
sensors

Article

Moving Object Detection Based on Optical Flow
Estimation and a Gaussian Mixture Model for
Advanced Driver Assistance Systems

Jaechan Cho 1 , Yongchul Jung 1 , Dong-Sun Kim 2 , Seongjoo Lee 3 and Yunho Jung 1,*
1 School of Electronics and Information Engineering, Korea Aerospace University, Goyang-si 10540, Korea
2 Korea Electronics Technology Institute, Seongnam-si 463-816, Korea
3 Department of Information and Communication Engineering, Sejong University, Seoul 143-747, Korea
* Correspondence: yjung@kau.ac.kr; Tel.: +82-2-300-0133

Received: 18 June 2019; Accepted: 19 July 2019; Published: 22 July 2019
����������
�������

Abstract: Most approaches for moving object detection (MOD) based on computer vision are
limited to stationary camera environments. In advanced driver assistance systems (ADAS), however,
ego-motion is added to image frames owing to the use of a moving camera. This results in mixed
motion in the image frames and makes it difficult to classify target objects and background. In this
paper, we propose an efficient MOD algorithm that can cope with moving camera environments.
In addition, we present a hardware design and implementation results for the real-time processing
of the proposed algorithm. The proposed moving object detector was designed using hardware
description language (HDL) and its real-time performance was evaluated using an FPGA based test
system. Experimental results demonstrate that our design achieves better detection performance
than existing MOD systems. The proposed moving object detector was implemented with 13.2K logic
slices, 104 DSP48s, and 163 BRAM and can support real-time processing of 30 fps at an operating
frequency of 200 MHz.

Keywords: ADAS; background subtraction; FPGA; moving object detection; optical flow estimation

1. Introduction

Advanced driver assistance systems (ADAS) represent the most popular field in the automotive
industry and have become a key technology for modern vehicle safety and driving comfort [1,2].
The most commonly used ADAS techniques include adaptive cruise control, collision warning and
lane change assistance. Collision warning systems are one of the major applications of ADAS and
their task is to inform drivers of obstacles around the vehicle by giving visual, aural, or tactile
feedback [3,4]. Reliable moving object detection (MOD) technology is an essential part of collision
warning systems and various sensor-based techniques have been proposed, such as vision-, lidar- and
radar-based techniques [5,6]. Since vision-based MOD technology is relatively more intuitive and
cheaper than active sensor techniques, such as radar and lidar, many vision-based algorithms have
been proposed [7–29].

However, several vision-based MOD algorithms assume input image frames to be captured by
stationary camera, because detection accuracy degrades for moving cameras [8–14]. Although methods
for generating background models using smart cameras have also been proposed, they suffer from a
limitation in that they can only be used in stationary camera environments [15–17]. Without proper
distinction, the mixed motion between background and foreground objects that is caused by moving
cameras is hard to distinguish. Using a moving camera is inevitable in vehicle environments and thus
an efficient algorithm that can cope with this fact is needed.

Sensors 2019, 19, 3217; doi:10.3390/s19143217 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-8208-0419
https://orcid.org/0000-0001-5332-8980
https://orcid.org/0000-0002-7169-5028
https://orcid.org/0000-0001-9344-7052
https://orcid.org/0000-0003-2299-9911
http://www.mdpi.com/1424-8220/19/14/3217?type=check_update&version=1
http://dx.doi.org/10.3390/s19143217
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 3217 2 of 14

For this reason, several algorithms that allow for MOD in the image frames obtained by
moving cameras have recently been proposed [18–29]. Some of these methods employ advanced
statistical models or outlier detection techniques to estimate the background [18–24]. In Reference [22],
background subtraction based on a 2.5D background model was proposed, which could be used
to successfully detect moving objects in complex scenes. In Reference [23], a fast and effective
MOD algorithm based on global motion compensation and adaptive background modelling was
presented, which supports real-time object detection on a moving camera. The method proposed
in Reference [24] introduces a novel background modelling approach based on dynamic reverse
analysis (DRA). This approach can handle illumination variations, occlusions and camera instability.
A comprehensive overview of the recent efforts made for dealing with illumination variations and
occlusions can be found in Reference [25]. Recently, algorithms that rely on deep neural networks
(DNNs) have also been proposed [26–28]. In the method proposed in Reference [28], a single CNN
is trained using stacked depth-wise image-background pairs, and its output is enhanced via post
processing. However, these algorithms may not be suitable for ADAS applications with limited
power consumption and available area because of the associated high computational complexity and
massive memory requirements. In addition, algorithms based on learning methods cannot deal with
unexpected situations because the image frames used for learning are restricted to specific cases [29].
In particular, the use of moving cameras results in a wide variety of possible situations, which seriously
degrades MOD performance.

On the other hand, a technique for compensating the camera motion, referred to as ego-motion,
without relying on learning methods has been proposed [29]. The MOD algorithm proposed in
Reference [29] estimates the flow vector of each pixel via a Lucas Kanade (LK)-based optical flow
estimation (OFE) algorithm and analyzes the histogram of the flow vectors to estimate the ego-motion.
Then, the background model is compensated using the estimated ego-motion. The compensated
background model is used in the MOD process to separate out the mixed motion between the
background and foreground objects. This algorithm can prevent many false positives and shows good
precision in moving camera environments. However, there is a problem in that its performance in
terms of recall is degraded. Therefore, its applications are limited to backup collision intervention (BCI),
which consists in detecting obstacles behind the vehicle, because such tasks require relatively slow
camera motion, as explained in Reference [29]. This drawback arises owing to the use of LK-based OFE
for ego-motion estimation. LK-based OFE is a local method for estimating flow vectors based on the
assumption that the motion of a local region is the same within itself. A limitation of this method is that
it cannot find the correct flow vectors in regions where the brightness pattern is uniform. Therefore,
inaccurate flow vectors estimated in the background regions with uniform brightness patterns have an
adverse effect on ego-motion estimation.

