412.5 431.2 771.0 778.0 349.5 669.3 634 601.2

HERO 30826.4 487 2656.6 6458.8 6857.0 6279.3 6114.2 7259.2

JAMESBOND 302.8 47.4 125.3 112.3 301.6 471.0 491 635.7

KANGAROO 3035.0 0.0 323.1 605.4 779.3 872.5 1120 956.9

KRULL 2665.5 1468 4539.9 3277.9 2851.5 4229.6 3675.9 3502.9

KUNG FU MASTER 22736.3 0.0 17257.2 5722.2 14346.1 14307.8 13767 19146

MS PACMAN 6951.6 67 1480.0 941.9 1204.1 1465.5 1144.8 1075

PONG 14.6 -20.6 12.8 1.3 -19.3 -16.5 -15.9 -15.1

PRIVATE EYE 69571.3 0 58.3 100.0 97.8 218.4 250 388

QBERT 13455.0 123.46 1288.8 509.3 1152.9 1042.4 1303.6 1578

ROAD RUNNER 7845.0 1588.46 5640.6 2696.7 9600.0 5661.0 9711 12508

SEAQUEST 42054.7 131.69 683.3 286.92 354.1 384.5 370.2 251.6

UP N DOWN 11693.2 504.6 3350.3 2847.6 2877.4 2955.2 3286 3597.8

Mean HNS 100.0% 22.2% 40.4% 26.4% 28.5% 38.1% 41.0% 47.2%

Atari scores of ADAT Rainbow and other baselines of 26 Atari Games benchmark achieved after 100K interactions. The average score over five random seeds.

Improvements over baselines are measured as relative Human Normalized Score(HNS).

https://doi.org/10.1371/journal.pone.0265456.t003
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[14], pixels of the image were added to the R-value of RGB according to the normalized

saliency score of the corresponding coordinates. As shown in Fig 6, the saliency map indicates

an apparent difference between the PPO agent and the ADAT PPO agent. The Bigfish environ-

ment comprises a few crucial pixels for gameplay, so these pixels need to be focused. In the

PPO agent map, the saliency score is evenly spread throughout on the whole input images.

Whereas in ADAT, red cloud points are clustered around objects that the player fish should

consider immediately for gameplay. These results visually validate that the pixels considered

for inference were different between two agents through ADAT. Without the support of

ADAT, the PPO agent became dependent to control-irrelevant details. This phenomenon

made the agent vulnerable to the unnecessary characteristics of the environment. On the other

hand, the ADAT PPO agent gained intrinsic representation capturing which pixels are crucial

for addressing reinforcement learning problems and became independent to irrelevant details.

Conclusion

In this work, we proposed ‘Action-Driven Auxiliary task,’ novel instance discrimination in a

self-supervised manner, for representation to capture intrinsic features directly related to

deciding actions and become insensitive to irrelevant details. Learning the shared structure

between aggregated observations by contrastive representation, the agent distinguished con-

trol-irrelevant pixels and gained both sample-efficiency and generalization capabilities. These

improvements are enhanced through proposed Unbiased Sampling. Our experiments on Atari

and ProcGen demonstrated the efficacy of the ADAT and Unbiased Sampling module, visually

confirming these intuitions. ADAT is a simple module attachable to various existing RL

Fig 5. Comparison of generalization capability. Bigfish and Plunder Games in OpenAI Progen. 200-levels trained

agents were evaluated on 100,000 levels. On-policy ADAT leveraged the samples rolled out by PPO policy. A difference

in both frameworks is contrastive representation learning through ADAT. This figure reports the average score and

standard deviation over five random seeds.

https://doi.org/10.1371/journal.pone.0265456.g005
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algorithms, both off-policy and on-policy. It is worthwhile investigating how to label continu-

ous actions for pseudo-supervision as a future topic. In addition, in an environment where

there are many tiny objects for control, such as Starpilot and Bossfight in OpenAI ProcGen,

both existing and our representation methodologies have adversely affected the performance.

Therefore, future work will be needed to make learning representation effective in these partic-

ular cases. d ac ipsum eget enim egestas ullamcorper nec euismod ligula. Curabitur fringilla

pulvinar lectus consectetur pellentesque.
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Fig 6. Saliency map of Bigfish and Plunder Games in OpenAI Progen. From left, original rendering, saliency map of

the PPO, and the PPO with ADAT in order.
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