In order to overcome the problems associated with the use of local methods, such as LK-based
OFE, Horn and Schunk (HS) proposed a global method for defining the energy function of an
entire image frame and for estimating the flow vectors while minimizing this energy function [30].
However, this method cannot cope with sudden changes in brightness and various algorithms have
been proposed to solve this problem [31–33]. Among them, the Brox algorithm shows robustness
to changes in brightness by extending the conventional OFE brightness constancy assumption
to a gradient constancy assumption. It also shows higher accuracy than other algorithms in
vehicle environments.

In this paper, we propose an efficient algorithm for finding moving objects after more precisely
estimating and compensating ego-motion using the Brox OFE algorithm. In addition, we present
a hardware structure design and its results for real-time processing tasks. The remainder of this
paper is organized as follows: Section 2 explains the Brox OFE algorithm and the Gaussian mixture
model (GMM). Section 3 presents the proposed MOD algorithm, and Section 4 describes the
hardware architecture of the proposed moving object detector. Section 5 presents the results for

Sensors 2019, 19, 3217 3 of 14

an FPGA implementation of the proposed moving object detector and performance evaluation results.
Finally, Section 6 concludes the paper.

2. Related Work

2.1. Brox Optical Flow Estimation

Let x = (x, y, t)T and w = (u, v, 1)T , where x denote pixel information at time t and w represents
the estimated flow vector. Then, global deviations from the grey value constancy assumption and the
gradient constancy assumption can be measured by the energy as

EData(u, v) =
∫

Ω
ψ
(
|I(x + w) − I(x)|2 + γ |∇I(x + w) − ∇I(x)|2

)
dx, (1)

where γ is a weight between both assumptions. An increasing concave function ψ(s2) =
√
(s2 + ε2) is

applied, leading to a robust energy estimation [31], where ε is small positive constant that is typically
set as 0.001. Smoothness describes the model’s assumption of a piecewise smooth flow field and can
be expressed as follows:

ESmooth(u, v) =
∫

Ω
ψ
(
|∇3u|2 + |∇3v|2

)
dx. (2)

The spatio-temporal gradient ∇3 = (δx, δy, δt)T indicates that a spatio-temporal smoothness
assumption is involved. The total energy is the weighted sum of (1) and (2), and it can be depicted by

E(u, v) = EData + αESmooth, (3)

where α is a regularization parameter. The value of (u, v) that minimizes the total energy is the optimal
flow vector.

The Euler–Lagrange equation is applied to (3) to find the optimal solution. To linearize the
equation, Brox applied a numerical approximation. A multi-scale approach, also called a pyramid,
and an inner iteration loop are applied to suppress the non-linearity of the remaining ψ term [31].
Then, the final optimal equation is converted into matrix form for all the pixels within an image frame
as follows:

(ψ′)k,l
Data ·

(
Ik
x Ik

x + γ(Ik
xx Ik

xx + Ik
xy Ik

xy)

Ik
y Ik

x + γ(Ik
yy Ik

yx + Ik
xy Ik

xy)

Ik
x Ik

y + γ(Ik
xx Ik

xy + Ik
xy Ik

yy)

Ik
y Ik

y + γ(Ik
yy Ik

yy + Ik
xy Ik

xy)

)
·
(

duk,l+1

dvk,l+1

)

= − (ψ′)k,l
Data ·

(
Ik
x Ik

t + γ(Ik
xx Ik

xt + Ik
xy Ik

yt)

Ik
y Ik

t + γ(Ik
yy Ik

yt + Ik
xy Ik

xt)

)
+ α ·

(
div((ψ′)k,l

Smooth∇3 (uk + duk,l))

div((ψ′)k,l
Smooth∇3 (vk + dvk,l))

)
,

(4)

where Ix, Iy, It, Ixx, Ixy, Ixt, and Iyt represent the gradient for each direction; k is the pyramid loop; and l
indicates the iteration loop for linearization in each pyramid loop [31]. In (4), (ψ′)Data and (ψ′)Smooth
are obtained as follows:

(ψ′)k,l
Data = ψ′

(
(Ik

t + Ik
xduk,l + Ik

ydvk,l)
2

+ γ
(
(Ik

xt + Ik
xxduk,l + Ik

xydvk,l)
2
+ (Ik

yt + Ik
xyduk,l + Ik

yydvk,l)
2))

,
(5)

(ψ′)k,l
Smooth = ψ′

(∣∣∣∇3(uk + duk,l)
∣∣∣2 +

∣∣∣∇3(vk + dvk,l)
∣∣∣2) . (6)

Sensors 2019, 19, 3217 4 of 14

If duk,l+1 and dvk,l+1 in the left-hand side of (4) are denoted as vector w, the remaining term as
matrix A, and the reight-hand side of (4) as vector b, then, (4) can be expressed as Aw = b, and the
final solution for d can be calculated as

w = A−1b. (7)

2.2. Gaussian Mixture Model

The GMM algorithm, which was proposed by Stauffer and Grimson [10], estimates the
background image by employing a statistical model of intensity for each pixel in the image frame.
Several works have been carried out to improve its performance, and the GMM has been widely
adopted as a basic framework for generating background models [11–14]. Since the GMM algorithm
available in the open-source computer vision software library (OpenCV) [34] has been optimized in
terms of performance and complexity, it has been adopted in various FPGA implementations [35–37]
and is also applied in our proposed algorithm.

The GMM algorithm is composed by a mixture of n Gaussian distributions represented by three
parameters: weight (w), mean (µ) and variance (σ2). The Gaussian distributions of each pixel have
different parameters and change for each image frame. Therefore, these parameters are defined by
three indices, namely i, n, and t, where i is the index for pixel intensity, n denotes the index for the
Gaussian distributions, and t is an index that refers to the time of the considered frame.

These parameters are updated differently depending on the match condition, which indicates
whether a pixel is suitable for the background model. The match condition is checked against the n
Gaussian distributions that model the pixel and is given by

mn = 1, i f |it − µn,t|2 ≤ D2 · σ2
n,t, (8)

where D is a threshold whose value was experimentally chosen to be equal to 2.5. The background
model of each pixel is generated in a grey scale ranging from 0 to 255 using the mean and the weight
of the Gaussian model as follows:

Bt =
K

∑
k=1

wn,t · µn,t. (9)

3. Proposed Moving Object Detection Algorithm

Since the image frames obtained from moving cameras contain the motion of both the background
and the objects, the proposed MOD algorithm performs a background compensation process before
detecting objects, as shown in Figure 1. The background compensation process estimates the
ego-motion and generates the compensated background. Then, the object detection process extracts the
object coordinates using the current image frame and the compensated background. To minimize noise,
two detection methods are performed and the final object coordinates are determined by cross-checking
the results. After matching the resolution scales for two output coordinates, the final result is confirmed
through an intersection operation.

Sensors 2019, 19, 3217 5 of 14

Object Detection Background Compensation

Brox Optical Flow

Estimation

Background

Generation

(Using GMM

Parameters)

Camera Motion

Estimation

(Using Flow Vectors)

Camera Motion

Compensation

(Using GMM

Parameters)

Frame (t–1)

Object Detection

(Using Background)

Final Object

Coordinate Decision

Brox Optical Flow

Estimation

Object Detection

(Using Flow Vectors)

Detected

Objects
Frame (t)

Figure 1. Overall scheme of the proposed moving object detection (MOD) algorithm.

3.1. Background Compensation

In order to estimate the ego-motion, the Brox OFE algorithm is applied to two consecutive
frames to extract the flow vectors. Since the matrix inversion of A in (7) requires computation time
proportionally to the image frame size and A is a Hermitian positive-definite matrix, we apply Cholesky
factorization to A:

A = LLT , (10)

where L is a lower triangular matrix. It is much easier to compute the inverse of a triangular matrix [38]
and the inverse of the original matrix can be computed by simply multiplying the two inverses
as follows:

A−1 = (L−1)T(L−1). (11)

Then, the final flow vector w is calculated as

w = (L−1)T(L−1)b. (12)

The extracted flow vector for each pixel represents the motion of the pixel between consecutive
frames. The pixels in the background region have a relatively slow motion compared with the object
region. In addition, background pixels occupy a larger area in the image frame than objects and
exhibit similar motion. Therefore, the most frequent flow vector with slow motion is regarded as the
ego-motion, which can be extracted via histogram analysis. Then, the previously derived background
model is compensated using the extracted ego-motion. In this approach, the background model is
derived via the GMM algorithm and stored as GMM parameters.

After estimating the ego-motion, the entire GMM parameters can be shifted back along the
determined motion, resulting in a compensated background model. First, the ego-motions edx and edy
in the x-axis and y-axis directions, respectively, are divided into an integer part and a fractional part.
The integer parts ei

dx and ei
dy can be obtained by rounding up edx and edy respectively, whereas the

fractional parts e f
dx and e f

dy are computed as

e f
dx = edx − ei

dx, (13)

e f
dy = edy − ei

dy. (14)

Then, the GMM parameters wn,t−1, µn,t−1 and σ2
n,t−1 are shifted by ei

dx and ei
dy as shown in Figure 2.

The empty space caused by the shift operation for µn,t−1 is filled with the it of the same position,

Sensors 2019, 19, 3217 6 of 14

as shown in Figure 2a. On the other hand, the empty spaces are also filled with the pre-defined values
wo and σ2

o for wk,t and σ2
k,t, respectively, as depicted in Figures 2b,c.

Afterwards, the GMM parameters are interpolated using the fractional parts of the ego-motion,
namely e f

dx and e f
dy. The interpolation for e f

dx is performed in the x-axis direction as shown in (15)–(17)

and the same is done for e f
dy in the y-axis direction, as presented in (18)–(20):

wx
n,t−1(x, y) = e f

dx · wn,t−1(x, y) + (1− e f
dx) · wn,t−1(x + 1, y), (15)

µx
n,t−1(x, y) = e f

dx · µn,t−1(x, y) + (1− e f
dx) · µn,t−1(x + 1, y), (16)

σx
n,t−1(x, y) = e f

dx · σ
2
n,t−1(x, y) + (1− e f

dx) · σ
2
n,t−1(x + 1, y), (17)

wn,t(x, y) = e f
dy · w

x
n,t−1(x, y) + (1− e f

dy) · w
x
n,t−1(x, y + 1), (18)

µn,t(x, y) = e f
dy · µ

x
n,t−1(x, y) + (1− e f

dy) · µ
x
n,t−1(x, y + 1), (19)

σ2
n,t(x, y) = e f

dy · σ
x
n,t−1(x, y) + (1− e f

dy) · σ
x
n,t−1(x, y + 1). (20)

, 1
memory

n t
µ

−����������
����������

���������
���������

����������
����������

����������
����������

���������
���������

����������
����������

����������
����������

���������
�������������������

����������
����������

���������
���������
���������

����������
����������
����������

����������
����������
����������

���������
���������
���������

����������
����������
����������

����������
����������
����������

���������
���������
�������������������

����������
���������
�������������������

����������
����������

���������
���������
�������������������

����������
���������
�������������������

����������
����������

���������
���������
�������������������

����������
���������
�������������������

����������
����������

���������
���������
���������

Filled with
t
i

i

dy
e

i

dxe

(a)

, 1
memory

n t
w

−����������
����������
����������

���������
���������
���������

����������
����������
����������

����������
����������
����������

���������
���������
���������

����������
����������
����������

����������
����������
����������

���������
���������
�������������������

����������
���������
���������

����������
����������

����������
����������

���������
���������

����������
����������

����������
����������

���������
�������������������

����������
����������

���������
���������
�������������������

����������
���������
�������������������

����������
����������

���������
���������
�������������������

����������
���������
�������������������

����������
���������
�������������������

����������
����������

���������
���������
���������

0Filled with w

i

dye

i

dx
e

(b)

2

, 1 memory
n t

σ
−

����������
����������
����������

���������
���������
���������

����������
����������
����������

����������
����������
����������

���������
���������
���������

����������
����������
����������

����������
����������
����������

���������
���������
�������������������

����������
���������
���������

����������
����������

����������
����������

���������
���������

����������
����������

����������
����������

���������
�������������������

����������
����������

���������
���������
�������������������

����������
���������
�������������������

����������
����������

���������
���������
�������������������

����������
���������
�������������������

����������
����������

���������
���������
�������������������

����������
���������
���������

2

0Filled withσ

i

dy
e

i

dx
e

(c)

Figure 2. Compensation for the integer parts of the ego-motion. The shaded region denotes empty
space generated by the shift operation: (a) µn,t−1 memory; (b) wn,t−1 memory; (c) σ2

n,t−1 memory.

After the compensation process is complete, the new GMM parameters are updated through the
GMM algorithm. Then, the final background model, that is, the compensated background model is
generated via (9) using wn,t, µn,t, and σ2

n,t.

3.2. Object Detection

To extract object coordinates in an image frame using the compensated background model,
the proposed MOD algorithm performs a background subtraction operation first, followed by Brox
OFE. Background subtraction consists in separating moving objects from stationary background images.
If the difference between the compensated background model and the current frame is larger than the
threshold, it is classified as a moving object and the rest is classified as background. Although this
approach can effectively detect objects, such a simple comparison results in false positives.

In order to solve this problem, Brox OFE between the compensated background and the current
frame is performed to extract the flow vectors of all pixels. The extracted flow vectors that have
different magnitude and direction from those of the background can be grouped into objects. To group
the object regions from the overall vectors in a frame, a proper threshold should be determined.
This threshold has to be chosen for each frame by considering the distribution of the flow vectors.
Since we derived the detection results via background subtraction, the final detection results are

Sensors 2019, 19, 3217 7 of 14

determined via cross-checking with both sets of results to reduce the number of false positives.
A median filter on the results is applied to remove relatively small objects, such as those caused
by noise.

4. Hardware Architecture Design

In this section, we present the hardware architecture of the proposed moving object detector
for real-time processing. Figure 3 shows a block diagram of the proposed moving object detector,
which consists of an optical flow estimator, a camera motion estimator, a background detector and an
object detector. The data stream of the image frame, which enters from the external camera module,
is stored in the input frame buffers. Then, the pixel intensities of two consecutive frames it−1 and it are
selected from these buffers to estimate flow vectors ue and ve for, in turn, estimating the ego-motion
via the optical flow estimator. The histogram statistics of these flow vectors are analyzed by the
camera motion estimator to extract the ego-motions edx and edy. In order to generate the compensated
background Bt, the background detector shifts the GMM parameters according to the estimated
ego-motions, as explained in Section 3.1, and updates the corresponding parameters by applying the
GMM algorithm. Using Bt and the pixel intensities of current frame it, the object detector performs
background subtraction, and the optical flow estimator simultaneously extracts new flow vectors
uo and vo. These flow vectors are used by the object detector to classify the object region. Finally,
the object coordinates are generated by combining the two sets of detection results.

Optical Flow Estimator Background Detector

Rx Data

Memory

Input

Frame

Buffer

Input

Frame

Buffer

Camera

Motion

Estimator

Object Detector Background Memory

Frame

Detected

Objects

GMM Parameter Memory

Camera Motion

Compensator

GMM-based

Background

Estimator

Convolution

Unit

Resolution

Process Unit

Rx Data

Memory

Input

Frame

Buffer

OFE

Memory

Set

tB
1t

i
−

t
i

t
B

t
B

e
u

e
v

dx
e

dye

2, ,wµ σ

o
u o

v

Figure 3. Block diagram of the proposed moving object detector.

4.1. Optical Flow Estimator

The optical flow estimator shown in Figure 4a is composed of a convolution unit (CU) for
pre-processing, a resolution process unit (RPU) for computing the solution of the Euler-Lagrange
equation, a warping unit, and an output decision unit. Since a multi-scale approach (also called
pyramid) is required, the input frames are scaled to a lower resolution after Gaussian smoothing.
Then, a gradient filtering module calculates Ix, Iy, It, Ixx, Ixy, Ixt, and Iyt using the scaled image frames.
The Gaussian smoothing, image scaling, and gradient filtering operations are grouped into the CU and
have a shared structure in the convolution calculator to reduce hardware complexity. This is possible
because they perform similar image filtering operations. Employing this shared structure reduces
the number of multipliers by ten, that of adders by five, and that of line buffers by four, as shown
in Figure 4b. After gradient filtering is complete, the RPU computes (4) to extract the flow vectors.
Then, the warping unit generates higher resolution image frames using the previously scaled data
and extracted flow vectors. The overall operation of the optical flow estimator is repeated during the
pyramid loop.

Sensors 2019, 19, 3217 8 of 14

Convolution Unit (CU)

Gaussian

Smoothing

Image

Scaling

Gradient

Filtering

Resolution

Process

Unit

(RPU)
Warping Unit

Output Decision Unit
u
v

1t
i

−

t
i

Convolution Calculator

(a)

CU Line Buffer

CU Line Buffer

Multiply and Accumulate (MAC) Unit

Filter Coefficients

Controller

CU Line Buffer

Line Buffer

(b)

Figure 4. Hardware structure: (a) optical flow estimator; (b) convolution calculator.

Figure 5 shows the structure of the RPU, which consists of an energy data calculation unit (ECU),
a smoothness calculation unit (SCU), calculation units for A and b, a Cholesky factorization unit
(CFU), and a flow vector scaling unit. The ECU and SCU simultaneously compute the ψData and
ψSmooth terms via (5) and (6). Then, the calculation units for A and b use the results of each operation
to calculate A and b in the final matrix equation as shown in (4). Since similar calculations are
repeated in (4), (5), and (6), we employed a shared structure to reduce the number of operators and
memory requirements. The CFU factorizes A as lower triangular matrixes L and LT and performs
matrix inversion. These operations require excessive memory access, which depends on image frame
size. Excessive memory access results in high power consumption and makes real-time processing
impossible. Therefore, we apply a shift register bank, which can reduce the number of memory access
operations by 95.75%.

UX

Mem

UX

Mem

E-

Smooth

Memory

Energy Data

Calculation

Unit (ECU)

Energy

Data

Memory

Smoothness

Calculation

Unit (SCU)

Smoothness

Memory

Spatio-Temporal Gradient

Memory Set

A

Calculation

Unit

b

Calculation

Unit

UAPP

Mem

Cholesky Factorization

Memory Set

Cholesky Factorization Unit (CFU)

L-Matrix

Generator

Matrix

Multiplier

du, dv

Memory

grd

du

dv

du

dv

u

v

grd

grd

u

v

Matrix

Inversion

Calculator

Flow Vector Scaling Unit

Interpolator

Controller

du

dv

u

v

u

v

Figure 5. Block diagram of the resolution process unit.

4.2. Camera Motion Estimator

Figure 6 depicts the camera motion estimator, which is composed of a location finder, a 7 × 128
decoder, a counter bank, and some calculators. The designed camera motion estimator analyzes
the histogram of the flow vectors. The histogram is generated by dividing the entire range of the
flow vectors into a series of intervals and then counting how many vectors fall into each interval.
We divide the entire range into 128 intervals, considering the trade-off between hardware complexity
and performance. Histogram analysis is performed using the counter circuits and the control signal
of each counter is generated by the location finder and the 7 × 128 decoder. Finally, edx and edy are
extracted by finding the maximum count value.

Sensors 2019, 19, 3217 9 of 14

Location

Finder

7 � 128

Decoder

Counter Bank

(128 Counters)

0

1
.

.

.

126

127

Counter

MSB

1

0

1

0

delta delta/2

�

�

min

1
u

1
v

,
dx dy

e e

Figure 6. Hardware structure of the camera motion estimator.

4.3. Background Detector

The background detector, which is shown in Figure 7, is composed of a camera motion
compensator that performs compensation for the GMM parameters using edx and edy and a GMM-based
background estimator that updates the GMM parameters and estimates the background Bt. The camera
motion compensator performs a shift operation with integer parts ei

dx and ei
dy and then interpolates the

GMM parameters using fractional parts e f
dx and e f

dy. The GMM-based background estimator updates
the compensated GMM parameters according to the current image frame and simultaneously estimates
the background Bt.

Camera Motion Compensator

Convolutio

n

Convolutio

n
Interpolator

Convolutio

n

Convolutio

n
Interpolator

Convolutio

n

Convolutio

n
Interpolator

GMM Memory Controller

-

GMM-based Background Generator

Mean

Calculator

Weight

Calculator

Variance

Calculator

BG

Calculator

Match Condition Checker

t
B

dx
e

dye

t
i

2

, 1 , 1 , 1, ,n t n t n tw µ σ
− − −

2

, , ,, ,
n t n t n t

w µ σ

Figure 7. Block diagram of the background detector.

4.4. Object Detector

Figure 8 shows the object detector, which consists of a background subtractor, a threshold decision
unit, an object memory, a median filter and an object decision unit. First, the absolute value of
the difference between it and Bt is provided to the comparator and object candidates are generated
by comparing this value with an experimentally determined threshold value. These background
subtraction results are stored in object memory. Afterwards, the comparator generates object candidates
using the flow vectors and the threshold which is determined according to the distribution of these
vectors. The generated object candidates are also stored in the object memory, and median filtering is
performed. Finally, the coordinates of the objects are detected by cross-checking the two sets of results
in the object decision unit.

Sensors 2019, 19, 3217 10 of 14

Mode

1

0

�

t
i

t
B

o
u

o
v

Comparator

Threshold

Decision Unit

Object Memory

Object

Decision

Unit

Median Filter

Shift_Reg

Decision Unit

0

1

Counter

(filter size)

Comparator

Controller

Detected

Objects

Figure 8. Block diagram of the object detector.

5. Experimental Results

5.1. FPGA Implementation

The proposed moving object detector was designed using hardware description language (HDL)
and implemented on a Xilinx Virtex5 FPGA device. As a result, the proposed moving object
detector was implemented with 13.2K logic slices, 104 DSP48s, and 163 BRAM, as shown in Table 1.
The comparison results between the proposed GMM-based background generator and previous GMM
implementations [35,36] are presented in Table 2. The GMM-based background generator employed in
the proposed design has a similar complexity to the method presented in Reference [36] and can be
implemented using less resources than that presented in Reference [35].

Since the final object coordinates are generated at intervals of 6.67M clock cycles for an image
resolution of 640 × 480, we confirmed that real-time processing at 30 fps is possible using an FPGA
test system at 200 MHz. The total number of clock cycles is proportional to the resolution of the input
image. Table 3 shows comparison results in terms of processing speed between this work and other
MOD scheme that can perform real-time operation on moving camera environments. The results
confirm that the proposed system is significantly faster in terms of processing speed (fps) than other
schemes that can support real-time processing.

Table 1. Implementation results for the proposed moving object detector.

Block
FPGA Logic Slices

(/51840)
DSP48s

(/192)
Block RAM

(/972)

Optical flow estimator 12,312 96 108
Camera motion estimator 326 1 0

Background detector 443 5 50
Object detector 164 2 5

Total 13,245 (25.55%) 104 (54.16%) 163 (16.77%)

Table 2. Comparison of the proposed GMM-based background generator and previous research results.

Target FPGA Circuit LUT Slice DSP48s

Virtex5
Proposed 729 325 3

[35] 1066 346 10
[36] 724 323 3

Virtex6 Proposed 794 352 3
[36] 788 349 3

In order to evaluate the performance of the proposed moving object detector in actual vehicle
environment, an FPGA test platform was constructed and is shown in Figure 9. This verification
platform included an FPGA device with the proposed moving object detector, a 640 × 480-resolution
camera and an HDMI recorder.

Sensors 2019, 19, 3217 11 of 14

Table 3. Comparison of the processing speed of our approach with other work.

Image Size
Processing Speed (fps)

Fast MOD [23] Proposed

480 × 704 14.8 27.2
368 × 580 22.7 43.1
340 × 570 24.6 47.5
240 × 320 51.2 119.3

(a)

(b)

(c)

Figure 9. FPGA test platform: (a) test environment; (b) Xilinx Virtex-5 FPGA based evaluation board;
(c) 640 × 480 resolution camera.

5.2. Performance Evaluation

MOD performance metrics, namely precision (Pr), recall (Re), and F-measure (Fm), were used
to carry out a numerical comparison between existing and proposed algorithms and the proposed
algorithm. These metrics are defined as follows:

Pr =
TP

(TP + FP)
, (21)

Re =
TP

(TP + FN)
, (22)

Fm =
2 · Pr · Re

(Pr + Re)
. (23)

True positives (TP) represents the total number of actual object pixels that are recognized as an
object and false negatives (FN) denotes the total number of actual object pixels that are erroneously
recognized as background. False positives (FP) represents the total number of background pixels that
are recognized as an object. Therefore, Pr quantifies the precision of actual object pixels among all the
pixels recognized by the algorithm as objects and Re quantifies the detection rate as the ratio of pixels
recognized by the algorithm as object to actual object pixels.

Table 4 shows the results obtained by applying existing MOD algorithms and the proposed
moving object detector to 200 consecutive image samples with three vehicles moving to the right [39].
Two rank-constrained models [19,20] exhibited excellent recall performance, but their precision
was low, which would give the driver many false alarms. Although the algorithm presented in
Reference [29] exhibited a higher precision than those of References [19,20], its recall performance was

Sensors 2019, 19, 3217 12 of 14

lower. In contrast, the proposed moving object detector exhibited the same precision as the algorithm
from Reference [29], minimized the number of false alarms, and had a recall performance of 95%,
which is 17% higher than the algorithm from Reference [29].

Table 4. MOD performance comparison between the proposed moving object detector and
other algorithms.

Algorithm Precision Recall F-Measure

Rank-constrained 1 [19] 0.95 0.92 0.9348
Rank-constrained 2 [20] 0.83 0.99 0.9030

Kim et al. [29] 0.98 0.78 0.8686
Proposed 0.98 0.95 0.9648

Figure 10 shows examples of the experimental results obtained after applying the proposed moving
object detector to the image samples taken from a vehicle equipped with the FPGA platform shown
in Figure 9. As can be seen from Figure 10, the proposed algorithm exhibited good object detection
performance in a vehicle environment, and we confirmed that false positives hardly ever happened.

Figure 10. MOD performance of the proposed moving object detector.

6. Conclusions

In this paper, we proposed a novel MOD algorithm, which can operate in moving camera
environments. In addition, an area-efficient hardware design for the proposed algorithm was presented
for real-time processing. Experimental results demonstrate the overall improvements achieved using
the proposed algorithm in terms of precision, recall and F-measure, which are important features
for ADAS applications. The proposed moving object detector was implemented with 13.2 K logic
slices, 104 DSP48s, and 163 BRAM and an FPGA test platform was constructed for verification in

Sensors 2019, 19, 3217 13 of 14

a vehicle environment. Through this verification, we confirmed that the proposed moving object
detector achieved higher accuracy than existing MOD algorithms and that it can support real-time
processing at 30 fps and an operating frequency of 200 MHz.

Author Contributions: J.C. designed the algorithm, performed the simulation and experiment, and wrote the
paper. Y.J. (Yongchul Jung), D.-S.K. and S.L. implemented the evaluation platform and performed the experiment.
Y.J. (Yunho Jung) conceived and led the research, analyzed the experimental results, and wrote the paper.

Funding: This work was supported by Institute of Information & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2019-0-00056) and CAD tools were
supported by IDEC.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bengler, K.; Dietmayer, K.; Farber, B.; Maurer, M.; Stiller, C.; Winner, H. Three decades of driver assistance
systems: Review and future perspectives. IEEE Intell. Transp. Syst. Mag. 2014, 6, 6–22. [CrossRef]

2. Khan, M.Q.; Lee, S. A comprehensive survey of driving monitoring and assistance systems. Sensors 2019,
19, 2574. [CrossRef]

3. Chen, K.P.; Hsiung, P.A. Vehicle collision prediction under reduced visibility conditions. Sensors 2018, 18, 3026.
[CrossRef]

4. Mukhtar, A.; Xia, L.; Tang, T.B. Vehicle detection techniques for collision avoidance systems: A review.
IEEE Trans. Intell. Transp. Syst. 2015, 16, 2318–2338. [CrossRef]

5. Sualeh, M.; Kim, G.W. Dynamic multi-lidar based multiple object detection and tracking. Sensors 2019,
19, 1474. [CrossRef]

6. Zhao, Y.; Su, Y. Vehicles detection in complex urban scenes using Gaussian mixture model with FMCW radar.
IEEE Sens. 2017, 17, 5948–5953. [CrossRef]

7. Nieto, M.; Otaegui, O.; Velez, G.; Ortega, J.D.; Cortes, A. On creating vision-based advanced driver assistance
systems. IET Intell. Transp. Syst. 2015, 9, 59–66. [CrossRef]

8. Zhan, C.; Duan, X.; Xu, S.; Song, Z.; Luo, M. An improved moving object detection algorithm based on
frame difference and edge detection. In Proceedings of the Fourth International Conference on Image and
Graphics, Chengdu, China, 22–24 August 2007.

9. Sharmin, N.; Brad, R. Optimal filter estimation for Lucas-Kanade optical flow. Sensors 2012, 12, 12694–12709.
[CrossRef]

10. Stauffer, C.; Grimson, W.E.L. Adaptive background mixture models for real-time tracking. In Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Fort Collins, CO, USA,
23–25 June 1999.

11. Lee, D. Effective Gaussian mixture learning for video background subtraction. IEEE Trans. Pattern Anal.
Mach. Intell. 2005, 27, 827–832.

12. Bouwmans, T.; Baf, F.E.; Vachon, B. Background modeling using mixture of Gaussians for foreground
detection: A survey. Recent Pat. Comput. Sci. 2008, 1, 219–237. [CrossRef]

13. Shah, M.; Deng, J.D.; Woodford, B.J. Video background modeling: Recent approaches, issues and our
proposed techniques. Mach. Vis. Appl. 2014, 25, 1105–1119. [CrossRef]

14. Wang, R.; Bunyak, F.; Seetharaman, G.; Palaniappan, K. Static and moving object detection using flux
tensor with split Gaussian models. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshop, Columbus, OH, USA, 23–28 June 2014.

15. Casares, M.; Velipasalar, S.; Pinto, A. Light-weight salient foreground detection for embedded smart cameras.
Comput. Vis. Image Underst. 2010, 114, 1223–1237. [CrossRef]

16. Cuevas, C.; Garcia, N. Efficient moving object detection for lightweight applications on smart cameras.
IEEE Trans. Circuits Syst. Video Technol. 2013, 23, 1–14. [CrossRef]

17. Azmat, S.; Wills, L.; Wills, S. Spatio-temporal multimodal mean. In Proceedings of the IEEE Southwest
Symposium on Image Analysis and Interpretation, San Diego, CA, USA, 6–8 April 2014.

18. Guo, J.; Hsia, C.; Liu, Y.; Shih, M.; Chang, C.; Wu, J. Fast background subtraction based on a multilayer
codebook model for moving object detection. IEEE Trans. Circuts Syst. Video Technol. 2013, 23, 1809–1821.
[CrossRef]

http://dx.doi.org/10.1109/MITS.2014.2336271
http://dx.doi.org/10.3390/s19112574
http://dx.doi.org/10.3390/s18093026
http://dx.doi.org/10.1109/TITS.2015.2409109
http://dx.doi.org/10.3390/s19061474
http://dx.doi.org/10.1109/JSEN.2017.2733223
http://dx.doi.org/10.1049/iet-its.2013.0167
http://dx.doi.org/10.3390/s120912694
http://dx.doi.org/10.2174/2213275910801030219
http://dx.doi.org/10.1007/s00138-013-0552-7
http://dx.doi.org/10.1016/j.cviu.2010.03.023
http://dx.doi.org/10.1109/TCSVT.2012.2202191
http://dx.doi.org/10.1109/TCSVT.2013.2269011

Sensors 2019, 19, 3217 14 of 14

19. Zhou, X.; Yang, C.; Yu, W. Moving object detection by detecting contiguous outliers in the low-rank
representation. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 597–610. [CrossRef] [PubMed]

20. Sheikh, Y.; Javed, O.; Kanade, T. Background subtraction for freely moving cameras. In Proceedings of the
IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009.

21. Huang, S.C.; Do, B.H. Radial basis function based neural network for motion detection in dynamic scenes.
IEEE Trans. Cybern. 2013, 44, 114–125. [CrossRef] [PubMed]

22. Zamalieva, D.; Yilmaz, A. Background subtraction for the moving camera: A geometric approach.
Comput. Vis. Image Underst. 2014, 127, 73–85. [CrossRef]

23. Jo, K.; Yu, Y.; Kurnianggoro, L. Moving object detection for a moving camera based on global motion
compensation and adaptive background model. Int. J. Control Autom. Syst. 2019, 17, 1866–1874.

24. Bhaskar, H.; Dwivedi, K.; Dogra, D.; Al-Mualla, M.; Mihaylova, L. Autonomous detection and tracking
under illumination changes, occlusions and moving camera. Signal Process. 2015, 117, 343–354. [CrossRef]

25. Yazdi, M.; Bouwmans, T. New trends on moving object detection in video images captured by a moving
camera: A survey. Comput. Sci. Rev. 2018, 28, 157–177 [CrossRef]

26. Heo, B.; Yun, K.; Choi, J. Appearance and motion based deep learning architecture for moving object
detection in moving camera. In Proceedings of the IEEE International Conference on Image Processing,
Beijing, Chaina, 17–20 September 2011.

27. Dike, H.U.; Wu, Q.; Zhou, Y.; Liang G. Unmanned aerial vehicle (UAV) based running person detection
from a real-time moving camera. In Proceedings of the IEEE International Conference on Robotics and
Biomimetics, Kuala Lumpur, Malaysia, 12–15 December 2018.

28. Babaee, M.; Dinh, D.T.; Rigoll, G. A deep convolutional neural network for video sequence background
subtraction. Pattern Recognit. 2018, 76, 635–649. [CrossRef]

29. Kim, D.; Kwon J. Moving object detection on a vehicle mounted back-up camera. Sensors 2016, 16, 23.
[CrossRef] [PubMed]

30. Horn. B.K.P.; Schunck, B.G. Determining optical flow. Artif. Intell. 1981, 17, 185–203. [CrossRef]
31. Brox, T.; Bruhn, A.; Papenberg, N.; Weickert, J. High accuracy optical flow estimation based on a theory

for warping. In Proceedings of the European Conference on Computer Vision, Prague, Czech Republic,
11–14 May 2004.

32. Zach, C.; Pock, T.; Bischof, H. A Duality based approach for realtime TV-L1 optical flow. In Proceedings of
the Joint Pattern Recognition Symposium, Heidelberg, Germany, 12–14 September 2007.

33. Lempitsky, V.; Roth, S.; Rother, C. FusionFlow: Discrete-continuous optimization for optical flow estimation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA,
23–28 June 2008.

34. OpenCV Library. Source Forge. Available online: https://sourceforge.net/projects/opencvlibrary/
(accessed on 15 July 2019).

35. Genovese, M.; Napoli, E.; Caro, D.D.; Petra, N.; Strollo, A.G.M. FPGA implementation of Gaussian mixture
model algorithm for 47fps segmentation of 1080p video. J. Electr. Comput. Eng. 2013, 2013, 1–8. [CrossRef]

36. Genovese, M.; Napoli, E. ASIC and FPGA implementation of the Gaussian mixture model algorithm for
real-time segmentation of high definition video. IEEE Trans. VLSI Syst. 2014, 22, 537–547. [CrossRef]

37. Arivazhagan, S.; Kiruthika, K. FPGA implementation of GMM algorithm for background subtractions in
video sequences. In Proceedings of the International Conference on Computer Vision and Image Processing,
Roorkee, India, 26–28 February 2016.

38. Krishnamoorthy, A.; Menon, D. Matrix inversion using Cholesky decomposition. In Proceedings of
the IEEE Conference on Signal Processing: Algorithms, Architectures, Arrangements, and Applications,
Poznan, Poland, 26–28 September 2013.

39. Sand, P.; Teller, S. Particle video: Long-range motion estimation using point trajectories. Int. J. Comput. Vis.
2008, 80, 72–91. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TPAMI.2012.132
http://www.ncbi.nlm.nih.gov/pubmed/22689075
http://dx.doi.org/10.1109/TCYB.2013.2248057
http://www.ncbi.nlm.nih.gov/pubmed/24108721
http://dx.doi.org/10.1016/j.cviu.2014.06.007
http://dx.doi.org/10.1016/j.sigpro.2015.06.003
http://dx.doi.org/10.1016/j.cosrev.2018.03.001
http://dx.doi.org/10.1016/j.patcog.2017.09.040
http://dx.doi.org/10.3390/s16010023
http://www.ncbi.nlm.nih.gov/pubmed/26712761
http://dx.doi.org/10.1016/0004-3702(81)90024-2
https://sourceforge.net/projects/opencvlibrary/
http://dx.doi.org/10.1155/2013/129589
http://dx.doi.org/10.1109/TVLSI.2013.2249295
http://dx.doi.org/10.1007/s11263-008-0136-6
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Brox Optical Flow Estimation
	Gaussian Mixture Model

	Proposed Moving Object Detection Algorithm
	Background Compensation
	Object Detection

	Hardware Architecture Design
	Optical Flow Estimator
	Camera Motion Estimator
	Background Detector
	Object Detector

	Experimental Results
	FPGA Implementation
	Performance Evaluation

	Conclusions
	References

